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Abstract 
 
This paper presents a numerical modelling of the dynamic behaviour of the Machine-Tool-Part system (MOP) 
in milling. The numerical study of such complex structure requires the use of sophisticated method like finite 
elements one. Simulation is employed to predict cutting forces and dynamic response of Machine-Tool-Part 
system (MOP) during end-milling operation. Finally, spectral analysis is presented to see the influence of 
feed direction in the vibration. 
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1. Introduction 
 
Milling is frequently employed in manufacturing proc-
esses for producing parts with desirable dimensions and 
shape. However, the quality of the obtained surface is 
mostly influenced by two vibratory phenomena. In the 
first hand, the grazing provoked mainly by the mecha-
nism of regeneration of the manufactured surfaces leads 
to chatter vibration. In the second hand, a forced vibra-
tion appears owing to the periodicity of the cut. Models 
describing cutting tool vibrations began to appear in lit-
erature about several decades ago. Tobias [1] and Tlusty 
[2], almost simultaneously, published papers explaining 
chatter as a regenerative phenomenon which is widely 
accepted as a cause of self-excited vibrations on machine 
tools. Then, large number of dynamic models of cutter 
and part are presented by authors. In their work Mont-
gomery and Altintas [3,4], use a refined time domain 
simulation model which incorporates the combined 
horizontal feed and rotation of the cutter to predict cut-
ting force. 

Because, major developments have been designed for 
aeronautic industry where tools are mostly more flexible 
than part, Altintas and Budak [5] have proposed an ana-
lytic method for computing stability lobes. They ana-
lysed the geometrical nonlinearities of the milling proc-

ess. After that, they proposed a solution using Fourier 
series development and by considering the zero order 
term. In 1998, they prolonged this work by taking ac-
count of the behaviour of the part. These authors worked 
also on the prediction of the profile defects [7,8]. In these 
works the study relates the thin wall milling where the 
defects are due to the static deflections of the tool and the 
piece and the vibrations are not taken in account. Re-
cently, there have been quite a number of published arti-
cles on the bifurcation phenomena in interrupted cutting 
processes. Indeed, Insperger et al. [9], Corpus et al. [10], 
Bayly et al. [11], Davies et al. [12], Peigné et al. [13] 
proposed analytical way of stability loss in milling proc-
esses. All results are approved experimentally by Bayly 
et al. [11], Davies et al. [12], Peigné et al. [13], Mann et 
al. [14,15] and R.Saffar et al. [16]. 

In fact, the large number of machining operations and 
the factors that influence each operation lead difficult to 
develop models for predicting the cutting phenomenon. 
Since, the concept of the undeformed chip thickness has 
been used by researchers to predict the cutting forces. 
In reality, it is very difficult to measure the length of 
the shear line and to find its relation with other meas-
urable variables such as speed or accelerations. Conse-
quently, the most used model is linear cutting and cut-
ting force is proportional to the undeformed chip thick-



H. YANGUI  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                 ENG 

752 

ness. In this work, we start by presenting most popular 
models. Then, comparison between three models is 
presented. Finally, variation of cutting forces is pre-
sented for different cutting parameters and spectral re-
sponse is also simulated. 
 
2. Dynamic Cutting Force Models 
 
In their study M. T. Zaman et al. [17] have simulated 
peripheral milling to develop a three-dimensional ana-
lytical model of cutting force. So it is necessary to de-
termine the analytical expressions for Fx, Fy and Fz 
which are presented in Figure 1. 

Cutting force expressions (Fx and Fy) was extracted 
from Tlusty et al. [7] and Bao et al. [18] with little modi-
fication. In fact, they introduce in their equations hori-
zontal component of tangential force. Thus, cutting force 
can be written as below: 

( )

( )

F = F cosψ sinφ F cosφxi ti i ri i
F = F cosψ cosφ F sinφyi ti i ri i

F = F sinψzi ti



 



        (1) 

2 2 2F = F F Fci xi yi zi   

By confronting analytical and experimental study they 
confirm that tangential cutting force arises when cutting 
depth arises. Despite, this cutting force model can be 
used to simulate cutting force with an average of 90%. 

In general, cutting force model used is the most clas- 
sical. In general, cutting force depends on cutting depth. 
However, in dynamic milling cutting depth depends on 
tool and part position and the profile of machined surface 
(Cutting force is presented in Figure 2). 
 

