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ABSTRACT 

An application of the sinc sum function in Hilbert transformer (HT) is studied. The expression of the frequency re- 
sponse of HT is expressed with sinc sum functions. Some properties of sub-amplitude response of HT are proved by 
using the properties of the sinc sum function. A general HT formula is obtained theoretically and it contains a general 
window function. As an example three new window functions are obtained. Different from the existing window func- 
tions obtained from lowpass filters, these window functions are obtained directly from HT. Comparisons show that new 
windows are better than the Hanning, Hamming, Blackman and Kaiser windows in terms of HT performances. 
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1. Introduction 

Hilbert transformer (HT) is widely used in engineering, 
such as damage diagnosis of rotors [1], electroencepha- 
lography analysis [2], detection in speech [3], extraction 
of modal characteristics [4], upmixing stereo signals [5], 
and vibration analysis [6]. Hilbert-Huang transform is a 
technique developed in recent years. One of its main 
parts is HT [4,7]. Reference [8] gives more application 
examples of HT. About the design method of HT, we can 
find some methods [9-13], but window method is one of 
the most frequently used methods [2-4]. The reason is 
that window method is the simplest one of them and sev- 
eral windows have good performances. The well-known 
fixed windows are the Hanning, Hamming, Blackman 
windows and the most frequently used adjustable win- 
dow is the Kaiser window. These windows are obtained 
according to the performances of lowpass filters. Conse- 
quently, windows with good performances can not easily 
be obtained because for finding satisfied windows three 
performances of passband, stopband and transition width 
of lowpass filters must be given attention to simultane- 
ously. In the study of FIR filter design, a new function is 
defined as sinc sum function [14] by the author. The 
function has been used in the design of FIR filters, such 
as lowpass filters [14] and differentiators [15,16]. Further 
study shows that it can be used in the design of FIR HT. 

The definition of the sinc sum function is as follows [14]. 
For the positive finite integer  and the real indepen- 

dent variable 
L

x , the expression 

 
1

sin
L

n L

x
n

L
S x

n





 
 
                 (1) 

is called sinc sum function. 
Some properties of the sinc sum function are proved as 

follows: 
(i) Global symmetry:   S x S x    and  0 0S  ; 
(ii) Stair shape:    2 πL S x  2πS x  ; 
(iii) Local symmetry:    π 2S x S Lπ x π     and 
 π πS L  ; 
(iv) Local extrema certainty: Let  

 π 1, 2, , 1x k L  
k
 . Then (a)  has a local 

maximum value if  is an odd number; (b) 
 πS k

 πS k  has 
a local minimum value if k is an even number; 

(v) Oscillation regularity: If x  increases from 0 to 
, then πL  S x

π
 oscillates with decaying magnitude 

above or below  alternatively along with the increase 
of x ; 

(vi) Extreme value stability: Let  be large enough. 
Then the extreme value and some sub-extreme values of 

L

 S x  are almost unchangeable along with the change of 
L. 
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2. New HT Expression 

2.1. Truncated Ideal HT 

HT formula in frequency domain is 

  , π 0
e

,0 π
j j

H
j

 


  
   

          (2) 

Corresponding HT formula in time domain is 

   1 1

π

n

dh n
n

 
                 (3) 

We truncate it as follows: 
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π

n
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           (4) 

where  and 2N L 
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   (5) 

The frequency response of  is  Th n
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  (6) 

In the third step Euler formula is used. 

Let 
π

v
L

  . Then it becomes 
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This is a new form of frequency response of the 
truncated HT. Let 
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(8) 

Theorem 1  0Z v  of (8) has following properties: 
(i)    0 0Z v Z v   and ;  0 0 0Z 
(ii)    0 02Z v L Z  v ; 

(iii)    0 0Z v L Z v   ; 
(iv)    0 0Z L v Z v  ; 

(v)  0Z v  has a local maximum value if v  is an 
odd number and has a local minimum value if  is an 
even number on the interval ; 

v
0 v L 

(vi)  0Z v
0 v

 oscillates in the vicinity of 1 on the in- 
terval L  .  

Proof. According to (1), (8) becomes 

      0

1
π π

π
Z v S v S L v π           (9) 

where  πS v  and  πS L v    are two sinc sum 
functions. 

