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ABSTRACT 

In this paper, based on a new type of censoring scheme called an adaptive Type-II progressive censoring scheme intro- 
duce by Ng, et al. [1], Naval Research Logistics is considered. Based on this type of censoring the maximum likelihood 
estimation (MLE), Bayes estimation, and parametric bootstrap method are used for estimating the unknown parameters. 
Also, we propose to apply Markov chain Monte Carlo (MCMC) technique to carry out a Bayesian estimation procedure 
and in turn calculate the credible intervals. Point estimation and confidence intervals based on maximum likelihood and 
bootstrap method are also proposed. The approximate Bayes estimators obtained under the assumptions of non-infor- 
mative priors, are compared with the maximum likelihood estimators. Numerical examples using real data set are pre- 
sented to illustrate the methods of inference developed here. Finally, the maximum likelihood, bootstrap and the differ- 
ent Bayes estimates are compared via a Monte Carlo simulation study. 
 
Keywords: Generalized Pareto (GP) Distribution; An Adaptive Type-II Progressive Censoring Scheme; Bayesian and 

Non-Bayesian Estimations; Gibbs and Metropolis Sampler; Bootstrap 

1. Introduction 

In life testing and reliability studies, the experimenter 
may not always obtain complete information on failure 
times for all experimental units. Data obtained from such 
experiments are called censored data. Reducing the total 
test time and the associated cost is one of the major rea- 
sons for censoring. A censoring scheme, which can ba- 
lance between, total time spent for the experiment, num- 
ber of units used in the experiment and the efficiency of 
statistical inference based on the results of the experi- 
ment, is desirable. The most common censoring schemes 
are Type-I (time) censoring, where the life testing experi- 
ment will be terminated at a prescribed time T, and Type- 
II (failure) censoring, where the life testing experiment 
will be terminated upon the r-th (r is pre-fixed) failure. 
However, the conventional Type-I and Type-II censoring 
schemes do not have the flexibility of allowing removal 
of units at points other than the terminal point of the ex- 
periment. Because of this lack of flexibility, a more gene- 
ral censoring scheme called progressive Type-II right cen- 
soring has been introduced. Briefly, it can be described 

as follows: Consider an experiment in which n units are 
placed on a life testing experiment. At the time of the 
first failure,  units are randomly removed from the 
remaining 

1R
1n   surviving units. Similarly, at the time 

of the second failure, 2  units from the remaining 

1

R
2n R 

m

m mR n m R R R

 units are randomly removed. The test con- 
tinues until the -th failure at which time, all the remai- 
ning 1 2 1     

R s
 units are removed. 

The i  are fixed prior to the study. We note that prior 
to the experiment in the progressive Type-II right cen- 
soring, an integer m n  is determined and the progres- 
sive Type-II censoring scheme  with   1 2, , , mR R R

0iR 
1

m

i
i

R m n


 and  

1 2, , , , 1, 2, ,mR R R

 is specified. During the expe-  

riment, the i-th failure is observed and immediately after 
the failure, Ri functioning items are randomly removed 
from the test. We denote the m completely observed (or-
dered) lifetimes by : :i m nX i m 

X

, which are 
the observed progressively Type-II right censored sample. 
For convenience, we will suppress the censoring scheme 
in the notation of the : :i m n ’s. We also denote the ob-
served values of such a progressively Type-II right cen-*Mathematics Subject Classification: 62N05; 62F10. 
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sored sample by 1: : 2: : : :m n m n m m n  Readers may 
refer to Balakrishnan [2] and Balakrishnan and Aggar-
wala [3] for extensive reviews of the literature on pro-
gressive censoring. 

.x  

R R R  

x x

 

Recently, Ng, et al. [1] suggested an adaptive Type-II 
progressive censoring, where we allow 1 2 m  
to depend on the failure times so that the effective sam-
ple size is always m, which is fixed in advance. A prop-
erly planned adaptive progressively censored life testing 
experiment can save both the total test time and the cost 
induced by failure of the units and increase the efficiency 
of statistical analysis. 

