
World Journal of Neuroscience, 2013, 3, 93-99                                                             WJNS 
http://dx.doi.org/10.4236/wjns.2013.32013 Published Online May 2013 (http://www.scirp.org/journal/wjns/) 

Outcome following severe traumatic brain injury TBI  
correlates with serum S100B but not brain extracellular 
fluid S100B: An intracerebral microdialysis study* 

Craig D. Winter1,2#, Geraldine F. Clough3, Ashley K. Pringle4, Martin K. Church3,5 
 

1The Kenneth Jamieson Department of Neurosurgery, The Royal Brisbane and Women’s Hospital, Brisbane, Australia 
2University of Queensland, Brisbane, Australia 
3Institute of Developmental Sciences, School of Medicine, University of Southampton, Southampton, UK 
4Institute of Clinical Neurosciences, School of Medicine, University of Southampton, Southampton, UK 
5Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité—Universitätsmedizin Berlin, Berlin, Germany 
Email: #craigdw1@gmail.com 
 
Received 14 February 2013; revised 16 March 2013; accepted 11 April 2013 
 
Copyright © 2013 Craig D. Winter et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

S100B protein is released by astrocytes into the brain 
extracellular fluid following acute brain injury and 
elevated levels in CSF and serum have been shown to 
correlate with patient outcome following traumatic 
brain injury. A prospective study of brain extracellu- 
lar fluid (ECF) and serum S100B levels in 12 patients 
with severe head injury (GCS ≤ 8) was undertaken 
using intracerebral microdialysis to investigate whe- 
ther a correlation with ECF S100B and outcome 
could be confirmed. Patient outcomes were assessed 
at 6 months using the Glasgow Outcome Scale (GOS) 
and divided into two outcome groups: group A, 8 
survivors with either a good recovery or moderate 
disability (GOS scores of 4 or 5); and group B, 4 pa- 
tients who died (GOS 1). Peak serum levels of S100B 
were significantly greater in group B (mean 6.03 
ng/ml) compared with group A (mean 0.73 ng/ml) (P 
= 0.009). Group A had a mean peak S100B in the ex- 
tracellular compartment of 186 ng/ml compared to 
150 ng/ml in group B. There was no significant dif- 
ference between the mean peak brain ECF S100B 
concentrations for the 2 outcome groups (P = 0.932). 
We confirm that intracerebral microdialysis can be 
used to sample S100B concentrations from brain ex- 
tracellular fluid and our results suggest that the ECF 
S100B levels were variable and that there was no sig-
nificant difference between the good outcome and 
poor outcome groups. In contrast, the serum levels of 
S100B of patients with a poor outcome were signifi- 
cantly higher than those with a good outcome. 

Keywords: Microdialysis; S100B; Traumatic Brain  
Injury 

1. INTRODUCTION 

Traumatic brain injury (TBI) is the leading cause of 
death and disability among young adults worldwide [1,2]. 
Accurate prediction of patient outcome following severe 
TBI using a peripheral biomarker may add to current 
prognostication. Such a marker could also be used to 
assess standard treatment regimens and be used as a po- 
tential surrogate marker in head injury trials to establish 
the efficacy of novel neuroprotective drugs. S100B is a 
calcium binding protein, predominantly found in glial 
and Schwann cells [3,4], which has potential as a bio- 
marker in TBI patients. Cerebrospinal fluid (CSF) and 
serum levels of S100B have been extensively investi- 
gated as markers of the severity of brain injury after 
trauma and stroke. Serum S100B levels correlate with 
patient outcome after severe TBI [5-7] leading to the 
supposition that the increased level primarily reflects the 
extent of cellular damage in the brain. However, the ef- 
fects of trauma-induced blood-brain barrier (BBB) dys- 
function, increased S100B expression secondary to brain 
reparative processes and extracranial sources in the mul- 
titrauma patient make any definitive conclusions regard- 
ing the ability of serum S100B to reflect brain injury 
alone problematic. Accuracy in understanding S100B 
dynamics, its release and its diffusion into various fluid 
compartments following acute brain injury would poten- 
tially improve upon the sensitivity and validity of its in- 
terpretation. We have used intracerebral microdialysis to 
sample the brain extracellular fluid (ECF), enabling us to 
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compare S100B levels in the brain with intravascular 
compartments and to comment on ECF and serum 
S100B correlation with patient outcome. 