Substituting v  for  in (9) we get v

      0

1
π π

π
Z v S v S L v π           (10) 

By property (ii) of the sinc sum function we get 

 
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    

0

1
π π 2 π 2π π
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π
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
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       

  (11) 

By property (i) of the sinc sum function we get 
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    
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      (12) 

From (2.8) and (2.11) we get 

  0 0 Z v Z v               (13) 

Substituting 0v   in both sides yields  0 0 0Z  . 
Part (i) of the proof is complete. 
Substituting v L  for  in (9) we get v

 

     
    

0 2

1
2 π 2 π π

π
1

2 π π 2 π π
π

Z v L

S v L S L v L

S v L S L v L



          

           

  (14) 

By property (ii) of the sinc sum function and (2.8),  

   0 2 0Z v L Z v               (15) 

Part (ii) of the proof is complete. 
Substituting v L  for  in (9) we get v
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 
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   
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
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       

π    (16) 

By property (ii) of the sinc sum function we get  

 

    

    

0

1
π 2 π 2π π

π
1

π π π
π

Z v L

S v L L S v

S v L S v



        

      

π

0

  (17) 

By property (i) of the sinc sum function and (2.8), 

  0Z v L Z v                (18) 

Part (iii) of the proof is complete. 
Substituting  for  in (9) we immediately get L v v

   0 0Z v Z L v                (19) 

Part (iv) of the proof is complete. 
By the property (iv) of the sinc sum function,  πS v  

has a local maximum value if  is an odd number and 
has a local minimum value if  is an even number. The 
local extreme points of 

v
v
 πvS L    relates to the  

parity of L. For L even,  πS v  and  have   πS L v  
extrema of the same kind. In this case,  0Z v ,  πS v  
and  have extrema of the same kind at any 
extreme point of . For  odd, 

 πS L v 
 πS v L  πS v  and 

 have extrema of different kinds at each 
extreme point. But by property (v) of the sinc sum func- 
tion we always have 

 πS L v  

   π π πS v S πL v     on  

the interval 0
2

L
v  . Then we know that  0Z v  and  

 πS v  have extrema of the same kind at any extreme 
point of  on the interval. According to (iv) of this 
theorem the conclusion is still true on the interval  

 πS v

2

L
v L  . Therefore,  0Z v  has a local maximum  

value if  is an odd number and has a local minimum 
value if  is an even number on the interval 

v
v 0 v L  , 

no matter how  is odd or even. L
Part (v) of the proof is complete. 
By property (v) of the sinc sum function,  πS v

π
 and 

  are both oscillates in the vicinity of  on 
the interval . Then from (9) we easily know 
that 

 πS L v
0

 0


v L 

Z v  oscillates in the vicinity of 1 on the interval. 
The proof is complete. 

From Theorem 2.1 we can see that  0Z v

2L

 is sym- 
metrical about , odd symmetrical about both 

 and v , and periodic with period . 
0.5v 

L
L

0v  
In addition,  0Z v  oscillates with decaying ampli- 

tude in the vicinity of 1 both from  to 0.5  and 
from  to 0. . Because the proof is too complexity, 
we do not prove it in the paper. 

0v  L
L 5L

2.2. New HT Formula 

For 2 1M L  

e

 we construct an expression as fol- 
lows: 
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M
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   Z v           (20) 

where 0 1, , , MW W W  are undetermined weights and 
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
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
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 
 
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     (21) 

Theorem 2  KZ v  of (21) has following properties: 
(i)    KKZ v Z   v  and ;  0 0KZ

(ii)    K K2Z v L  Z v ; 

(iii)    K KZ v L  Z v ; 

(iv)    K KZ L v  Z v ; 

(v)  KZ v  has a local maximum value if v K  is 
an odd number and has a local minimum value if v K  
is an even number on the interval K v L  K ; 

(vi)  KZ v  oscillates in the vicinity of 1 on the 
interval K v L K  

0 v
 and in the vicinity of 0 on both 

the interval K   and the interval  .L K Lv  
Proof. According to (1), (21) becomes 
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 

     
     

1
π π

2π
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2π

1,2, ,
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S v K S L v K
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         
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π

π




  (22) 

where       π , π , πS v K S L v K S v K          

 