Arandom variable X is said to have generalized Pareto 
(GP) distribution, if its probability density function (pdf) 
is given by 

 1 1
x


 

  
 
 , ,

1
1f     

 
where , R    and . For convenience, we 
reparametrized this distribution by defining 

 0,  
,    

1    and 0  . Therefore, 

     1
, 0, , 0.  

0, , 0,  

f x x x
        (1) 

The cumulative distribution function (cdf) is defined 
by 

   1 ,F x x x
         (2) 

Here   and   are the shape and scale parameters, 
respectively. It is also well known that this distribution 
has decreasing failure rate property. This distribution is 
also known as Pareto distribution of type II or Lomax 
distribution. This distribution has been shown to be use-
ful for modeling and analizing the life time data in 
medical and biological sciences, engineering, etc. So, it 
has been received the greatest attention from theoretical 
and applied statisticians primarily due to its use in relia- 
bility and lifetesting studies. Many statistical methodes 
have been developed for this distribution, for a review of 
Pareto distribution of type II or Lomax distribution see 
Lomax[4], Habibullh and Ahsanullah [5], Upadhyay and 
Peshwani [6] and Abd Ellah [7,8] and rewferences of 
them. Agreat deal of research has been done on estima- 
ting the parameters of a Lomax using both classical and 
Bayesian techniques. 

The rest of this paper is organized as follows. In sec- 

tion 2, we describe the formulation of an adaptive type-II 
progressive censoring scheme as described by Ng, et al. 
[1]. The MLEs of the parameters   and  , approxi- 
mate confidence intervals are presented in Section 3. 
Bootstrap confidence intervals presented in Section 4. 
We cover Bayes estimates and construction of credible 
intervals using the MCMC techniques in Section 5. Nu- 
merical examples are presented in Section 6 for illustra- 
tion. In Section 7 we provide some simulation results in 
order to give an assessment of the performance of the dif- 
ferent estimation method. Finally we conclude the paper 
in Section 8. 

2. An Adaptive Type-II Progressive Scheme 

In this section, a mixture of type-I censoring and Type-II 
progressive censoring schemes, called an adaptive Type- 
II progressive censoring scheme is discussed. One can 
refer to Ng, et al. [1]. This method is also used by 
Cramer and Iliopoulos [9]. 

Suppose the experimenter provides a time T, which is 
an ideal total test time, but we may allow the experiment 
to run over time T. If the m-th progressively censored 
observed failure occurs before time T (i.e. : :m m nX T ), 
the experiment stops at the time : :m m n  (see Figure 1). 
Otherwise, once the experimental time passes time T but 
the number of observed failures has not reached m, we 
would want to terminate the experiment as soon as pos- 
sible. 

X

: : 1: : , 0,1, , ,J m n J m n

This setting can be viewed as a design in which we are 
assured of getting m observed failure times for efficiency 
of statistical inference and at the same time the total test 
time will not be too far away from the ideal time T. From 
the basic properties of order statistics (see, for example, 
David and Nagaraja [10]), we know that the fewer ope- 
rating items are withdrawn (i.e., the larger the number of 
items on the test), the smaller the expected total test time 
(Ng and Chan [11]). Therefore, if we want to terminate 
the experiment as soon as possible for fixed value of m, 
then we should leave as many surviving items on the test 
as possible. Suppose J is the number of failures observed 
before time T, i.e. 

X T X J m   

0X
 

where 0: :m n   and 1: :m m n . According to the 
above result on stochastic ordering of first order statistics  

X  

 

T…nmx ::1
 

Start
nmmx ::

End
nmmx ::1

  
nmx ::2

  

mR  1mR 2R 1R 

Withdrawn  Withdrawn Withdrawn Withdrawn 

 

Figure 1. Experiment terminates before time T (i.e. xm:m:n < T). 
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from different sample sizes, after the experiment passed 
time T, we set  and  1 1 0J mR   

1

j

m i
i

m R


  

R      

      1

1

1

1

; ,

,
j

i i
i

m
m n

j i
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j
R n m R

i m
i

x d x

x x



 

    

  

 



 
     

 




    
  

     
   







R n . This formulation leads us to termi- 

nate the experiment as soon as possible if the  1J  -th 
failure time is greater than T for 1J m 

R

T 

. Figure 2 
gives the schematic representation of this situation. The 
value of T plays an important role in the determination of 
the values of i  and also as a compromise between a 
shorter experimental time and a higher chance to observe 
extreme failures. One extreme case is when , 
which means time is not the main consideration for the 
experimenter, then we will have a usual progressive 
Type-II censoring scheme with the pre-fixed progressive 
censoring scheme . Another extreme case 
can occur when , which means we always want to 
end the experiment as soon as possible, then we will have 

1 1  and m  which results in the 
conventional Type-II censoring scheme. 