2. MATERIALS AND METHODS 

2.1. Patients 

Twelve intubated and artificially ventilated severely head 
injured patients (Glasgow Coma Score or GCS ≤ 8) were 
admitted to the Neurosurgical Intensive Care Unit and 
recruited onto the study following assent by the next of 
kin. Clinical details such as mechanism of injury, initial 
GCS, computed tomography (CT) findings, other system 
injuries, age, presence of hypoxia or hypotension and 
systemic sepsis were documented for each patient. The 
patient outcomes were assessed at 6 months using the 
Glasgow Outcome Scale (GOS) where a 5 = good recov- 
ery, 4 = moderate disability, 3 = severe disability, 2 = 
vegetative state and 1 = death. The study was granted 
ethics approval by the Local Regional Ethics Committee 
and performed in accordance with the Declaration of 
Helsinki. Patients under the age of 16 were excluded. 

2.2. Microdialysis Sampling 

The microdialysis probes were constructed by Microbio- 
tech, Sweden using an Asahi-Plasmaseparator polyeth- 
ylene polymer tubular membrane of internal diameter 
330 μm and wall thickness 50 μm (Ashai Plasmasepara- 
tor, Diamed Medizitechnik, Cologne, Germany), with an 
effective dialysis length of 12 - 15 mm and a molecular 
mass cut-off of 3000 kDa. The probes were inserted dis- 
tant to sites of focal pathology (ie contusions) such that 
the S100B levels in the dialysates would reflect glial cell 
release secondary to the diffuse element of brain damage 
associated with the severe TBI. The flow rate was set at 1 
µL/min and the infusate was sterile normal saline (0.9% 
NaCl, Maco Pharma, London, UK). Dialysate was col- 
lected over a 4 hour period for up to 5 days following 
probe insertion and stored at −80˚C for later analysis of 
S100B. This novel method (large pore size and high flow 
rate) was initially developed as a technique for the in 
vivo sampling of brain interstitial fluid to allow the ex- 
traction of macromolecules, such as cytokines, from se- 
verely head injured patients [8,9]. Daily venous blood 
samples were also taken and the sera stored at −80˚C. 
S100B protein was assayed using a Sangtec® 100 IRMA 
(AB Sangtec Medical, Bromma, Sweden) S100B assay 
with a lower limit of detection of 0.5 ng/ml. 

2.3. Statistical Analysis 

The data could not be assumed to be normally distributed, 
so statistical differences were tested using a Mann Wit- 
ney U test for non-parametric data. A probability of P < 

0.05 was taken as statistically significant. 

3. RESULTS 

Admission CT scans revealed various intracranial 
injuries, including diffuse axonal injury, acute subdural, 
extradural and intracerebral haematomas and contusions, 
with some individuals suffering a combination of injuries. 
Mechanisms of injury included falls, road traffic 
accidents, assaults, horse riding and a light aircraft 
accident. Standard aggressive head injury management, 
including sedation, haematoma evacuation, intracranial 
pressure monitoring, neuromuscular paralysis and 
administration of mannitol was undertaken for each 
patient. The patients’ age ranged from 21 to 77. There 
were no complications attributable to probe implantation 
in any of the patients. The patients were divided into two 
outcome groups, the 8 survivors with either a good 
recovery or moderate disability (group A) and the 4 
patients who died (group B or non-survivors) whilst in 
intensive care. There were no differences in other 
injuries or adverse systemic events between the two 
groups. The peak levels of S100B in the brain dialysate 
of patients with a good outcome (group A) ranged from 
10 - 600 ng/ml (mean ± SEM, 186 ± 74 ng/ml) while 
those of patients with a poor outcome (group B) ranged 
from 6 - 295 ng/ml (mean ± SEM, 150 ± 68 ng/ml) 
(Figure 1). There was no statistically significant 
difference between these levels (P = 0.932). The peak 
S100B serum concentrations of two patients in Group A 
were 1.65 and 1.15 ng/ml while the concentrations in the 
remaining six patients were below the lower detection 
limit of the assay of 0.5 ng/ml. For statistical purposes if 
we designate 0.5 ng/ml as the value for each of these six 
patients we can say that the peak serum S100B values 
ranged from 0.5 - 1.65 ng/ml (mean ± SEM, 0.73 ± 0.12 
ng/ml) in group A and from 2.25 - 9.20 ng/ml (mean ±  
 

 

Figure 1. Bar charts showing mean ± SEM S100B level in 
brain dialysate and serum. Group A (survivors) is represented 
by the open bars and group B (non-survivors) is represented by 
the hatched bars. 
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SEM, 6.03 ± 2.5 ng/ml) in group B. Peak serum levels of 
S100B were significantly greater in group B compared 
with group A (P = 0.009) (Figure 1). 

