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Abstract 
 
This work deals with the generation of MATLAB script files that assists the user in the design of a composite 
laminate to operate within safe conditions. The inputs of the program are the material properties, material 
limits and loading conditions. Equations based on Hooke’s Law for two-dimensional composites were used 
to determine the global and local stresses and strains on each layer. Failure analysis of the structure was per-
formed via the Tsai-Wu failure theory. The output of the program is the optimal number of fibre layers re-
quired for the composite laminate, as well as the orientation of each layer. 
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1. Introduction 
 
Composites are extremely versatile materials and may be 
tailored to suit any function. They have found uses from 
the aerospace industry to common everyday applications. 
However, one drawback of these materials is tedious 
design processes [1]. Therefore, in an attempt to reduce 
this time consuming phase, it was decided to develop a 
computer program that assisted the user in designing a 
composite structure. The program needed to perform the 
necessary calculations in the fraction of the time it would 
take if done using conventional techniques. 

Conventional methods for designing composite struc-
tures involve the use of Hooke’s law for two-dimen- 
sional unidirectional composites. Equations relating the 
stresses and strains in these materials have been devel-
oped and are available from various texts [2-4]. These 
equations, however, are limited to flat unidirectional 
laminates. The procedure to follow is quite laborious. 
The material properties, material limits, number of fibre 
layers, and the fibre orientation and thickness of each 
layer as well as the loading conditions need to be known. 
These quantities are then used in the governing equations 
and numerous matrix computations are required. The 
outputs from these equations are the global and local 
stresses and strains of each layer. The local stresses on 
each layer are then compared to the allowable material 
limits and, if they exceed these limits, the entire process 
needs to be repeated with new angles and, if necessary, 
more fibre layers. 

If a composite structure has to be designed to opti-

mally carry the applied loads, the manual calculations 
would take an extremely long time. Designers usually 
use standard fibre angles in their design to overcome the 
time factor because exact fibre orientation is difficult [5]. 
As a result composite structures are usually overdesigned 
as incorrect fibre angles may mean more fibre layers 
which in turn leads to increased material costs. Many 
researchers [6-9] have attempted to reduce material costs 
by reducing the laminate thickness but these were based 
on fixed fibre angles. Certain regions of a composite 
structure, such as holes and other high stress zones, may 
need more reinforcement than others. Only these areas 
would require more fibre layers. However, with the con-
ventional approach to design, the entire structure would 
be laid up to compensate for the high stress concentra-
tions which increases the material costs. 

Therefore an approach was needed where the calcula-
tions can be performed easily and automatically, and 
where only the regions with high stresses have extra re-
inforcement. A logical solution was to write computer 
programs to perform the computations. MATLAB, a 
numerical computing package, was used as a basis for 
the programs as it is more than sufficient to handle the 
numerous matrix computations [10-14]. It may also be 
interfaced with programs written in other languages, 
such as C, C++, and FORTRAN [13-14]. 

Basically, two programs were generated and each pro-
gram consisted of a main script file and various functions. 
The first program was written according to the conven-
tional methods for designing composite structures. The 
purpose of this program was to determine whether its 
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functions operated efficiently and performed calculations 
correctly as these would be used for the second program. 
Results from this program were compared to manually 
calculated examples. The second program used a differ-
ent approach where the number of inputs were reduced to 
just the material properties, material limits and applied 
loading conditions. The outputs of this program are the 
number of layers and the fibre angle of each layer. 

These programs are discussed in further detail after the 
equations governing the stress-strain relationships are 
examined. 
 
2. Hooke’s Law for Two-Dimensional  

Composite Structures 
 
Figure 1 shows a schematic representation of a compos-
ite lamina. The direction along the fibre axis is desig-
nated 1. The direction transverse to the fibre axis but in 
the plane of the lamina is designated 2. The direction 
transverse to both the fibre axis and the plane of the lam-
ina (out of page) is designated 3. This direction is not 
shown in the figure as it only becomes necessary in 
three-dimensional cases. 