 1 2, , ,R R R
0

R n 

m

m

T 

, , 0mR R  

If the failure times of the n items originally on the test 
are from a continuous population with cdf  F x

,
 and 

pdf  f x  for ,J j

 

 

1

; ,

; ,

,

1 ,

i

j

i

R
m m n

 the likelihood function is given 
by (see Ng et al. [1]) 

 

 

1,2, , 1; , 2; ,

; ,
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 max 1,

1

1 .
i j
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    (3) 

1; , 2; ,
R R

m n m nx x  
           

where 

1

m

j
i

d n i


           (4) 

3. Maximum Likelihood Estimation 

Let 

 (5) 

 x x x x   

 , , , mR R

1: : 2: : : :m n m n m m n  be an adaptive type- 
II progressive censored order statistics from generalized 
Pareto (GP) distribution, with censoring scheme  

1 2 . From (1)-(3), the likelihood func- 
tion is given by 
R R

where jd i is defined in (4) and x  is used instead of 

1:x :m n .  
The log-likelihood function may then be written as 

 

   

   

1

1 1

; ,

cons tan log log 1 log

log log

j

i
i

j j

i i i m
i i

L x

t m n x

R x n m R x

 

    

   



 

    

 
      

 



 



(6) 

  and Upon differentiating (6) with respect to  , 
and equating each result to zero, we get the likelihood 
equations as 
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and 
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; , 1
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   (8) 

  as hence from (7) we obtain the ML estimate of 
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Figure 2. Experiment terminates after time T (i.e. xm:m:n ≥ T). 
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By using (9) in (8) we obtain 
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  (10) 

Since Equation (10) cannot be solved analytically for 
 , some numerical methods such as Newton’s method 
must be employed to solve (10) and get the MLE ˆ .ML  

3.1. Approximate Interval Estimation 

From the log-likelihood function in (6), we have 

 2 L x
2 2

; ,
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                 (11) 
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(13) 

The Fisher information matrix  
 
,

 is then ob- 
tained by taking expectation of minus Equation (11)-(13). 
Under some mild regularity conditions,  


 is ap- 

proximately bivariately normal with mean  , 
I

 and 
covariance matrix  1 ,  . In practice, we usually es- 
timate 1 ,I    by 1 ,I   

. A simpler and equally 
valued procedure is to use the approximation  

   , ?      1
0, , , ,N I    

 
where  ,I0    is observed information matrix 
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  can be 

found by to be bivariately normal distribu ed with mean t

approximate confidence intervals for   and 

 ,  1 ,I and covariance matrix 0  


. Thus, the 

 100 1 %  approximate confidence intervals for   
and   are 

   
2 2

var and varz z    
        (14) 

respectively, where  var   and  var 


 are the ele- 
ments o  the main diagonal of the covariance matrix n

 1 ,I0   
 and 2z  is the percentile of the standard 

normal distribution with right-tail probability .  2

4. Bootstrap Confidence Intervals 

In this section, we propose to use confidence intervals 
based on the parametric percentile bootstrap method 
(Boot-p) based on the idea of Efron [12]. The algorithms 
for estimating the confidence intervals of the parameters 
using (Boot-p) method is illustrated as the following, 

1) From the original data  
     1 1 1, , , , , ,
1: : 2: : : :, , ,m m mR R R R R R

m n m n m m nx x x x   
ˆ

compute the ML esti-  
ˆmates of the parameters:   and   from Equation (9) 

and solving the nonlinear Equation (10), respectively. 
ˆ̂  and   to generate a bootstrap sample 2) Use 

x  with the same values of i , ;  
using algorithm presented in Ng et al. [1]. 

