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ABSTRACT 

In this paper, we prove the celebrated Bichteler-Dellaccherie Theorem which states that the class of stochastic processes 
X allowing for a useful integration theory consists precisely of those processes which can be written in the form X = X0 
+ M + A, where M0 = A0 = 0, M is a local martingale, and A is of finite variation process. We obtain this decomposition 
rather direct form an elementary discrete-time Doob-Meyer decomposition. By moving to convex combination we ob-
tain a direct continuous time decomposition, which then yield the desired decomposition. We also obtain a characteriza-
tion of semi-martingales in terms of a variant no free lunch with vanishing risk. 
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Lemma 

1. Introduction 

In this paper, 
t   is assumed to be a fil-

tered probability space where 
t   is a filtration 

satisfying t  for all t  , the usual condition of 
right continuity and completeness. The random move-
ment of  risky assets in the market is modeled via 
cadlag, nonnegative stochastic processes i

  , , ,t P  

  




 t



d
X , where 

. We assume that all wealth processes are 
discounted by another special asset which is considered a 
baseline. In the market described above, economic agents 
can trade in order to reallocate their wealth. 
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Consider a simple predictable process 
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where 0 0  , and for all , 1, ,j  n j  is a finite  

stopping time and  is  i

1, ,j j i d
 




 1j 
 -measurable.  

Each 1j  , , is an instance when some give 
economic agent may trade in the market, then, 

1, ,j  n
i
j  is the 

number of unit from the ith risky assets that the agent 
will hold in the trading interval 1,j j   . This form of 
trading is called simple, as it comprises of finite number 

of buy-and-hold strategies, in contrast to continuous 
trading where one is able to change the position of the 
assets in a continuous fashion. The last form of trading is 
only theoretical value, since it cannot be implemented in 
reality, even if one ignores market frictions. 

Starting from initial capital  and following the 
strategy described by the simple predictable process  
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   , the agent’s discounted process is 

given by  
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where n , 00 n     


 are a.s. finite stoping 
times with respect to t  and the j  are 

j
 -measur- 

able real random variables. Note that the trader is allowed 
to trade on an infinite time horizon, because we do not 
restrict to bounded stoping times for the re-allocation of 
the capital. Of course trading on a finite time horizon [0, 
T] is covered by switching to the process .  ,t TX  t T

Theorem 1.1. [1,2] A real valued, cadlag, adapted 
process  X X

0t t T 
1) X is a good integrator. 

  the following are equivalent: 

2) X may be decomposed as X M A  , where 
 M M

0t t T 
 is a local martingale and   0t t T

A A
 

  
is an adapted process of finite variation. 
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process 
0t t T 

 allows for A Free Lunch With 
Vanishing Risk for simple integrands if there is a  

 X X

sequence  of simple integrands such that for 

, 
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In contrast, X therefore admits No Free Lunch With 
Vanishing Risk (NFLVR) for simple integrands if for  

every sequence  satisfying (VR) we have  
1

n

n
SI






(NFL)        in probability. 0n

T
X  

A free lunch with vanishing risk (FLVR) for simple 
integrands indicates that S allows for a sequence of trad-
ing schemes 

1n
, each n X


 n  involving only 

finitely many rebalancing of the portfolio, such that the 
losses tend to Zero in the sense that of (VR) ,while the 
terminal gains (FL) remain substantial as n goes to infin-
ity. It is important to note that the condition (VR) of van-
ishing risk pertains the maximal losses of the trading 
strategy n  during the entire interval [0,T]: if the left 
hand side of (VR) equals n  this implies that, with 
probability one, the strategy n  never, i.e. for not 

 0,t T , cause an accumulated loss of more than n . 
Resently, it has been argued that existence of an 

Equivalent Martingale Measure(EMM) is not necessary 
for viability of the market; to see this effect, see [4-6]. In 
[7], the concept of strictly positive supermartingale de-
flator which is weaker than the existence of an EMM, 
that allows for consistent theory to be developed.In this 
paper, we investigate the relation between the no free 
lunch with vanishing risk property for simple integands 
and the semimartingale property. 

Theorem 1.2. [1,8] Let 
0t t T 

 be a real-valued, 
cadlag, locally bounded process based on and adepted to 
a filtered probability space 

 X

  0 t T 
 . If S 

satisfies the condition of no free lunch with vanishing 
risk (NFLVR) for simple integrands then S is a semi- 
martingale. 

, ,   ,

Theorem 1.3. For a locally bounded, adopted, cadlag 
process X the following are equivalent 

1) X satisfies NFLVR + LI(little Investment) 
2) X is a classical semimartingale. 
Theorem 1.4. For an adapted cadlag process X the 

following are equivalent. 
1) For all sequences  of simple predictable 

processes, 
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a) lim 0n

  

b)  0lim 0sup n
n t T t

X


    
n 

 

together imply   0X
t

   in probability. 
2) X is a classical semimartingale. 
Proposition 1.5. Let  be cadlag and 

adapted, with X0 and such that 
 0 1t t

X X
 


1X   and X satisfies 

NFLVR + LI For all  there is  and a 
sequence of stopping times  such that, for all n 

0
 n

0C 

1n
1) n  takes values in .  nD 
2)  nP     . 
3) The stopped processes , nnA   and , nnM   satisfy,  

for all n, 
2
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nn

L
M C   and 
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Lemma 1.6. Under the assumptions as in the proposi-
tion above with 
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2 1 2
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n n
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the sequence  
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 is bounded in probability. 