The 1-2 co-ordinate system can be considered to be 
local co-ordinates based on the fibre direction. However 
this system is inadequate as fibres can be placed at vari-
ous angles with respect to each other and the structure. 
Therefore a new co-ordinate system needs to be defined 
that takes into account the angle the fibre makes with its 
surroundings. This new system is referred to as global 
co-ordinates (x-y system) and is related to the local 
co-ordinates (1-2 system) by the angle θ. 

A composite material is not isotropic and therefore its 
stresses and strains cannot be related by the simple 
Hooke’s Law ( E  ). This law has to be extended to 
two-dimensions and redefined for the local and global 
co-ordinate systems [2]. The result is Equations (1) and 
(2). 
 

 

Figure 1. Global co-ordinate system in relation to local 
co-ordinate system. 
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where σ1,2 are the normal stresses in directions 1 and 2; 
τ12 is the shear stress in the 1-2 plane; ε1,2 are the normal 
strains in directions 1 and 2; γ12 is the shear strain in the 
1-2 plane; [Q] is the reduced stiffness matrix; σx,y are the 
normal stresses in directions x and y; τxy is the shear 
stress in the x-y plane; εx,y are the normal strains in direc-
tions x and y; γxy is the shear strain in the x-y plane; [ Q ] 
is the transformed reduced stiffness matrix. 

The elements of the [Q] matrix in Equation (1) are 
dependent on the material constants and may be calcu-
lated using Equation (3). 
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(3) 
where E1,2 are Young’s modulus in directions 1 and 2; 
G12 is the shear modulus in the 1-2 plane; ν12,21 are Pois-
son’s ratios in the 1-2 and 2-1 planes. 

The [ Q ] matrix in Equation (2) may be determined by 
Equation (4). 
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where [T] is the transformation matrix; [R] is the Reuter 
matrix. These matrices are given by: 
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where c = cosθ; s = sinθ. 
The local stresses and strains in Equation (1) are re-

lated to the global stresses and strains in Equation (2) by 
Equation (6). 
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 (6) 

Equations (1) to (6) are used to determine the stresses 
and strains for a single composite layer. Since compos-
ites are multi-layered entities, equations for this case 
must also be set up. The result is Equation (7). 
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where N is the vector of resultant forces; M is the vector 
of resultant moments; ε0 is the vector of the mid-plane 
strains; κ is the vector of mid-plane curvatures. Vectors ε 
and κ are related to the global co-ordinates by Equation 
(8).  
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where z is an arbitrary distance from the mid-plane. 
The [A], [B], and [D] matrices in Equation (7) are 

known as the extensional, coupling, and bending stiff-
ness matrices, respectively. The elements of these matri-
ces may be determined from Equations (9) to (11). 

   1
1

1, 2,3 1,2,3
n

ij ij k k
kk

A Q h h i j


         (9) 

   2 2
1

1

1
1,2,3 1, 2,3

2

n

ij ij k k
kk

B Q h h i j


       (10) 

   3 3
1

1

1
1, 2,3 1,2,3

3

n

ij ij k k
kk

D Q h h i j


       (11) 

where n is the number of layers;  ij
k

Q 
   is the i-th, 

j-th element of the [ Q ] matrix of the k-th layer; hk is the 
distance of the top or bottom of the k-th layer from the 
mid-plane of the composite. Figure 2 illustrates how to 
determine the distance hk from the mid-plane. 