  

and  are four sinc sum functions.   πS L v K  
For convenience, let 

 

    
1

1
π π ,

π
1, 2, ,

KZ v

S v K S L v K

K M

          

 

π  (23) 

and 

 

     
2

1
π π ,

π
1,2, ,

KZ v

S v K S L v K

K M

        

 

π    (24) 

Then (22) becomes 

    1 20.5K K K Z v Z v Z   v        (25) 

Comparing (23) and (24) with (9), respectively, we get 

   1 0KZ v Z v K              (26) 

and 

   2 0KZ v Z v K              (27) 

Then (25) becomes 

     0 00.5KZ v Z v K Z v K          (28) 

Substituting  for  in (28) we get v v

     0 00.5KZ v Z v K Z v K       



 

By Theorem 2.1 (i) we get  

     
  

0 0

0 0

0.5

0.5

KZ v Z v K Z v K

Z v K Z v K

     
    




 

Comparing it with (2.27), we get 

   K KZ v Z v                (29) 

Substituting  in both sides yields 0v   0 0KZ  . 
Part (i) of the proof is complete. 
Substituting  for  in (28) we get 2v L v

 
  0 0

2

0.5 2 2

KZ v L

Z v L K Z v L K



       
 

By Theorem 2.1 (ii) we get 

    0 02 0.5K Z v L Z v K Z v K        

Comparing it with (2.27), we get 

  2K KZ v L Z v              (30) 

Part (ii) of the proof is complete. 
Substituting v L  for  in (28) we get  v

     0 00.5KZ v L Z v L K Z v L K          

By Theorem 2.1 (iii) we get 

    
  

0 0

0 0

0.5

0.5

K 


Z v L Z v K Z v K

Z v K Z v K

       
      

 

Comparing it with (2.27), we get 

  K KZ v L Z v                 (31) 

Part (iii) of the proof is complete. 
Substituting v L  for  in (28) we get  v

     0 00.5KZ L v Z L v K Z L v K          

By Theorem 2.1 (iv) we get 

    0 00.5K Z L v Z v K Z v K        

Comparing it with (2.27), we get  

  K KZ L v Z v              (32) 

Part (iv) of the proof is complete. 
By Theorem 2.1 we know from (26) that  1KZ v  has 

a local maximum value if  is an odd number and 
has a local minimum value if  is an even number 
on the interval 

v K
v K

K v L K   , and we know from (27) 
that  2KZ v  has a local maximum value if v K  is an 
odd number and has a local minimum value if v K  is 
an even number on the interval K v L K  . There- 
fore,  1KZ v  and  2KZ v  have local extrema of the 
same kind at each extreme point on the interval 
K v L K   . Then from (25) we know that any 
common extreme point of 1K Z v  and  2KZ v  is the 
extreme point of  KZ v  on the interval. Thus  KZ v  
has a local maximum value if  is an odd number 
and has a local minimum value if  is an even 
number on the interval. 

v K
v K

Part (v) of the proof is complete. 
By Theorem 2.1 (i) and (v), we know from (26) that 
 1KZ v  oscillates in the vicinity of 1 on the interval 

K v L K  
v

 and in the vicinity of −1 on the interval 
L K K     and that  1 0K v K

; we know 
from (27) that 

Z v 
 2KZ v  oscillates in the vicinity of 1 on 

the interval K v L K     and in the vicinity of −1 on  

the interval L K v K      and that  2 0K v K
Z v


 .  

Then from (2.24) we know that  KZ v  oscillates in 
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the vicinity of 1 on the interval K v L K  
0 v K 

 and in 
the vicinity of 0 on the interval . By Theorem 
2 (iv) we know that  KZ v

L K v 
 oscillates in the vicinity of 

0 on the interval . L
The proof is complete.  
From Theorem 2.2 we can see that  KZ v  is sym- 

metrical about v , odd symmetrical both about 
 and about , and periodic with period . 