R m  1,2, ,i m 

3) As in Step 1, based on x

,
 compute the bootstrap 

sample estimates of  ˆˆ , say     . 
4) Repeat Steps 2 - 3 N times representing N bootstrap 

MLE’s of  ,
ˆ

 based on N bootstrap samples. 
ˆ s5) Arrange all  , s  , in an ascending order to 

obtain the bootstrap sample  

       1 2, , , , 1,2,3,4.N
l l    ˆˆ ,l l  Where 1 2       

Let   G z P zl   be the cumulative distribution 
function of I . Define  for given  
The approximate bootstrap  confidence in- 
terval of 

 1
lboot G z  .z

 100 1 %
l  is given by 

, 1 .
2 2lboot lboot

             
        (15) 

 

5. Bayes Estimation and Credible Intervals 

In this section we describe how to obtain the Bayes esti- 
mates and the corresponding credible intervals of para- 
meters   and   when both are unknown. For com- 
puting the Bayes estimates, we assume mainly a squared 
error loss (SEL) function only; however, any other loss 
function can be easily incorporated. 

In some situations where we do not have sufficient 
prior information, we can use non-informative prior distri- 
bution. This is particularly true for our study. For exam- 
ple, the non-informative uniform prior distribution can be 
used for parameters   and  . The joint posterior den-
sity will then be in proportion to the likelihood function. 
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Here we consider the more important case when   is 
the shape parameter and   is the scale parameter has 
independent gamma priors with the pdfs 

     ,if 0

if 0.

b  



 1

1

exp
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a
ab
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 (16) 

and 
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if 0.
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exp
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c
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 (17) 

Multiplying  1  by π ,a b  2π ,c d  we obtain 
the joint prior density of   and  ; given by  

       xp b d1 1π , e
a c

a cb d

a c
    

 
     (18) 

Based on the likelihood function of the observed sam- 
ple is same as (5) and the joint prior in (18), the joint 
posterior density of   and   given the data is 
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; , π
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Therefore, the Bayes estimate of any function of   
and   say  ,g   , under squared error loss function 
is 

    

     

   

,
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0 0

, ,

, ; , π

; , π

xg E g

g x
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, d d

.

, d d

   

  








 

 







   

  

(20) 

It is not possible to compute (20) analytically even 
when  π ,a b1  is known explicitly. Therefore, we pro- 
pose the approaches of MCMC technique to approxi- 
mate (20). See, for example, Robert and Casella [13] and 
Recently, Rezaei, et al. [14]. 

The MCMC method provides an alternative method 
for parameter estimation. It is more flexible when com- 
pared with the traditional methods. Moreover, probability 
intervals are available. The probability intervals provide 
us a reasonable interval estimate about the unknown pa- 
rameter. In the following subsection, we propose using 
the MCMC technique to compute Bayes estimates of the 
unknown parameters and to construct the corresponding 
credible intervals. 

5.1. The Metropolis-Hastings—Within-Gibbs  
Sampling 

The Metropolis-Hastings algorithm is a very general 
MCMC method first developed by Metropolis, et al. [15] 

and later extended by Hastings [16]. It can be used to 
obtain random samples from any arbitrarily complicated 
target distribution of any dimension that is known up to a 
normalizing constant. In fact, Gibbs Sampler is a special 
case of a Monte Carlo Markov chain algorithm. It gene- 
rates a sequence of samples from the full conditional pro- 
bability distributions of two or more random variables. 
Gibbs sampling requires decomposing the joint posterior 
distribution into full conditional distributions for each 
parameter and then sampling from them. We propose 
using the Gibbs sampling procedure to generate a sample 
from the posterior density function  π , x   and in 
turn compute the Bayes estimates and also construct the 
corresponding credible intervals based on the generated 
posterior sample see Soliman, et al. [17,18]. In order to 
use the method of MCMC for estimating the parameters 
of the Lomax distribution, namely,   and  . Let us 
consider independent priors (16) and (17), respectively, 
for the parameters   and  . The joint posterior den- 
sity function can be obtained up to proportionality by 
multiplying the likelihood with the prior and this can be 
written as 
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The posterior is obviously complicated and no closed 
form inferences appear possible. We, therefore, propose 
to consider MCMC methods, namely the Gibbs sampler, 
to simulate samples from the posterior so that sample- 
based inferences can be easily drawn. From (21), the 
posterior density function of   given   is propor- 
tional to 
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It can be seen that Equation (22) is a gamma density 

