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ABSTRACT 

Tracking precision of pre-planned trajectories is essential for an auto-guided vehicle (AGV). The purpose of this paper 
is to design a self-constructing wavelet neural network (SCWNN) method for dynamical modeling and control of a 
2-DOF AGV. In control systems of AGVs, kinematical models have been preferred in recent research documents. 
However, in this paper, to enhance the trajectory tracking performance through including the AGV’s inertial effects in 
the control system, a learned dynamical model is replaced to the kinematical kind. As the base of a control system, the 
mathematical models are not preferred due to modeling uncertainties and exogenous inputs. Therefore, adaptive dy- 
namic and control models of AGV are proposed using a four-layer SCWNN system comprising of the input, wavelet, 
product, and output layers. By use of the SCWNN, a robust controller against uncertainties is developed, which yields 
the perfect convergence of AGV to reference trajectories. Owing to the adaptive structure, the number of nodes in the 
layers is adjusted in online and thus the computational burden of the neural network methods is decreased. Using soft- 
ware simulations, the tracking performance of the proposed control system is assessed. 
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1. Introduction 

Nowadays, wide range applications of AGVs in industry, 
transportation, inspection and other fields have increased 
the importance of the trajectory tracking control of non- 
holonomic AGVs [1-4]. As the base of path-following 
controllers, kinematic models of nonholonomic systems 
have been preferred by most researchers in recent litera- 
tures [5]. However, dynamical models though increasing 
the complexity of control systems are essential due to 
comprising the vehicle inertial effects as long as its Co- 
riolis, centripetal and linear accelerations in the inputs 
torques. Furthermore, merely using the dynamical mod- 
els the input torques to the AGV’s driving wheels could 
be considered as direct control commands. 

In this paper, following kinematic modeling of the 
generalized AGV whose center of mass is placed out of 
the center of rotation between two independent driving 
wheels, the dynamical models of AGV are developed in 
both Cartesian and polar coordinate systems. Owing to 
the nonholonomic constraints on AGV’s kinematics, the 
so-called global dynamical model of AGV includes a 
coupled constraint equation with two dynamical equa-  

tions corresponding to 2 DOF of the system. However, 
the represented dynamical models of AGV by local 
posture variables don’t include the non-integrable cons- 
traints. These kind of dynamical models are more ap- 
propriate to design sliding surfaces associate with robust 
switching controllers [4]. However, as model based con- 
trollers require the complete knowledge of the AGV 
parameters including the inertial matrix, the global dyna- 
mical models are superior in the estimation of unknown 
parameters (see [6,7]). 

Furthermore, due to the physical meaning of initial off 
tracks with respect to global coordinate frames, the con- 
trol systems based on global dynamical models should be 
selected when the vehicle is out of the desired path.  

Inaccuracies in physical models of AGVs usually de- 
grade the performance of trajectory tracking controllers, 
therefore, different strategies of solution have been pro- 
posed in recent two decades. A nonlinear adaptive con- 
troller has been designed based on a dynamical model 
updated by the online estimation of the plant inertial 
parameters [1]. Furthermore, robust sliding mode control 
techniques could be used to accomplish perfect path 
tracking when there are considerable uncertainties in the 
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mathematical model of systems like an AGV [4,8]. Be- 
sides the complicated structure of sliding mode control- 
lers integrated with the plant dynamics, this method is 
suffered by the chattering phenomenon [9]. 

Considering the lack of the physical models, the arti- 
ficial neural networks (ANN) method as a universal fun- 
ction approximation generates a well posed mathematical 
model with adaptive learning capability. Using a multi- 
layer feed-forward ANN, a combined controller of feed- 
back velocity control and torque control techniques could 
be developed. However, due to the complicated struc- 
tures of both the controller and the neural network- 
learning algorithm, the control system is computationally 
expensive. Jun has proposed a combined neural network 
with PID control to take advantage of the simplicity of 
PID controllers and the powerful capability of learning, 
adaptability and tackling nonlinearity of neural networks 
[5,10]. As an important imperfection over most of the 
developed controllers in the documented research works, 
the control system merely uses the kinematic equations 
and therefore, the control commands are limited to the 
steering angle and forward velocity of the Vehicle. 
Through developing dynamic based controller, the iner- 
tial effects are considered in the imposed torques on the 
driving wheels as direct control commands to the AGV. 
In this paper, a four layers back propagation ANN con- 
trol system for trajectory tracking control of nonholo- 
nomic AGVs is designed. A new learning scheme is de- 
rived to train the weights of each layer of the neural 
network by minimizing a criterion prescribed in a quad- 
ratic form of the error between desired and followed 
trajectories by the AGV. A simple torque combined sys- 
tem consisting of a computed torque controller and a neu- 
ral network controller with parallel structure is presented 
for trajectory tracking control of nonholonomic AGVs. 
In the classic NN system, the main drawbacks are unde- 
sirable local minima and slow convergence of back-pro- 
pagation learning. Moreover, the implementation of mul- 
tiple feed-forward neural networks suffers from the lack 
of efficient constructive approaches, both for determining 
parameters of neurons and for choosing network struc- 
tures. To overcoming the disadvantages of global ap- 
proximation ANN, the global activation function is sub- 
stituted with localized wavelet neural networks in the 
controller [4]. Due to the local properties of wavelets, 
arbitrary functions can be approximated by the truncated 
discrete wavelet transform [7]. 