0.5L
L


v 0v  2L

Comparing (2.7) with (2.20), we know that  0Z v  is 
a special case of  KZ v  with . We call each 0K 

 KZ v  sub-amplitude response of HT. 
Replacing  by  in (2.21), we get K 1K 

 

     
 

1

1

1

K L

K L



 

  

1 π π

1 π π

v K

v K

    

     

1

1

2π
1

,
2π

0,1, ,

KZ v

S v

S v

K M



  

  

 

π

π

S

S

  

   

(33) 

By property (iv) of the sinc sum function, we easily 
know that 1KZ v  and  KZ v

K L K

 always have extrema 
of different kinds at each integer point v  except 

 and , 1, Lv K K  1   on the interval 
. 0 v L 

A plot of 0 1  ,  Z v Z v  and  2Z v L for 16  are 
illustrated in Figure 1. We can see that the above 
analysis is identical with the figure. 

By 
π

v
L

  , (21) becomes 

 

 

 

1

1

1

1

π

1

2π

π
n

π

1

2π

π
n

K

L

n L

L

n L

L

n L

L

n L

Z

K n
L

sin

1 si

sin

1 si

n

n

n

K n
L

n

K n
L

n

K n
L

n























   
       











          



   
     






 

          











     (34) 

Using triangular identity, we have 

 

Figure 1. ,Z Z0 1  and Z2  for L = 16 on [−16 16]. 

 

 
 

 

   

     

1

1

1

1

1 11 π
sin

2π

1 11 π
sin

2π

1 11 π
sin cos

π

1 11 π
sin cos

π

K

n
L

n L

n
L

n L

n
L

n L

n
L

N
n L

Z

K n
n L

K n
n L

n Kn
n L

n Kn T
n L



























         

         

     
 

     
 







 n

 

Using Euler formula, we get  

     1 1 π
cos e

n

j n
K N

n

Z j Kn T n
n L








     
 

  (35) 

By 
π

v
L

  , (2.19) becomes 

   
0

e
M

j
K K

K

H j W Z 


           (36) 

Substituting (2.34) in (2.35), we get 

 
   

0

e

1 1 π
cos e

j

n
M

j n
K N

n K

H

W Kn T n
n L








 

     
 

 
 (37) 

Corresponding impulse response is 

     
0

1 1π
cos

π

n
M

K N
K

h n W Kn T n
L n

    
 

   (38) 

or 

   
0

π 2
cos ,  is odd

π

0,  is even

L

K N
K

W Kn T n n
h n L n

n


  
    


   (39) 

From the above discussions about KZ  we can see 
that if the value of each KW  is proper the superposition 
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of all K KW Z  can make the maximum deviation of 
 H v  decreased because their changes in opposite di- 

rections can counteract mostly. Then we can obtain HT 
formulas with good performances. According to the 
property (vi) of the sinc sum function,  H v

L
 is almost 

unchangeable along with the change of  if it is large 
enough. Thus  can be arbitrary under this condition. 
In general,  can be considered large enough. 

L
30L 

Equation (38) contains a window function as follows: 

 
0

π
cos

M

K
K

w n W Kn
L

 
 

 
           (40) 

Now the weight KW  is the widow constant. 
For convenience, let 

   
0

M

K K
K

H v W Z


  v            (41) 

It is the amplitude of (2.19). 

3. Examples of Obtaining HT Formulas 

We choose 4M 

 

 (correspondingly,  through 
4). Then (41) becomes 

0K 

2 2     
   

0 0 1 1

3 3 4 4

H v W Z v W Z v v

W Z v W Z v

 

 

W Z

 0 1

   (42) 

We can select 5 points of . In general, it is better to 
select the local extreme points of 2 5

v
, , , ,Z v v

2 2

v v  
denote the 5 points, respectively. Then from (42) we get 
5 equations as follows: 

 1      
   

0 0 1 1 1 1 1

3 3 1 4 4 1

H v W

2 0

Z v W Z v v

v W Z v

 

 

W Z

2 2

W Z
   (43) 

      
   

0 2 1 1 2 2

3 3 2 4 4 2

H v W Z v W Z v v

v W Z v

 

 

W Z

 2 2 3

W Z

0

3 3

   (44) 

 3    
   

0 3 1 1 3

3 4 4 3

H v W

W Z

4 0

Z v W Z v

v W Z v

 

 

W Z v

2 2

    (45) 

      
   

0 4 1 1 4

4 4 4 4

4

3 3

H v W

 5

Z v W Z v

v W Z v

 

 