with shape parameter  m a  and scale parameter  
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and, therefore, samples of   can be easily generated 
using any gamma generating routine. Similarly, the pos- 
terior density function of   given   is proportional to 
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The posterior density function of   given   Equa- 
tion (23) cannot be reduced analytically to well known 
distributions and therefore it is not possible to sample 
directly by standard methods, but the plot of it shows that 
it is similar to normal distribution. So, to generate ran- 
dom numbers from this distribution, we use the Metro- 
polis-Hastings method with normal proposal distribution.  

Now, we propose the following scheme to generate 
  and   from the posterior density functions and in 
turn obtain the Bayes estimates and the corresponding 
credible intervals. 

1) Start with an    0 .
1

 t
2) Set . t 
3) Generate   from Gamma  
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4) Using Metropolis-Hastings (see, Metropolis et al. 
[15]), generate    1 2,tNQ  with the   from  

2
 

proposal distribution. Where   is variances-covari- 
ance’s matrix. 

 t  t5) Compute  ,   . 
1.t t 

N
  6) Set 

7) Repeat steps 3-6  times. 
  and 8) Obtain the Bayes estimates of   with 

respect to the SEL function as  
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where M is burn-in. 
  and 9) To compute the credible intervals of  , 

order 1, ,M N  1, and  M N  

   1

 as  

N M      1 .
N M

 and  


   Then the  

 100 1 %  symmetric credible intervals of   and 

  become 

           1 1
2 2 2 2

, and , .
N M N M N M N M          

   
   
     

6. Illustrative Examples 

To illustrate the inferential procedures developed in the 
preceding sections, we choose the real data set which 
was also used in Lawless (1982-pp 185). These data are 
from Nelson [19] concerning the data on time to break- 
down of an insulating fluid between electrodes at a volt- 
age of 34 k.v. (minutes). The 19 times to breakdown are 

 
0.96 4.15 0.19 0.78 8.01 31.75 7.35 6.50 8.27 33.91 
32.52 3.16 4.85 2.78 4.67 1.31 12.06 36.71 72.89  

 
Example 1. In this case we take  and 

. Thus, the adaptive progres- 
sive censored sample is  

  

10, 6m T 
 0,3,0,0,0,3,0

 0.19,0 .96,1.31,2.78,4.15, .5,36.71,72.89
10 9T

totic, Boot-P confidence intervals and also the 95% 
credible intervals of 3R ,0,0,   and 

.78,0 4.85,6
Example 2. Now consider that m  and   

and i ’s are same as before. In this case the adaptive 
progressive censored sample is  

  

R

4.85,8.27,12.06,72.89

  in Table 2. From these 
tables as expected the Bayes estimates under the non-in- 
formative prior and the MLE are quite close to each 
other. A trace plot is a plot of the iteration number 
against the value of the draw of the parameter at each 
iteration. Figure 3 displays 10000 chain values for the 
two parameters 0.19,0.78,0.96,1.31,2.78,3.16, ,   and their histograms are shown in 
Figure 4 with these settings. The point estimates of the parameters using the maxi- 

mum likelihood (ML) method and Bootstrap (Boot-p) are 
presented in Table 1. Because we have no prior infor- 
mation about the unknown parameters, we assume the 
non-informative prior (prior 0: the joint posterior distri- 
bution of unknown parameters is proportional to the like- 
lihood function). Based on the MCMC samples of size 
10000 with 1000 as burn-in, the Bayes estimates of 

7. Monte Carlo Simulations 

In order to compare the different estimators of the pa- 
rameters, we simulated 1000 an adaptive Type-II progres- 
sive samples from Lomax distribution with the values of 
parameters      , 0.2,1.5 , 0.3,1 , 10,15T     and dif- 
ferent censoring schemes . The samples were simu 

  
and   are presented in Table 1. Also the 95% asymp-  R  
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Table 1. The point estimates of MLE, Boot-p and MCMC of α and β. 