The final aspect involved in the design of a composite 
structure is the failure analysis. There are various failure 
theories; however, the Tsai-Wu failure criterion is only 
one that closely correlates with experimental data. This 
failure theory is given by Equation (12). 
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The parameters for the Tsai-Wu failure criterion are 
given by Equation (13). 
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where  1 2

T

ult
 ，

 are the ultimate tensile stresses in direc-
tion 1 and 2;  1 2

C

ult
 ，  are the ultimate compressive 

stresses in direction 1 and 2;  12 ult
  is the ultimate 

shear stress in the 1-2 plane. 
In order to better facilitate the use of this failure theory, 

each stress component of Equation (12) was multiplied 
by a variable [2]. This variable is referred to as the 
strength ratio (SR) and combining this in Equation (12) 
resulted in Equation (14). 
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The purpose of SR is to directly determine by what ra-
tio the local stresses must be increased or decreased to 
avoid failure. This also directly relates to the applied 
forces. The criterion for SR is that it can only be positive. 
If SR is less than 1, then failure occurs because it means 
that the loading needs to decrease to avoid failure. A SR 
value of 1 implies that the composite structure is per-
fectly suited for the applied loading conditions. A value 
of greater than 1 means that the structure is more than 
capable of carrying the applied loading and that the load-
ing may also be increased. For example, a SR value of 
1.5 means that the loading may be increased up to 50% 
without failure occurring. 

 

 
Figure 2. Locations of layers in a composite structure [2]. 
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3. Programming 

3.1. Conventional Approach Program 

This approach follows the commonly found methods laid 
out in the various texts [2-4]. As stated above, the mate-
rial constants, material limits, number of fibre layers, 
fibre angle of each layer, and the thickness of each layer 
as well as the loading conditions need to be known. The 
following procedure illustrates the steps involved in this 
approach: 

1) Calculate the [Q] matrix for each layer using Equa-
tion (3). 

2) Using Equation (5), compute the [T] matrix for each 
layer. 

3) Determine [ Q ] matrix for each layer via Equation 
(4). 

4) Find the location of the top and bottom surface of 
each layer, hk (k = 1 to n). 

5) Use Equations (9), (10) and (11) to calculate the [A], 
[B], and [D] matrices. 

6) Substitute these matrices as well as the applied 
loading into Equation (7) and solve the six simultaneous 
equations to determine the mid-plane strains (ε0) and 
curvatures (κ). 

7) Find the global strains and stresses in each layer 
using Equations (8) and (2), respectively. 

8) Find the local strains and stresses for each layer by 
using Equation (6). 

9) Determine the parameters for the Tsai-Wu failure 
criterion via Equation (13). 

10) Using these parameters and the local stresses for 
each layer, find SR via Equation (14). 

Once SR has been determined, the designer will know 
whether the structure will fail or not. If failure occurs, 
the fibre angles and possibly the number of layers have 
to be adjusted, and the above procedure needs to be re-
peated until no failure takes place. Manual calculations 
would take a long period, therefore a program was writ-
ten to perform the necessary calculations. 

The program prompts the user for the following in-
puts: 
 the material properties (E1, E2, G12 and ν12) 
 the material limits (  1

T

ult
 ,  1

C

ult
 ,  2

T

ult
 , 

 2
C

ult
 ,  12 ult

 ) 
 the number of layers (N) 
 the fibre angle (θ) of each layer 
 the thickness (t) of each layer 
 applied loading conditions 
These input parameters were used to determine the [Q], 

[T], and [ Q ] matrices for each layer. All data concerning 
each layer (E1, E2, G12, ν12, θ, t, [Q], [T], and [ Q ]) were 
stored in an array. The data in this array was used to cal-
culate the [A], [B], and [D] matrices. Using these matri-

ces and the applied loading conditions, the global and 
local stresses and strains were computed. The local 
stresses were compared to the material limits, via the 
Tsai-Wu failure criterion, to determine whether the 
composite will fail. 

The computation of the various matrices and other 
relevant data was each carried out in a separate function. 
This means there was one function to determine the [Q] 
matrix, another to calculate the [T] matrix, and so on. A 
script file was written that controlled the use of each 
function. The purpose of the functions was to enable 
easier programming in future.  