4. DISCUSSION 

We report serum and brain extracellular fluid S100B lev- 
els in 12 severely head injured patients. The patients 
were divided into two outcome groups, 8 survivors with 
either a good recovery or moderate disability (group A) 
and 4 patients who died (group B). The mean peak serum 
S100B concentration in Group B was 6.03 ± 2.5 ng/ml 
compared to 0.73 ± 0.12 ng/ml in group A i.e., signify- 
cantly greater (P = 0.009). These results are elevated 
compared to historical controls. Median baseline plasma 
S100B values have been documented as 0.046 ng/ml [10] 
with a normal serum S100B range of 0.02 to 0.15 ng/ml 
[11,12]. Our serum S100B results are also consistent 
with S100B data in head injured patients. A comparable 
range (0.02 - 9.6 ng/ml, median 1.59 +/− 2.41) has been 
reported in a prospective study of 60 head injured pa- 
tients [13]. The statistically significant increased mean 
peak serum S100B in our poor outcome group, compared 
to the good outcome group, is consistent with the body of 
literature which confirms a strong correlation between 
peripheral S100B and patient outcome following severe 
TBI [14-19]. The accuracy of the association between 
serum S100B and patient outcome is not without contro- 
versy given well known extracranial sources of S100B, 
blood-brain barrier dysfunction and other clinical condi- 
tions that have been associated with elevated levels. 

Though a normal serum S100B level may reliably in- 
dicate the absence of significant CNS damage [20] with 
0.21 ng/ml suggested as a cut-off for predicting primary 
brain injury and/ or severe disability following minor 
TBI [21], the validity of peripheral S100B as an indicator 
of both the severity of initial brain injury and the resul- 
tant patient outcome in the multi-trauma setting has been 
questioned. Studies have confirmed elevated S100B lev- 
els in trauma patients without head injury in keeping 
with well-established extracranial sources (adipocytes 
and muscle cells) of S100B [22-24]. An elevated serum 
S100B level occurring at least once in 46 non-trauma 
critically ill patients without any apparent brain damage 
(median 0.31 ng/ml, range 0.04 - 18) has also been re- 
ported [25]. Other clinical scenarios have further con- 
founded the specificity of S100B as a measure of trauma 
induced brain injury [26] with increased levels noted in 
patients with obstructive sleep apnoea [27], dilated car- 
diomyopathy [28], carbon monoxide poisoning [29] and 
be associated with lesion volume, clinical status and 
functional outcome in a number of studies investigating 
stroke [30-32]. Elevated levels following certain sports 
such as soccer, boxing, swimming and running have also 
been reported [33-35]. However, other authors have ana- 

lysed multi-trauma patients and concluded that regard- 
less of the presence of systemic injuries, serum S100B 
remains a valid predictor of the severity of brain injury 
[18,36]. 

The intravascular S100B level will ultimately depend 
on several processes such as TBI induced astrocytic re- 
lease, its passage through a damaged BBB and extracra- 
nial sources. Studies have also suggested that, in addition 
to the elevation of S100B secondary to direct brain par- 
enchymal trauma (a passive release), TBI stimulated 
astrocytes may actively express S100B as part of a re-
parative process [37]. The extent of BBB dysfunction has 
been suggested as playing a prominent part in the inter-
pretation of the level of S100B in trauma patients with 
some authors suggesting serum S100B is a measure of 
BBB dysfunction alone. That BBB disruption occurs 
following head injury is well recognised [38-40]. A 
method used to quantify the extent of damage is the 
cerebrospinal fluid (CSF)-serum albumin quotient (QA) 
which is considered by some authors to be a “gold stan- 
dard” measure of blood-CSF barrier function (presumed 
to be similar to BBB) [41,42]. To add support that serum 
S100B may be used as a measure of BBB dysfunction 
alone, good correlation between QA and serum S100B 
levels have been confirmed following traumatic brain 
injury [43]. Though in opposition to this, CSF and serum 
S100B with QA was measured in TBI patients and the 
authors concluded that serum S100B levels were not 
influenced to a great degree by BBB integrity, and so 
may reflect true cellular damage [44]. Controversy there- 
fore continues regarding whether peripheral S100B re- 
flects predominantly the primary parenchymal damage or 
BBB dysfunction, though in all probability it represents a 
combination of both. 