 

Figure 1. Cutting force component [16]. 

 

Figure 2. Cutting force model in milling. 

 

( )tj t p j

rj r tj

F = K .a .h φ

F = K F
                (2) 

h is the instantaneous cutting thickness 

( ) ( ) ( ) ( )j j j jh φ = g φ Δx sin φ + Δy cos φ        (3) 

where 

( ) ( )

( ) ( )

Δx = x t x t τ

Δy = y t y t τ

 
 

 

And      ( ) e j j s
j

e j s

0 si φ < φ ,φ < φ
g φ =

 1 si φ > φ > φ





 

jφ  is angle of cutter rotation of a point on the cutting 
edge. 

Figure 3 represents tool position compared with part 
position, e is distance between tool and part axis, φe  is 
entry angle, φs  is leaving angle. 

Cutting phase is defined by angles φe  and φs  in the 
metal. These angles are calculated compared with nomi-
nal position. Thus, transitory phases of beginning and 
end machining are not modeled. However, if the cutting 
is discontinued, the tool can leave the metal. 

In this case, cutting depth is null and cutting forces are 
also null. This non linearity permits to amplify vibration 
amplitude. 

Angle φe  and φs are defined as below: 

A +2eecosφ =e D
A 2eecosφ =s D


                (4) 

 

3. Dynamic Response 
 
The first step consists to meshing the s Ma-chine-Tool 
-Part structure. So, voluminal elements are generated 
for modelling all components of milling machine, 
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Figure 3. Tool position compared with part one. 
 
tool and part. Figure 4 shows the photograph and the 
finite elements modeling of used milling machine. 

Generally the dynamic analysis of the system by finite 
elements is reduced to the resolution of a linear system 
of the second order differential equations whose rigidity 
matrix depends on time: 

          ( ) ( ) ( ) ( )M X t C X t K X t F t        (5) 

Where M, C and K are respectively mass matrix, damp-
ing matrix and stiffness matrix, X is generalized dis-
placement vector and F(t) is cutting force vector. All 
coefficients of these matrixes are determined from finite 
element modelisation of the total system tool-machine 
-part. 

     

         

( )

( ) ( )

T
M q tr r

T T
K q t F tr r r

 

  






       (6) 

The matrix [M], [K] and [C] projected on the basis of 
the eigenmodes leads to matrix      ,I and D  by: 

      

      

      

T
Kr r

T
M Ir r

T
C Dr r

 

 

 

 





               (7) 

So dynamic equation projected on the basis of the ei-
genmodes was reduced to the system of equations in the 
following form:  

         ( ) ( ) ( ) ( )I q t C q t q t f tii              (8) 

 
4. Numerical Results 
 
The resolution of dynamic Equation (6) by numerical 
method of resolution like Newmark and Newton raphson 
permits the determination of the displacement of the tool 
in the x-y directions. Besides, cutting force variation in 
time can be predicted. 

To validate the developed modelling of milling opera- 

tion, validation test is performed. So, comparison with 
results of J. Saffar et al. [16] is presented in Figure 5. 

In Figure 5 variation of cutting force according to ro- 
tation angle is presented. We remark a good agreement 
with J.Saffar’s results. 

4.1. Comparison of Different Cutting Force  
Models 

 
Table 1 presents three different model used by authors to 
quantify cutting force. 

In Figure 6 variation cutting force is presented for 
three different models. We remark that for the first and 
third model Cutting component in y and z direction are 
almost equal. But, for the cutting component in x direc-
tion the difference between three models is visible. 

 

 
 

 
Reel machine 

Figure 4. Modeling of milling machine. 
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Figure 5. Comparison with saffar results. 
 
4.2. Influence of Feed 
 
It is clear from equation that cutting forces are propor-
tional to feed. Figure 7 represents variation of maximal 
cutting force according to feed and we remark that cutting 
forces rise when feed rises. In addition we note that Fy 

component rise with an important rate. Besides, Figure 8 
represents variation of instantaneous cutting force. The 
only difference detected is the amplitude of cutting forces. 

N = 500 revs. min − 1 (Ae = 40 mm, Ap = 1 mm) for 
feed (f1 = 0.1 mm. rev − 1, f2 = 0.2 mm rev − 1, f3 = 0.4 
mm. rev − 1, f4 = 0.8 mm. rev − 1). 
 