This program was tested against manually calculated 
examples in the various texts [2,3] and the results were 
exactly comparable to the manual computations. In an 
example (Example 4.3) by Kaw [2], the stresses and 
strains in a graphite/epoxy composite laminate were ex-
amined. This laminate consisted of three layers, with 
fibre angles of 0°, 30° and –45°, and each layer had a 
thickness of 5 mm. The material properties, material lim-
its and loading conditions used in this example are given 
in Table 1. 

The resulting global strains, global stresses, local 
strains and local stresses at the top, middle and bottom of 
each layer are shown in Figures 3 to 6, respectively. 

The values in Table 1 and the fibre angles of 0°, 30° 
and –45° were used as inputs in the Conventional Ap-
proach script file. The global and local stresses and 
strains were computed and are shown in Figures 7 to 10. 
The values in these tables and the ones in Figures 3 to 6 
are exactly comparable. The conclusion from this is that 
the Conventional Approach program can accurately de-
termine the stresses and strains in a flat unidirectional 
composite structure. 

The Conventional Approach script file was further ex-
tended to include failure analysis via the Tsai-Wu failure 
theory. The resulting SR values for the top, middle and 
bottom of each layer is shown in Figure 11. The rows 
represent the layers and columns 1 to 3 represent the top, 
middle and bottom of each layer, respectively. 

The SR values in Figure 11 indicate that the compos-
ite structure will fail first on layer 1 (SR = 0.6147) and 
then layer 2 (SR = 0.8870). It is clear from this that the 
input angles and number of layers were insufficient to 
carry the applied loads. 

Although this program performs all the relevant cal-
culations easily and automatically, and significantly 
shortens the design process, using the program to design 
a composite structure would require much guesswork. 
The designer would enter the necessary input values, 
allow the program to perform the various calculations, 
and then discover whether the composite structure would 
fail. If failure does occur, as in the above case, the de-
signer may have to change the fibre angles and/or the 
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thickness of each layer and/or the number of layers. The 
choice of values may be uncertain and values would have 
to be assumed. Furthermore, it would also be an uncer-
tainty on which values to change. Much time may be 
spent in achieving a structure that would not fail. On the 

other hand, if failure does not occur, the structure may 
prove to be overdesigned in which case the manufactur-
ing costs of the structure may increase as unnecessary 
material will be used. To overcome these problems, a 
new script file was generated. 

 

Table 1. Material properties, limits and loading conditions for graphite/epoxy composite example in Kaw [2]. 

Material Properties Material Limits Forces Moments

E1 
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E2 
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N M 

181 10.3 7.17 0.28 1500 1500 40 246 68 
1000 
1000 

0 

0 
0 
0 

 
Table 4.1 Global Strains (m/m) in Example 4.3 

Ply # Position εx εy γxy 

Top 8.944 (10–8) 5.955 (10–6) –3.836 (10–6) 

Middle 1.637 (10–7) 5.134 (10–6) –2.811 (10–6) 1 (0o) 

Bottom 2.380 (10–7) 4.313 (10–6) –1.785 (10–6) 

Top 2.380 (10–7) 4.313 (10–6) –1.785 (10–6) 

Middle 3.123 (10–7) 3.492 (10–6) –7.598 (10–7) 2 (30o) 

Bottom 3.866 (10–7) 2.670 (10–6) 2.655 (10–7) 

Top 3.866 (10–7) 2.670 (10–6) 2.655 (10–7) 

Middle 4.609 (10–7) 1.849 (10–6) 1.291 (10–6) 3 (–45o) 

Bottom 5.352 (10–7) 1.028 (10–6) 2.316 (10–6) 

Figure 3. Table from example in Kaw [2] showing global strains. 