We report both brain S100B ECF and serum values in 
12 severe TBI patients, seeking to potentially add clari- 
fication to the dynamics of S100B in acute brain injury, 
and to comment on possible ECF correlation with patient 
outcome. Although elevated ECF S100 levels using mi- 
crodialysis in the infarct core and penumbral region 
around a stroke has been performed [45], to our knowl- 
edge only one other study has evaluated ECF S100B in 
the trauma setting [46]. The authors confirmed levels up 
to 75 ng/ml in a single patient with severe TBI, though 
serum levels were not commented on. The peak levels of 
both serum and ECF in our study occurred within the 
first 48 hours following injury in keeping with other au- 
thors confirming early S100B peaks in serum and CSF 
[14]. 

The peak levels of S100B in the brain dialysate of pa- 
tients with a good outcome (group A) ranged from 10 - 
600 ng/ml (mean ± SEM, 186 ± 74 ng/ml) while those of 
patients with a poor outcome (group B) ranged from 6 - 
295 ng/ml (mean ± SEM, 150 ± 68 ng/ml) (Figure 1). 
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There was no statistically significant difference between 
these levels (P = 0.932). These values are in fact likely to 
be lower than the true extracellular concentrations given 
the constraints of microdialysis. First, the recovery effi- 
ciencies in TBI patients using our microdialysis mem- 
brane for interleukin-6 and nerve growth factor, mole- 
cules of similar molecular weights were 45% and 22% 
respectively [8]. Second, continued tissue dialysis de- 
pletes dialyzable molecules in the immediate surround- 
ing tissue leading to a further underestimation of their 
concentration [47]. 

Following acute brain injury S100B is released into 
the ECF by glial cells (passively or actively) and diffuses 
into the CSF (with passage to blood as the CSF is ab- 
sorbed) or directly into the vascular compartment via a 
disrupted BBB. Those CSF S100B concentrations reflect 
the ECF S100B level is assumed to be the case, given 
that both compartments communicate via non-barrier 
spaces [48]. Our S100B ECF levels are considerably 
higher than the majority of previously reported CSF 
S100B levels in severe TBI patients, though the latter 
have been variably reported. Mean peak CSF S100B 
values of 819 ± 78 pg/ml, 200-fold less than our ECF 
values (150 - 180 ng/ml) [49], 11.7 ng/ml (100-fold dif- 
ference) [14], 7.34 ± 4.87 ng/ml [50], 64.98 +/− 272.39 
ng/ml [51] and 23 - 1058 ng/ml (median 36 ng/ml, i.e. 
approximating our ECF concentrations) [44] have all 
been reported. 

Notwithstanding the controversy of extracranial S100B 
sources and BBB dysfunction described above, it has 
been assumed that the predictive value of serum S100B 
and the positive correlation of serum S100B levels with 
patient outcome relate in the main to the degree of brain 
parenchymal injury and S100B release into the ECF. We 
however cannot confirm a correlation between ECF and 
patient outcome though our serum results in the same 
patients did show a statistically significant correlation. 
Similarly, the literature has been unable to confirm a 
consistent correlation between CSF S100B and outcome, 
with some authors confirming that the severe TBI pa- 
tients with higher CSF S100B concentrations had higher 
acute mortality and worse outcome [14,50] though others 
were unable to confirm the same [44,51]. 

