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ABSTRACT 

Within the linear theory of stability, the process of isothermal mixing of three-component gas mixtures in a channel of 
final dimensions in the absence of mass-transfer through its walls is considered. The comparison of experimental data 
with the results of theoretical calculations for the mixtures He+Ar-N2 and H2+N2-CH4 is shown, that a stable diffusion 
process as the temperature increased will remain the same and be described by the ordinary diffusion laws, but unstable 
one lost its intensity and tend to the stable diffusion. 
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1. Introduction 

The study of a diffusion process in multicomponent gas 
mixtures showed that mutual influence of components to 
each other under certain conditions lead to phenomena 
no taking place in ordinary binary diffusion. One of the 
most interesting peculiarities both in scientific and prac- 
tical application is diffusion instability [1]. Diffusion in- 
stability is characterized by strong convective flows, 
which considerably exceed purely molecular transfer sub- 
stantially distorting presumable results. Previous experi- 
ments showed that the process of diffusion instability 
depends on certain conditions and parameters, for exam- 
ple, pressure, concentration, temperature, viscosity, geo- 
metry of diffusion channel and etc. [2-6]. 

The determination of a transition boundary of mixture 
from the stable state to the unstable one and back is one 
of the main factors in the study of regime change of 
mixing. In the paper [1], the stability limits for the onset 
of convection in ternary gaseous mixture having a den- 
sity inversion are obtained with a stability theory based 
on Rayleigh’s treatment and the Stefan-Maxwell equa- 
tions [7]. However, the theory outlined in this paper is 
only approximate, and the agreement with experiment is 
far from perfect. 

Experimental data reported in [2-6] in their physical 
meaning resemble the problem of instability which arises 
under conditions of thermal convection [8-10]. Applica- 

tion of stability theory [11] allowed formulating an ap- 
proach to revealing common regularities in determining 
the transition from the diffusion regime to the gravita- 
tional concentration convection. This methodology was 
used to determine the stability limits of isothermal three- 
component gas mixtures in the case of a horizontal plane 
layer or in the form of an infinite plane vertical slot [12]. 
However, the geometry of the considered problem made 
it possible to achieve just qualitative agreement with the 
experiment as a cylindrical channel was used in [2-6]. 
Solving the stability problem of ternary gas mixtures in 
conditions maximally approximate to the experiment be- 
comes a question of fundamental importance. 

The aim of this study is to examine the transition from 
the state of diffusion to the regime of concentration gra- 
vitational convection (diffusion instability) in a channel 
of finite size in the absence of mass-transfer through its 
wall. In addition, the obtained data are compared with the 
experiments presented in [2], where the transition from 
the state of diffusion to the regime of convection is stud- 
ied at different temperatures. 

2. Mathematical Model of Diffusion 
Instability 

2.1. General System of Equations 

The macroscopic flow of the isothermal ternary gas mix- 
ture is described by the general system of the hydrody- 
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namic equations, that includes the Navier-Stokes equa- 
tions, equations for conservation of the number of parti- 
cles in the mixture and the components. Taking into ac- 
count the conditions of independent diffusion, for which 

the and are valid, the system of equa- 
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where “practical” coefficients of three-component diffu- 
sion are defined in accordance with expressions: 
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where ij  are the mutual diffusion coefficients indicat- 
ing interference of two components. 

D

The system of Equation (1) is supplemented with the 
environmental state equation 

 1 2,, , consс с р T   t,  

interrelating the thermodynamic parameters entering into 
the system of Equation (1). 

The method of small perturbations [11] has been used 
by solution of the system of Equation (1). Taking into ac- 
count that at L » r (L, r are the length and radius of diffu- 
sion channel accordingly) the differences between per- 
turbations of the average  and weight-average  velo- 
cities in the Navier-Stokes equation will be inconsiderable, 
then the final system of equations of gravitational concen- 
tration convection for perturbation values in dimension- 
less quantities takes the form: 
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where ii iiP D   is the Prandtl diffusion number, 
4

i i i iiR g A d D   is the Rayleigh partial number, 

22ij ijD D    denotes the parameters, which determine 
the relationship between the “practical” diffusion coeffi- 
cients. 