Table 4.2 Global Stresses (Pa) in Example 4.3  

Ply # Position x  y  x y  

Top 3.351 (104) 6.188 (104) –2.750 (104) 

Middle 4.464 (104) 5.359 (104) –2.015 (104) 1 (0o) 

Bottom 5.577 (104) 4.531 (104) –1.280 (104) 

Top 6.930 (104) 7.391 (104) 3.381 (104) 

Middle 1.063 (105) 7.747 (104) 5.903 (104) 2 (30o) 

Bottom 1.434 (105) 8.102 (104) 8.426 (104) 

Top 1.235 (105) 1.563 (105) –1.187 (105) 

Middle 4.903 (104) 6.894 (104) –3.888 (104) 3 (–45o) 

Bottom –2.547 (104) –1.840 (104) 4.091 (104) 

Figure 4. Table from example in Kaw [2] showing global stresses. 
 

Table 4.3  Local Strains (m/m) in Example 4.3  

Ply # Position 1  2  12  

Top 8.944 (10–8) 5.955 (10–6) –3.836 (10–6) 

Middle 1.637 (10–7) 5.134 (10–6) –2.811 (10–6) 1 (0o) 

Bottom 2.380 (10–7) 4.313 (10–6) –1.785 (10–6) 

Top 4.837 (10–7) 4.067 (10–6) 2.636 (10–6) 

Middle 7.781 (10–7) 3.026 (10–6) 2.374 (10–6) 2 (30o) 

Bottom 1.073 (10–6) 1.985 (10–6) 2.111 (10–6) 

Top 1.396 (10–6) 1.661 (10–6) –2.284 (10–6) 

Middle 5.096 (10–7) 1.800 (10–6) –1.388 (10–6) 3 (–45o) 

Bottom –3.766 (10–7) 1.940 (10–6) –4.928 (10–7) 

Figure 5. Table from example in Kaw [2] showing local strains. 
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Table 4.4 Local Stresses (Pa) in Example 4.3 

Ply # Position 1  2  12  

Top 3.351 (104) 6.188 (104) –2.750 (104) 

Middle 4.464 (104) 5.359 (104) –2.015 (104) 1 (0o) 

Bottom 5.577 (104) 4.531 (104) –1.280 (104) 

Top 9.973 (104) 4.348 (104) 1.890 (104) 

Middle 1.502 (105) 3.356 (104) 1.702 (104) 2 (30o) 

Bottom 2.007 (105) 2.364 (104) 1.513 (104) 

Top 2.586 (105) 2.123 (104) –1.638 (104) 

Middle 9.786 (104) 2.010 (104) –9.954 (103) 3 (–45o) 

Bottom –6.285 (104) 1.898 (104) –3.533 (103) 

Figure 6. Table from example in Kaw [2] showing local stresses. 
 

 

Figure 7. Global strains from Conventional Approach program with Table 1 as inputs. 
 

 

Figure 8. Global stresses from Conventional Approach program with Table 1 as inputs. 
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Figure 9. Local strains from Conventional Approach program with Table 1 as inputs. 

 

 
Figure 10. Local stresses from Conventional Approach program with Table 1 as inputs. 

 
3.2. Fibre-Angle-Output Program 
 
Initially it was decided that this program should take the 
applied loading conditions, material properties and mate-
rial limits as inputs. The program was to assume that the 
number of layers equals the number of input forces, and 
that the fibre angle of each layer equals the direction of 
each force. It would then perform all the necessary ma-
trix calculations as in the Conventional Approach. The 
global and local stresses and strains would be determined 

as before and failure analysis with the Tsai-Wu criterion 
may be performed. 

However, the assumptions made above cannot be used 
in a real situation as it may result in an overdesign of a 
composite structure as in the case of the conventional 
approach. Hence a program was written that does not 
make any assumptions but rather builds the laminate up 
one layer at a time. Basically this program varies the 
fibre angles to achieve a composite structure that is per-
fectly suited to carry the applied loading conditions. The  
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Figure 11. SR ratios from Conventional Approach program with Table 1 as inputs. 

 
outputs of the program are the number of layers and the 
fibre angle of each layer. 