We did expect that there would be correlation between 
ECF and serum S100B levels and therefore between the 
ECF level and patient outcome, but this was not the case. 
Our results primarily reveal that the serum S100B level 
correlates with patient outcome and that the ECF S100B 
level does not. The increased serum S100B levels in the 
poor outcome patients could potentially reflect a greater 
functional disturbance of the BBB throughout the brain 
resulting in more S100B leaking from the extracellular 
compartment into the intravascular space (directly or via 
the CSF). That a patient with a more severely disrupted 

BBB throughout their brain has a worse outcome would 
not be surprising, given the potential for increased 
vasogenic oedema, intracranial hypertension, seizure 
activity and on a molecular level alteration of extracellu- 
lar ion composition, accumulation of toxic substances 
(eg excessive glutamate) and extravasation of plasma 
proteins, all of which may alter interneuronal connec- 
tivity and neuronal function. The ratio of ECF to serum 
S100B could potentially serve as a future estimation of 
BBB dysfunction. 

Our study has limitations inherent to all intracerebral 
dialysis studies, namely that the substances measured in 
the dialysate simply reflect parenchymal damage second- 
dary to catheter insertion. Although microdialysis has 
been shown to produce a degree of tissue injury [52] we 
are optimistic that the trauma associated with probe im- 
plantation may not cause significant artefact in the ECF 
S100B results for two reasons. The maximum volume of 
irreversibly damaged brain tissue adjacent to a microdi- 
alysis probe is in the order of 1.5 mm3 [53,54] whereas 
the catchment volume is approximately 100 times large 
[55]. Adenosine, a known biochemical marker of tissue 
damage, has been found to be low in the area immedi- 
ately surrounding a microdialysis catheter in subcutane- 
ous adipose tissues [56]. 

Our choice of catheter position is open to criticism in 
that it could be argued that they could have been placed 
into non-pathological brain. Contused brain consists of 
disruption to small blood vessels, microhaemorrhages, 
leakage into the ECF, neuronal and glial injury, BBB 
disruption, vasogenic oedema and penumbral damage. 
We therefore hypothesised that measuring ECF S100B in 
contused brain or peri-contusional areas may have 
yielded variable results dependent on the extent of focal 
damage and the exact location of the catheter. This could 
potentially reduce the validity of the dialysate levels in 
terms of attempting to clarify S100B dynamics. The 
dialysates were sampled from the frontal lobe (approxi- 
mately 2 cm from the cortical surface) of the brain, dis- 
tant from sites of contusions, such that the S100B levels 
might reflect glial cell release secondary to the diffuse 
element of brain damage known to be associated with 
severe TBI. That our ECF S100B levels are of the same 
order, and tend to be even higher, than the dialysates 
from ‘the edge of a contusion’ [46] would also support 
that we were in damaged brain. Our ECF levels are sig- 
nificantly higher than CSF S100B values in previous TBI 
studies, suggesting again that the dialysis probes were 
placed into pathological brain. Furthermore, it seems 
counter-intuitive to suggest that in those patients who 
died from severe TBI that there was not an element of 
global damage. We also note that higher CSF S100B 
values have been previously documented in diffuse inju- 
ries compared to focal injuries [44]. 
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Use of an external ventricular drain (EVD) was not 
standard practice at the time of the study and so we could 
not gain CSF S100B concentrations for all the patients. 
The patient numbers in our study is small (n = 12) which 
reduces the validity of our conclusions. Future work 
would welcome this addition, adding not only CSF 
S100B values but the ability to compare blood-CSF bar- 
rier function (QA) with BBB as estimated by ECF and 
serum S100B concentration ratios. Although there were 
no significant differences between systemic injuries be- 
tween the two groups, extracranial sources may have 
influenced the S100B serum level but we do not feel 
would have significantly altered the ECF values. Accu- 
racy in understanding the time course of S100B release 
and its diffusion into various fluid compartments follow- 
ing acute brain injury could improve upon the sensitivity 
and validity of interpreting the level at a specific time 
point. Furthermore, ECF S100B could potentially be part 
of microdialysis multimodal monitoring in the intensive 
care setting, in order to monitor secondary brain injury 
and the efficacy of novel therapeutic neuroprotective 
drugs.  

5. CONCLUSION 

We confirm that intracerebral microdialysis can be 
used to sample S100B concentrations from brain ECF in 
severely head injured patients. Our results suggest that 
the S100B levels recovered from the frontal lobe of the 
brain of patients with severe TBI were variable and that 
there was no significant difference between those with a 
good clinical outcome and those with a poor outcome. In 
contrast, the serum levels of S100B of patients with a 
poor outcome were significantly higher than those with a 
good outcome, in keeping with the majority of peripheral 
S100B literature related to head injury. 
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