 T = 6 T = 9 

Parameter MLE Boot-p MCMC MLE Boot-p MCMC 

α 0.3503 0.4027 0.2777 0.3648 0.4132 0.2881 

β 1.6333 1.7855 1.4836 1.6493 1.8903 1.4927 

 
Table 2. 95% asymptotic, Boot-p and MCMC confidence (credible) intervals of α and β. 

 T = 6 T = 9 

Parameter α β α β 

Asymptotic [0.0079, 0.6982] [1.5104, 4.7770] [0.0056, 0.7239] [1.4723, 4.7709] 

Boot-p [0.1955, 0.9230] [0.6776, 3.8728] [0.2424, 0.9194] [0.6691, 3.7836] 

Credible [0.1305, 0.4856] [0.2871, 3.7544] [0.1298, 0.5174] [0.3075, 3.9207] 

 

  
(a)                                            (b) 

  and .Figure 3. (a) (b) MCMC output of   

 

  
(a)                                                  (b) 

  and Figure 4. (a) (b) Histogram of .   
lated by using the algorithm described in Ng, et al. [3]. 
We mainly compare the performances of ML and Bayes 
estimates with respect to the squared error loss function 
in terms of mean squared errors (MSEs). We also com- 
pare different confidence intervals, namely the confi- 
dence intervals obtained by using asymptotic distribu- 
tions of the MLEs, bootstrap confidence intervals and the 

symmetric credible intervals in terms of the coverage 
percentages. All of the computations were performed by 
(mathematics 7.0) using a Pentium IV processor. To find 
the Bayes MCMC estimates, we used the noninformative 
gamma priors for the two parameters (we call it prior 0). 
Non-informative prior  0a b c d     provides prior 
distributions which are not proper, we also used an in- 
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formative priors, including prior 1, a = 1, b = 2, c = 1, d 
= 2, with the values of previous parameters. We com- 
puted the Bayes estimates and  probability inter- 
vals based on 10000 MCMC samples and discard the 
first 1000 values as burn-in. We report the mean squared 
errors (MSEs) and the coverage percentage (C.V) based 
on 1000 replications in Tables 3-6. 

95%



8. Conclusions 

Recently Ng, et al. [3] suggest an adaptive Type-II pro- 
gressive censoring. A properly planned adaptive progres- 
sively censored life testing experiment can save both the 
total test time and the cost induced by failure of the units 
and increase the efficiency of statistical analysis. In this 
article, we have considered the maximum likelihood (ML),  

and Bayes estimates for the parameters of the generalized 
Pareto (GP) distribution using adaptive Type-II progres- 
sive censoring scheme. Also, we develop different confi- 
dence intervals, namely the confidence intervals obtained 
by using asymptotic distributions of the MLEs, bootstrap 
confidence intervals and the symmetric credible intervals 
for the parameters of the generalized Pareto (GP) distri- 
bution. A simulation study was conducted to examine and 
compare the performance of the proposed methods for 
different sample sizes, and different censoring schemes. 

From the results obtained in Tables 3-6, it can be seen 
that the performance of the MLEs is quite close to that of 
the Bayes estimators with respect to the noninformative 
priors, as expected. Thus, if we have no prior information 
on the unknown parameters, then it is always better to  

 
  Table 3. Mean squared errors (MSEs) relative estimate of parameters and coverage percentages (C.V) with , . , . 0 2 1 5 



 

and prior 0. 