The program asks the user to input the following: 
 material properties 
 material limits 
 loading conditions 
The [Q] matrix and the Tsai-Wu parameters can be 

calculated immediately as these do not vary with fibre 
angle but rather with material properties and limits. The 
program begins with one layer at an angle of 0° and 
computes hk, as well as the [T], [ Q ], [A], [B] and [D] 
matrices. Thereafter the mid-plane strains and curvatures, 
and, the global and local stresses and strains are calcu-
lated. The Tsai-Wu failure theory is applied and a value 
for SR is obtained for each layer. 

The program then analyzes the SR values and con-
firms whether it is in a certain range. The lower limit of 
this range is 1 as any value below this would mean fail-
ure. The upper limit in this range is 1.2 and this is to 
avoid overdesigning. 

If the SR value for each layer is between 1 and 1.2, 
then the design of the composite structure is complete. 
On the other hand, if the SR value for any of the layers is 
out of this range, the program varies that particular fibre 
angle to obtain a SR value between 1 and 1.2. However, 
due to the angle change all the matrix calculations have 
to be redone. A new SR value is obtained for each layer 
and this is compared to the old values. If the new SR 
value for a particular layer is higher than the old SR 
value, then the angle of that layer is changed to the new 

one. For example, after the initial calculation a layer with 
fibre angle of 30° has a SR value of 0.8. This is not ac-
ceptable and the program changes the angle to obtain a 
better SR value. Say at 35° the SR value is 0.9, the pro-
gram will then change the angle of the 30° layer to 35°. 
If at 35° the SR value was 0.7, then the program will re-
tain the 30° angle. 

The program continues to change angles and compare 
old and new SR values until the SR value of each layer is 
between 1 and 1.2, in which case the design is completed. 
However, if this range cannot be achieved, a new layer is 
added on. The program starts from the beginning and 
recalculates the various matrices. SR values are obtained 
and the comparison between new and old values resumes. 
New layers will be added on until the SR value for each 
layer is between 1 and 1.2. The program then outputs the 
number of layers and the fibre angle of each layer. Fig-
ure 12 illustrates the procedure the script file follows to 
obtain the desired outputs.  

The Fibre-Angle-Output program was subjected to 
several runs. The results, namely the number of layers 
and the fibre angles, needed to be verified. Therefore 
these were used as inputs in the Conventional Approach 
program. The Tsai-Wu failure theory was used and in 
each case there was no failure. As an example, consider 
the graphite/epoxy composite laminate examined earlier. 
The material properties, material limits and loading con-
ditions for this laminate were given in Table 1. The SR 
values for three layers with fibre angles of 0°, 30° and 
–45° were shown in Figure 11. The values in Table 1  
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Figure 12. Flowchart describing the Fibre-Angle-Output program. 
 
were input into the Fibre-Angle-Output program. The 
output of the program is shown in Figure 13. 

It can be seen from Figure 13 that the number of lay-
ers is the same as when the example was analysed by the 
Conventional Approach program; however, the fibre 
angles are different. Here the required angles are 49°, 
–79° and 49° instead of the previous 0°, 30° and –45°. 
Further the SR values are all between 1 and 1.2 indicat-
ing no failure or overdesign. 

The new fibre angles (49°, –79° and 49°) along with 
the material properties, material limits and loading con-
ditions in Table 1 were then input into the Conventional 
Approach program. The resulting SR values were exactly 
the same as in Figure 13. Further, the local stresses of 
the new laminate, shown in Figure 14, was compared 
with the local stresses of the earlier laminate, shown in 

Figure 10. It can be seen that the local stresses in Figure 
14 are constant through the thickness of each layer. This 
shows that the stresses were evenly distributed and not 
varied through the thickness of each layer. 