2.2. Line of Stability for a Limited Cylindrical  
Diffusive Channel 

Three-dimensional motions are essential in the diffusion 
cylindrical channel of final length. Therefore, when ap- 
proximating the velocity, it is necessary to consider all 
components of the vector  differ from zero. Examin- 
ing the periodical motions along φ in the cylindrical co- 
ordinate and satisfying the conditions on the hard boun- 
daries 

u

z h   ( h L d  is the geometry parameter 
characterizing stability), the velocity approximation can 
be written as [11]: 
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The radial functions u, υ, ω should be vanish on the 
hard lateral surface of cylinder (at ). The relation 
binding these functions follows from the continuity equa- 
tion: 
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where  nJ kr  is n-order Bessel function, but the para- 
meter k can be found from the equation: 
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We will consider, that  , cosi ic f r z n , then instability for the systems He+Ar-N2 and H2+N2-CH4 for 
1n  . The region that lies below the line MM corre- 

sponds to diffusion. 
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       (6) From the condition of zero density gradient of the mix- 
ture and with allowance for the determined values of par- 
tial Rayleigh numbers (2), we obtain the following equa-
tion for the line in the plane :  1 2,R R

Supposing that the perturbations of concentrations va- 
nish  on the end surface , then the addi- 
tional condition implying that the second derivative van- 
ishes at the ends of diffusion channel results from Equa- 
tion (6): 
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that permits to select the following approximation: 
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3. Results of Numerical Experiment 

where is the radial function of concentration.   iС r
For determination  we use Kantorovich method. 
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To compare the approach proposed in Paragraph 2 with 
the experimental data is shown in [2] we represent them 
in the form of partial Rayleigh numbers. The partial 
Rayleigh numbers in accordance with (2) can be written 
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where Jn and In are n-order Bessel functions of the first 
kind. 

In order to determine the monotonous stability bound- 
ary of the problem under consideration, the third equa- 
tion of the system (2) can be scalarly multiplied by the 
vector  and integrated all over the volume V of the 
diffusion channel. This can be done under the conditions, 
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Figure 1. (a) Boundary lines of monotonic instability MM 
and zero density gradient   0  for the system 0.4688Не 

+0.5312Ar-N2. Symbols ● correspond to data that deter- 
mine unstable state. The calculation is carried out at the 
temperatures values: T = 293.0 (1), 313.0 (2), 333.0 (3), 
353.0 (4) K. (b) Boundary lines of monotonic instability MM 
and zero density gradient   0  for the system 0.6179Н2+ 

0.3821N2-CH4. Symbols ● correspond to data that deter-
mine unstable state. The calculation is carried out at the tem- 
peratures values: T = 273.0 (1), 293.0 (2), 313.0 (3), 333.0 (4), 
353.0 (5) K. 
 

On Figures 1, all points displaying the experiment are 
situated in the area of instability (region between the line 
stability MM and the line of zero density gradient), but 
with temperature rise tend to the region of stable diffu- 
sion (region below the line MM). 

As is seen, in Figure 2(a) that at the temperature 353.0 
K the system 0.6192Не+0.3808Ar-N2 is in the area of 
stable diffusion. It is conformed to the data given in [2]. 
According to Figure 2(a) point 1 corresponds to the tem- 
perature 293.0 K is situated practically at the curve of 
monotonic disturbances. That indicates the instable pro- 
cess observes at the considered temperature. Figure 2(b) 
shows that for the system 0.6463Н2+0.3537N2-CH4 tran- 
sition into the unsteady regime occurs at the temperature 
323.0 K. 

Thus, the results reveal that the unstable diffusion pro- 

ce

4. Conclusion 

ave studied the instability of mechani- 

ss tends to stable one by raising the temperature, but a 
decrease in the temperature can cause transition to the 
unstable state of a diffusion-stable system. 

In this paper, we h
cal equilibrium (diffusion instability) in ternary gas mix- 
tures at different temperatures. Linear stability theory is 
applied to determine the boundary of transition from the 
state of diffusion to the region of the concentration con- 
vection. The problem has been solved for a cylindrical 
channel of finite size and boundary conditions, suggest- 
ing the absence of component transfer through the walls 
of the diffusion channel. The comparison of theoretical 
results with the experimental data for the study of the  
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Figure 2. (a) Boundary line  monotonic instability MM s of
and zero density gradient   0  for the system 0.6192Не 

+0.3808Ar-N2. Symbols ○, spond to data that deter- 
mine stable and unstable state respectively. The calculation 
is carried out at the temperatures values: T = 293.0 (1), 
323.0 (2), 353.0 (3) K. (b) Boundary lines of monotonic in- 
stability MM and zero density gradient   0

● corre

  for the sys- 

tem 0.6463Н2+0.3537N2-CH4. Symbols rrespond to 
data that determine stable and unstable state respectively. 
The calculation is carried out at the temperatures values: T = 
293.0 (1), 323.0 (2), 353.0 (3) K. 
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temperature dependence of the diffusion mixing of ter- 
nary gas mixtures He+Ar-N  and H2 2+N2-CH4 indicates 
qualitative and quantitative agreement. Therefore, it can 
be concluded that the proposed calculation technique per- 
mits estimation of the critical parameters of the transi- 
tion to the unstable regime. 
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