4.3. Influence of Cutting Depth 
 
Figure 9 and Figure 10 show that cutting force increase  
 

Table 1. Different model of cutting force. 

Author Model 

Kienzle (1950) 1 m

t p c1.1F =a .K .h    

(Altintas, 
1998) 

t p tc

p te

F = a .K .h

+ a .K
 

. .

       .

r p rc

p re

F a K h

a K




 

(Insperger T., 
2000) 

xf

t p tF = a .K .h  xf

r p rF = a .K .h  
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Figure 6. Comparison of different cutting force models. 
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Figure 7. Influence of feed on maximal cutting forces. 
 
when cutting depth increases. This raise is justified by 
the increase of the width of chip. In fact, it is the largest 
parameter acting on cutting forces.    
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Figure 8. Influence of feed on cutting forces. 
 

Figure 11 shows that rising cutting depth leads to ris- 
ing vibration amplitude and can leads to chatter vibration. 
In fact, the dynamic response for Kienzel model with 5 
mm cutting depth is amplified almost ten times and the 
response is divergent. For Atlintas model the amplitudes 
is less than for other model. 
 

4.4. Influence of the Beginning Angle eφ  
 
Increasing the spacing between the tool and the piece 

caused a slight increase in the cutting force. Figure 12 
shows the influence of the angle of entry on the cutting 
forces because the period of machining for each tooth 
has increased (for e = 20 mm and e = –20 mm). 
 
4.5. Influence of Teeth Number in Beginning 
 

Figure 13 shows the influence of numbers of teeth in 
attack that affects the shapes of the cutting forces and     
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Figure 9. Influence of cutting depth on cutting force f = 0.1 mm/rev; N = 500 rev/min and Z = 6 teeth. 
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Figure 10. Influence of cutting depth on cutting force. 
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Atlintas model 
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Figure 11. Influence of cutting depth on dynamic response (f = 0.1 mm/rev; N = 500 rpm; Z = 6). 
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Figure 12. Influence of entry angle on cutting forces. 
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Figure 13. Influence of teeth number on cutting forces. 
 
their value because the summation of forces of two teeth 
in attack. 

Figure 14 proposes the two modes of milling up mill-
ing and down milling. Figure 15 gives the results ob-
tained during two simulations carried out under the same 
cutting conditions, except the mode of selected milling: 
the first is in configuration of up milling and the second 

in configuration of down milling. 
We remark that for down milling frequency of vibra-

tion rises. Besides, amplitude seems to be little changed. 
 
5. Spectral Response 
 
The spectral representation of displacement following  
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Figure 14. Two modes of milling. 
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Figure 15. Numerical results for the two modes of milling. 
 
axis X, Y in Figure 16 proves that there are dominant 
vibrations due to periodical cutting pressure at the fre- 
quencies of passage of the teeth (TPF, 2TPF and 3TPF) 
and the maximum vibration is in the feed direction. In 
the feed direction (X), simulation shows the unstable 
frequencies for the cut with approximately 37 Hz, 60 Hz 
and 85 Hz, which is almost one of the natural frequencies 
of the system. 

TPF: Frequency of teeth passage 
FP: Eigen frequency 

 
6. Conclusions 
 
In this work, numerical study is conducted to predict  
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Figure 16. Spectral response. 

cutting forces variation according to cutting parameters 
in milling operation. So, dynamic equation is established 
using finite element method and projected on the basis of 
the eigenmodes. The resolution of the obtained equation 
by numerical method gives dynamic response and cutting 
force variation. The main objective of this method is to 
take the influence of machine, tool and part simultane-
ously. Results showed that most influenced parameters 
are feed and cutting depth. In fact, clear influence ap-
pears on dynamic response for little variation of these 
parameters. Indeed, simulation reveals that the adopted 
cutting models have an effect on dynamic response of the 
system. Besides predicted spectral response of the sys-
tem machine-tool-part showed that frequency vibrations 
are due to frequencies of passage of the teeth and eigen 
frequency of the system. 

Finally, modelling milling operations, by finite ele-
ment method represents a very useful tool for the predic-
tion of the behaviour of the system. So, the need for es-
tablishing extensive cutting experiments is reduced. 
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