Previously the SR value on the first layer was less than 
1 (Figure 11) and lower than the other two layers indi-
cating earliest failure. However with the new layup, the 
SR value has increased to a value greater than one. This 
means that the first layer is now capable of carrying a 
higher load and this is evident by the values for the lo-
cal stresses. The previous value at the top of the first 
layer was 33.5 MPa (Figure 10), and the new value is 
75.7 MPa (Figure 14). This clearly demonstrates the 
higher load bearing capability of the new laminate. 
Similar trends may be seen from the other positions and 
from the other two layers. 

[T], [ Q ], h, z, A, B, D 

SR 

SR 

[Q],
[S]

SR

SR
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Figure 13. Output of Fibre-Angle-Output program with Table 1 as input. 

 

 
Figure 14. Local stresses for laminate with angles of 49°, –79°, and 49°. 

 
It was then decided to increase the loading conditions 

of the 49°, –79° and 49° laminate to determine whether 
an increase in load will result in failure. The applied 
loads were increased by 10% and the resulting SR values 
are shown in Figure 15. It can clearly be seen that all the 
SR values for all the layers were less than 1. An increase 

in loading resulted in failure and therefore it may be de-
duced that the Fibre-Angle-Output program optimally 
designed the composite laminate for the loading condi-
tions in Table 1. This further implies a saving in material 
cost as there would be no extra material used because of 
overdesigning. 
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Figure 15. SR ratios for 49°, –79° and 49° laminate with 10% increase in loading. 

 
3.3. Finite Element Analysis 
 
For further verification of the computational results, it 
was decided to perform finite element analyses on the 
laminates examined in the Conventional Approach pro-
gram and the Fibre-Angle-Output program. The package 
used for the analysis was MSC Patran/Nastran 2007. 

Two finite element models were setup, and both mod-
els represented a flat composite plate with material prop-
erties, material limits and loading conditions from Table 
1. The first model had the same fibre layup that was used 
in the example for the Conventional Approach program, 
that is, 0°, 30°, and –45°. The analysis was run and the 
resulting fringe plots of the stress components of each 
layer were plotted. These plots are shown in Figure 16. 

The stress plots from the finite element package cor-
responds to the local stresses experienced by a laminate, 
in particular the stresses occurring at the middle of each 
layer. Comparing the stress values in Figure 16 with the 
stresses incurred at the middle of each layer in either 
Figure 6 or Figure 10, it can be seen that the values are 
exactly the same. This implies that the model was cor-
rectly setup and that it may be used to evaluate local 
stresses of laminates designed with the Fibre-Angle- 
Output program. 

The second model was setup and was similar to the 
first model in every aspect except for the fibre layup. 
This model had the new fibre layup (49°, –79°, and 49°) 
that was determined by the Fibre-Angle-Output program. 
The fringe plots of the stress components from this 

analysis are shown in Figure 17. Here it is also evident 
that the values in the plots exactly correspond to the 
stress values at the middle of each layer in Figure 14. 
This verifies the above results from the Fibre-Angle- 
Output program and supports the conclusion that the 
program optimally designed the composite laminate, 
with the fibre layup of 49°, –79° and 49°, for the loading 
conditions in Table 1. 
 
4. Conclusions 
 
A MATLAB script file was generated that uses the con-
ventional approach in the design of composite laminates. 
The inputs are the material properties, material limits, 
number of fibre layers, and the fibre orientation and 
thickness of each layer as well as the loading conditions. 
These values are then used in the governing equations, 
based on Hooke’s law for two-dimensional unidirec-
tional laminates, to determine the global and local 
stresses and strains. The local stresses are compared to 
allowable limits via the Tsai-Wu failure theory. The re-
sults from this program were compared to manually cal-
culated examples in the various texts [2,3] and it was 
found that they were exactly comparable. 