W Z v

 2 2 5

W Z
    (46) 

   
   

0 5 1 1 5

5 4 4 5

0

3 3

H v W

W Z



Z v W Z v

v W Z v

 

 

W Z v

3 3,v v
63

    (47) 

Solving the simultaneous equations, we can obtain 
 through W . 0 4

Now we choose 1 2 4 , and 

5  as above five points and let . Substituting 
them in (8) and (21), respectively, we get  

W

5v 

 0 1

1, 2, 4v v  
L

0 5-Z v Z v ,    1 1 1 5-Z v Z v ,  2 1 2-  5Z v Z v ,  

 3 1 3 5- Z v Z v , and    4 1 4 5-Z v Z v , in turn. We do not 

list theses values here. 
   1 1, ,H v H v  , and  5H v  are selected with 3 

cases listed in Table 1. They are selected based on the 
consideration that the resulting windows can easily be 
compared with the Hanning, Hamming and Blackman 
windows in terms of HT performances, respectively. 

Solving (3.2) we get 0  through 4W  listed in table 
3.1, too. Then from (39) we obtain HT formula as 
follows: 

W

   
4

0

π 2
cos ,  is odd

π

0,   is even

K N
K

W Kn T n n
h n L n

n


  
    



   (48) 

Corresponding window is 

  0 1 2

3 4

π 2π
cos cos

3π 4π
           cos cos

w n W W n W n
L L

W n W n
L L

      
  

       
   





   (49) 

For 127L  , we get corresponding maximum pass- 
band ripple of each HT. In Table 1, Ap is the maximum 
passband ripple and   is from the following relation- 
ship: 

π

l

N



                   (50) 

where l  is the lower cutoff frequency of magnitude 
responses. 

It is obvious that for finding good window constants 
we only need to take into account two performances of 
maximum passband ripple and transition width in the 
magnitude response of HT. 

If maximum passband ripple and lower cutoff fre- 
quency as two specifications are known, we can easily 
design HTs. The first step is to select a window from 
table 3.1. Then the corresponding   is obtained from 
the table. The next step is to compute  according to 
(50) and further . The last step is to compute HT 
coefficients according to (48). 

N
L

4. Compared with Other Windows 

Now we compare passband ripples of frequency re- 
sponses of HTs obtained by using three new windows 
with those obtained by using the Hanning, Hamming, 
Blackman and Kaiser windows [17] for 63L  , re- 
spectively. About the Kaiser window, we select its para- 
meter   in this way that the maximum passband ripple 
obtained by using each new window is the same as that 
obtained by using the Kaiser window. For seeing clearly 
and reducing paper length we only plot part of each 
curve in Figure 2. It is necessary to say that for each 
curve passband ripples oscillate with decaying magnitude 
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Table 1. Three cases of  H v1  through  H v5 ,  through W  and HT performances. W0 4

No.  1H v   2H v   3H v   4H v   5H v 0W  1W  2W  3W  4W  Ap (dB) α 

1 0.9385 1.0086 1.0086 1.0086 1.0086 0.6508 0.3740 −0.0330 0.0093 −0.0011 0.109 0.754

2 0.88 1.0016 1.001 1.0046 1.0016 0.5812 0.4325 −0.0194 0.0082 −0.0026 0.034 0.958

3 0.764 1.0079 1.0003 1.0002 1.0001 0.461382 0.493228 0.460071e−1 −0.395644e−3 −0.221528e−3 2.97e−3 1.48

 
in the vicinity of 0 dB from some local extrema to the 
point with the normalized frequency being 0.5 in Figure 
2 and the whole curve is symmetrical about the fre- 
quency. From the figure we can see that these new win- 
dows are better than the Hanning, Hamming, Blackman 
and Kaiser windows in terms of HT performances, re- 
spectively. 

 

5. Conclusion 

A general HT formula is deduced by using the sinc sum 
function and it contains a general window function. 
Three new windows are obtained directly from the mag- 
nitude responses of HT. These new windows belong to 
fixed window. They are two or three cosine terms more 
than the Hanning, Hamming and Blackman windows but 
much simpler than the Kaiser window. Comparisons 
show that these new windows are better than the Hanning, 
Hamming, Blackman and Kaiser windows in terms of 
HT performances. 
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