T ,n m  scheme MLE Bootstrap-p MCMC 

               

10  30,20  1910,0  0.0036 0.5248 0.0038 0.1604 0.0020 0.2023 

   (0.967) (0.901) (0.957) (0.993) (0.823) (0.867) 

   5 10 50 ,1 ,0  0.0038 0.5255 0.0039 0.1618 0.0019 0.2032 

   (0.970) (0.900) (0.945) (0.990) (0.895) (0.860) 

   190 ,10

 50,30  2920,0

 10 10 100 ,2 ,0

 290 ,20

 30,20

 0.0040 0.5267 0.0039 0.1722 0.0020 0.2054 

   (0.973) (0.880) (0.957) (0.999) (0.887) (0.897) 

   0.0023 0.4037 0.0024 0.1730 0.0016 0.1835 

   (0.940) (0.880) (0.920) (0.995) (0.899) (0.860) 

   0.0022 0.4175 0.0025 0.1740 0.0017 0.1899 

   (0.945) (0.905) (0.960) (0.990) (0.915) (0.905) 

   0.0021 0.4383 0.0028 0.1896 0.0019 0.1938 

   (0.935) (0.915) (0.955) (0.990) (0.920) (0.899) 

15   1910,0

 5 10 50 ,1 ,0

 0.0037 0.5284 0.0039 0.1994 0.0021 0.3648 

   (0.945) (0.855) (0.940) (0.975) (0.935) (0.880) 

   0.0038 0.5548 0.0040 0.2057 0.0023 0.3907 

   (0.950) (0.915) (0.965) (0.999) (0.925) (0.900) 

   190 ,10

50,30  2920,0

 10 10 100 ,2 ,0

 290 ,20

 0.0041 0.5560 0.0043 0.2118 0.0028 0.3915 

   (0.926) (0.893) (0.980) (0.990) (0.850) (0.893) 

     0.0019 0.4657 0.0020 0.1814 0.0013 0.1916 

   (0.970) (0.910) (0.950) (0.980) (0.923) (0.922) 

   0.0020 0.4624 0.0021 0.1841 0.0014 0.1934 

   (0.950) (0.915) (0.975) (0.980) (0.933) (0.889) 

   0.0026 0.4755 0.0023 0.1948 0.0016 0.1977 

   (0.935) (0.900) (0.930) (0.985) (0.922) (0.905) 

With each scheme the first row represents the MSE relative estimate of α and β and second row coverage percentages is reported within bracket immediately 
below. 
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  Table 4. Mean squared errors (MSEs) relative estimate of parameters and coverage percentages (C.V) with , . ,0 3 1  



 

and prior 1. 

T ,n m  scheme MLE Bootstrap-p MCMC 

               

10  30,2   1910,0  0.0098 0.3722 0.0116 0.2717 0.0094 0.0439 

   (0.945) (0.915) (0.925) (0.950) (0.910) (0.905) 

   5 10 50 ,1 ,0

 190 ,10

 2920,0

 10 10 100 ,2 ,0



 0.0135 0.4278 0.0140 0.2813 0.0095 0.0486 

   (0.965) (0.920) (0.930) (0.930) (0.925) (0.940) 

   0.0141 0.4771 0.0156 0.2903 0.0097 0.0471 

   (0.950) (0.915) (0.925) (0.915) (0.899) (0.910) 

  50,3   0.0071 0.3176 0.0072 0.2488 0.0055 0.0327 

   (0.940) (0.900) (0.925) (0.930) (0.905) (0.890) 

   0.0136 0.3584 0.0128 0.2844 0.0064 0.0332 

   (0.960) (0.945) (0.920) (0.925) (0.880) (0.960) 

  290 ,20

 1910,0

 5 10 50 ,1 ,0

 190 ,10

 2920,0

 10 10 100 ,2 ,0

 290 ,20

 1910,0

 0.0138 0.4608 0.0132 0.2912 0.0067 0.0379 

   (0.950) (0.900) (0.925) (0.895) (0.895) (0.925) 

15  30,2   0.0120 0.3564 0.0136 0.2754 0.0102 0.0443 

   (0.930) (0.915) (0.905) (0.925) (0.889) (0.899) 

   0.0151 0.4165 0.0139 0.3025 0.0127 0.0457 

   (0.950) (0.899) (0.920) (0.925) (0.900) (0.915) 

   0.0177 0.5057 0.0167 0.3063 0.0136 0.0462 

   (0.940) (0.889) (0.910) (0.893) (0.886) (0.910) 

  50,3   0.0084 0.366 0.0085 0.2835 0.0058 0.0307 

   (0.935) (0.915) (0.925) (0.935) (0.885) (0.900) 

   0.0086 0.4044 0.0087 0.2889 0.0059 0.0377 

   (0.945) (0.915) (0.950) (0.935) (0.895) (0.915) 

   0.0094 0.4148 0.0090 0.2964 0.0062 0.0393 

   (0.940) (0.922) (0.950) (0.925) (0.916) (0.934) 

With each scheme the first row represents the MSE relative estimate of α and β and second row coverage percentages is reported within bracket immediately 
below. 