The above program required much guesswork in 
choosing inputs and was therefore inadequate to design 
composite laminates. Hence it was adapted to take mate-
rial properties, material limits and the loading conditions 
as inputs. The necessary calculations were performed 
and the optimum number of fibre layers required as well  
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Figure 16. Fringe plots from Patran showing stress components for 0°, 30°, and –45° laminate. 

 

 
Figure 17. Fringe plots from Patran showing stress components for 49°, –79°, and 49° laminate. 
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as the fibre angle of each layer was determined. These 
outputs were input into the Conventional Approach pro-
gram in order to verify the results. In each case the re-
sulting composite structure did not fail. The example 
used showed that the Fibre-Angle-Output program opti-
mally designed the composite laminate for the given 
loading conditions. Finite element analyses were con-
ducted to verify this conclusion. 

The use of these programs will greatly reduce the de-
sign time of composite structures as the numerous com-
putations are completed in a fraction of the time that it 
would take if done manually. The designer merely has to 
run the Fibre-Angle-Output program, and view the num-
ber of layers required and the fibre angle for each layer. 
The program will also aid in reducing material costs. 
Presently the program is limited to flat unidirectional 
structures but work is underway to extend it to three di-
mensions. There is no limit on the type of composite 
material as far as the matrix and fibre reinforcement is 
concerned. 
 
5. References 

 
[1] S. K. Mazumdar, “Composite Manufacturing: Materials, 

Product, and Process Engineering,” CRC Press LLC, 
Boca Raton, 2002. 

[2] A. K. Kaw, “Mechanics of Composite Materials,” CRC 
Press LLC, Boca Raton, 1997. 

[3] C. T. Herakovich, “Mechanics of Fibrous Materials,” 
John Wiley & Sons Inc., Hoboken, 1998. 

[4] R. M. Christensen, “Mechanics of Composite Materials,” 
Dover Publications, New York, 2005. 

[5] M. Akbulut and F. O. Sonmez, “Optimum Design of 

Composite Laminates for Minimum Thickness,” Com-
puters and Structures, Vol. 86, No. 21-22, 2008, pp. 
1974-1982. 

[6] K. Sivakumar, N. G. R. Iyengar and K. Deb, “Optimum 
Design of Laminated Composite Plates with Cutouts Us-
ing a Genetic Algorithm,” Composite Structures, Vol. 42, 
No. 3, 1998, pp. 265-279. 

[7] S. A. Barakat and G. A. Abu-Farsakh, “The Use of an 
Energy-Based Criterion to Determine Optimum Configu-
rations of Fibrous Composites,” Composite Science and 
Technology, Vol. 59, No. 12, 1999, pp. 1891-1899. 

[8] P. Kere, M. Lyly and J. Koski, “Using Multicriterion 
Optimization for Strength Design of Composite Lami-
nates,” Composite Structures, Vol. 62, No. 3-4, 2003, pp. 
329-333. 

[9] C. H. Park, W. I. Lee, W. S. Han and A. Vautrin, 
“Weight Minimization of Composite Laminated Plates 
with Multiple Constraints,” Composite Science and Tech- 
nology, Vol. 63, No. 7, 2003, pp. 1015-1026. 

[10] MediaWiki, “MATLAB,” 2008. http://en.wikipedia.org/ 
wiki/MATLAB 

[11] R. V. Dukkipati, “MATLAB for Mechanical Engineers,” 
New Age International (P) Limited, New Delhi, 2008. 

[12] G. Z. Voyiadjis and P. I. Kattan, “Mechanics of Compos-
ite Materials with MATLAB,” Springer Netherlands, 
Dordrecht, 2005. 

[13] A. Gilat, “MATLAB: An Introduction with Applica-
tions,” John Wiley & Sons Inc., Hoboken, 2008. 

[14] B. D. Hahn and D. T. Valentine, “Essential MATLAB for 
Engineers and Scientists,” Butterworth-Heinemann, Rome, 
2007. 

 
 
 
 
 
 
 
 
 
 
 
 
 