Proof. For all n, let  
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a simple predictable process, then 1n

  since 
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n n
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since X satisfies NFLVR + LI,  is 
bounded in 

  
1
, 1n X n  

 0L P
0

.  □
For  define a sequence of stopping times c 
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2 1 2
1

inf : 4
2

n n

k

n n j j
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k
c X X  



c
 

    
 

 . 

Given 0   there is  such that 1c

 1 2nP c
       

Lemma 1.7. Under the same assumptions as in Propo-
sition 1.5 the stopped martingales  1, nn cM   satisfy  

 1

2

2,
1 1

nn c

L
M C  . 

Proof. For 1n  and 1, , 2 , since the  nk   nA s  
are predictable and the nM s  are martingales, 
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simplifying to get 

  1
2

1
n cE M 



  

 
 

 
  

    
 

1

1 1

1

1 1

2

1

2

2 2 1 2

2

2

2
1 14 2

n

n n
n n n

n

n
n n

c

c c

k c k k

c c

E M

E X X

E X X

c c



 


 

  



 

 
  

 
    

   

 
  

□  
Lemma 1.8. Let  
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   n n . 

Under the assumption of Proposition 1.5 the sequence 
 is bounded in probability.  nV

1n
Proof. Assume for contradiction that 

1n
 is not 

bounded in probability. Then there is 
 nv
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k
 such that 

for all k there is  such that kn .p V kn       For 
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and at time t = 1 we have  

     1 1, ,

1 1

n nn c n cn nX V M      .  

  But the second summand is bounded in L2, so we con-  

clude that   1,

1

nn c X   is not bounded in probability. 

 a sequence We defined of stopping times 
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by Doob’s sub-martingale in-equality,(see [9,10])  
  1, nn c nM   is bounded in probability. Therefore 

there is 0c   such that   2nP c       . Note 
that  1, nn c  n c X     is uniformly bounded below by 
c . We    claim  c1,

1

n nn c X   ded in 
proba r any n and any k, 

   

   is not boun
bility. Indeed, fo

 1,

1

n nn c cp X k        
      1,

1
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Since   2nP c      
other event is at least 

, the probability of the 
2 . This gives the desired 

co tion because it i

ng times 

ntradic  easy to construct a FLVR 
+ LI. 

Proof of Proposition 1.5: Defined a sequence of 
stoppi

s now

   1 2 1 2
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By Lemma 1.8 there is c  such that 2  2 2nP c      . 
Take 1 2:C c c   and 2      .n n nc c   1
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Proposition 2.0. Let  be cadlag and 
adopted, with 

  

 0 1t t
X X

 


0 0X   and such that 1
u

X   and X 
satisfies NFLVR + LI. For all 0   there is C and a 
   0,1   valu ping time ed stop   such that  

 p      and sequence  
1n

M


 and n  
1
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 of  

 im  h t llcontinuous t s suc a  n, 
1) 
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00 0
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3) ,nM   is a martingale with 2

2,
1
n

L
M C   

4) 
 

2 ,

2 1 2n n
n

j j1j

n

A A C
 
   


of. Let Pro 0   be given. Let C,  nM , nA , and 

n  be as in p ition 1.5. Extended ropos nM  and nA  to 
all  0,1t  by ing  defin 1

n n
t tM E M F  nd  

n
t t


  a

A X M  . Not that the extended nA  is no l ger 
pred and currently w ontrol of

on
ictable, 

total variation
e only ha  the ve c

 of , nnA   over nD , i.e. 

 



2 1

2 1 2

n
n

n n
n

j j
=1

.
j

A A


 



  C


 

Notice that, for  1 2 , 2n nt j j     , 

 

2

2 2

2 2

n
n

n n

n n

n n
t t t tj

n n
t tj j

n n
t tj j

A X  M X E M F

X E X A F

A E X F X

 

 

      
     

     

 

From this and 1
u

X   it follow that  

2
2nt j 



n nA A  , so , 2nn

u
A C   do we fine  

the limit of the se e of stopping ti
trick is to defin

. How 

quenc mes   1n n



? The 

e R  0, 11n
n

 , a simple predicator 
process, and note that stopping at n  is lik rating 
Rn, i.e. , nn n

e integ
nA R A   nn n n and ,M R M   . We have 

that 

 1 1 1n
n nE R E P1 1      .          

Apply Komlos’ Lemma to obtain convex weights 
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over  is bounded by . FuD C rther, we have t tX M A   . 

lag modifica-
A is a cadlag on D, so define it on all of [0,1] to make it 
cadlag. M is 2L  martingale so it has a cad
tion. Since  P      and 0   was arbitrary, and 
the class of cl ical semimartingales is local, X must be 
a classical se . □  

Proof of Theorem 1.4. We no longer assume that X is 
locally bounded. The trick is to leverage the result for 
lo

ass
mimartingale

cally bounded processes by subtracting the big jump 
from X. Assume without loss of generality that 0X  and 
defined 11

st s Ss t
J X  
  . Then X = X − J is an 

adopted, cadlag locally bounded process. We will show 
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