 
Table 5. The average confidence lengths relative estimate of parameters with    , . , .0 2 1 5

 ,n m

   and prior 0. 

T  scheme MLE Bootstrap-p MCMC 

               

10  30,20   1910,0  0.2314 4.7749 0.2335 2.1995 0.1387 2.1998 

   5 10 50 ,1 ,0

 190 ,10

 2920,0

 10 10 100 ,2 ,0

 290 ,20

 1910,0

 5 10 50 ,1 ,0

 190 ,10

 2920,0

 10 10 100 ,2 ,0

 290 ,20

 0.2588 4.7850 0.2412 2.2003 0.1398 2.2159 

   0.2596 4.8381 0.2415 2.2015 0.1463 2.5510 

  50,30   0.1797 3.9275 0.1775 2.1378 0.1131 1.8692 

   0.1960 3.9803 0.1814 2.1609 0.1190 1.9077 

   0.2206 4.1052 0.1941 2.1446 0.1217 1.9964 

15  30,20   0.2213 4.4205 0.227 2.1755 0.1364 2.1009 

   0.2476 4.6241 0.2404 2.2002 0.1385 2.1701 

   0.2583 4.7803 0.2406 2.2003 0.1393 2.2421 

  50,30   0.1710 3.9129 0.1753 2.1215 0.1127 1.7995 

   0.1880 3.9593 0.1807 2.1412 0.1137 1.8217 

   0.2105 3.9967 0.1921 2.1434 0.1196 1.9170 
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Table 6. The average confidence lengths relative estimate of parameters with    , . ,0 3 1  

 ,n m

 and prior 1. 

T  scheme MLE Bootstrap-p MCMC 

               

10  30,20   1910,0

 5 10 50 ,1 ,0

 190 ,10

 2920,0

 10 10 100 ,2 ,0

 290 ,20

 1910,0

 5 10 50 ,1 ,0

 190 ,10

 2920,0

 10 10 100 ,2 ,0

 290 ,20

 0.3764 3.3520 0.4028 2.1230 0.2372 1.0579 

   0.4562 3.6179 0.4490 2.1650 0.2421 1.0794 

   0.4634 3.7932 0.4728 2.1898 0.2582 1.0798 

  50,30   0.3002 2.7913 0.3075 2.0299 0.1975 0.9132 

   0.3907 2.9488 0.3740 2.0861 0.2005 0.9214 

   0.4473 3.2868 0.3945 2.0925 0.2167 0.9314 

15  30,20   0.3696 3.3413 0.3981 2.1101 0.2368 1.0108 

   0.4557 3.6023 0.4404 2.1427 0.2418 1.0254 

   0.4558 4.0136 0.4705 2.1501 0.2504 1.0776 

  50,30   0.3001 2.6686 0.3034 2.0273 0.1973 0.9102 

   0.3585 2.7978 0.3623 2.0598 0.1989 0.9113 

   0.4321 3.1419 0.3930 2.0916 0.2162 0.9235 

 
[8] A. H. Abd Ellah, “Comparison of Estimates Using Re- 

cord Statstics from Lomax Model: Bayesian and Non 
Bayesian Approaches,” Journal of Statistical Research 
and Training Center, Vol. 3, No. 2, 2006, pp. 139-158. 

use the MLEs rather than the Bayes estimators, because 
the Bayes estimators are computationally more expen- 
sive. 

[9] E. Cramer and G. Iliopoulos, “Adaptive Progressive 
Type-II Censoring,” Test, Vol. 19, No. 2, 2010, pp. 342- 
358. doi:10.1007/s11749-009-0167-5 
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