A self-constructing four-layer wavelet network in- 
cluding input, wavelet, product, and output layers is used 
to modeling and trajectory tracking control of the vehicle. 
Using orthogonal wavelet functions as node functions of 
the network, both the structure and the parameters of the 
controller are learned in online. In the structure learning 
process, the degree measure method is used to find the 

proper wavelet bases and to minimize the number of 
wavelet bases generated from input space. In parameter 
learning scheme, the supervisory gradient descent algo- 
rithm is used to adjust the shape of wavelet functions and 
the connection weights of the network. The computed 
torque SCWN controller based on feedback error learn- 
ing strategy results in perfect tracking control perform- 
ance. The rest of the paper is organized as follows. 

In Section 2, kinematic and dynamic modeling of 
AGV is derived. Section 3 is devoted to wavelet neural 
network modeling of the AGV. Trajectory tracking con- 
trollers are represented in Section 4. Software simulation 
and concluding remarks are presented in Sections 5 and 6, 
respectively. 

2. AGV Kinematics 

According to the schematic of AGV in Figure 1, it com- 
prises a plate body carried by two independent driving 
wheels. The other two caster wheels prevent the vehicle 
from tipping over as it moves on a plane. Owning to very 
small inertial moments of the casters, their dynamical 
effects on the AGV’s motion could be ignored. Per as 
Figure 1, a is the distance between the center of mass of 
the vehicle (shown by C) and the connection center of 
driving wheels. Furthermore, 2l and R denote the length 
of driving axel and the radius of driving wheels, respec- 
tively. The fixed axes of local coordinates, x-y on the 
vehicle body are centered on point C. 

In the dynamical modeling of AGV, the generalized 
coordinates vector is considered as: 

 TR Lp X Y x y           (1) 

where, X  and Y  show the position of the AGV’s 
center of mass in the global coordinate system with axes 
X-Y; the heading angle between y and Y axes,   repre- 
sents the orientation of the AGV in plane motions; and 

,R L   are the rotation angles of the right and left driv- 
 

 

Figure 1. Schematics of AGV. 
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ing wheels, respectively. To explain the AGV’s position 
in global polar coordinates, the components  ,   
could also be used. 

The assumption of pure rolling and not slipping mo- 
tion of driving wheels leads to a non-integrable con- 
straint in the kinematical model of the nonholonomic 
vehicles. Therefore, the AGV’s posture could be deter- 
mined completely using at least three generalized coor- 
dinates though its dynamical model comprises only two 
differential equations.  

Considering the AGV kinematics, the following holo- 
nomic constraints are valid for movements on non-slid- 
ing and smooth surfaces. 


2

R L

aR
x

l
                  (2) 


2

R L

R
y                  (3) 


2

R L

R

l
                   (4) 

Transforming the local velocity components of AGV 
to the global components results in the nonholonomic 
constraints as: 

cos sin

sin cos

xX

yY

 
 

  
  
  

 
 

  
  
 

          (5) 

These constraints could be rewritten using (1) through 
(4) to obtain direct transformation matrix between the 
global velocity components and the local translational- 
rotational velocity components as: 
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 
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
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




           (6) 

where, the local velocity components  and v   stand 
for the linear forward velocity of AGV and its angular 
velocity around the vertical axis, respectively. 

Using the posture variables of polar coordinate system,  
2X Y   2  and  1tan Y X   in (6), the kin-  

ematical model of AGV in polar coordinates is obtained 
as follows. 
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
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     (7) 

The considered distance between the centers of rota-
tion and mass of the AGV,  leads to an enlarged ap-
plication range of the proposed methods to different kind 
of industrial, service and entertainment vehicles. 

a

Owing to excluding the inertial effects, the designed 
controllers based on the kinematical models (2) through 

(7) may not be very satisfied in real world at least for 
mechanical engineers. Furthermore, the dynamical mod- 
els of AGV should be used as the base of control systems 
to obtain the input torques to AGV as direct control com- 
mands. 

3. Dynamic Modelling of AGV 

In the dynamical models, the applied torques to the driv- 
ing wheels would be obtained as terms of the vehicle 
accelerations, velocities, and posture variables as well as 
the inertial parameters. In this paper, the well-known 
Lagrange’s method is used to determine the dynamical 
equations of motion as: 

 Td

d

L L
T A q

t q q


  
     

          (8) 

where,   is a Lagrange multiplier;  TA q  is given by 
the nonholonomic constraints; and T is the control torque 
vector with components, TR and TL which are generated 
by separate actuator motors of the right and left driving 
wheels, respectively. Now the following Lagrangian 
could be considered for the AGV dynamic modeling [1]. 

  2 2 2 2 21 1 1

2 2 2t w RL m X Y I I L              (9) 

where, m is the total mass of the vehicle; tI  is the 
AGV’s moment of inertia around the normal axis of X-Y 
plane crossing through the point C; and wI  denotes the 
inertia moment of driving wheels. Applying (9) in (8) 
and using the kinematical constraints (2) through (5) 
gives: 
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   cos sinA q   In order to achieve an applicable model for control 
purposes, the constraint force vector,   should be 
eliminated from (10). Depending on using which set of 
kinematical equations, four different dynamical models 
are presented in this paper. Using constraints (2) through 
(5), the following so called local dynamic model is ob- 
tained. 

a            (15) 
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
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   (17) 

As represented by Hu and Huo [11], many non- 
holonomic mechanical systems could be described by 
Equation (10) in which in general form,  and 

 are the generalized configuration and the control 
input vectors, respectively;  is the constraint 
force vector; 

nq R
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  n nM q R   is a positive definite matrix; 

 ,V q q nR  is the term which includes centripetal and 
Coriolis forces;  B q  is a n r  full rank transforma- 
tion input matrix;  A q  is a  full rank matrix 
associated with the constraints.  
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Using (2) and (3) in (17) to replacing ,R L   by ,x y  
results in another so-called local dynamical model of 
AGV as: 
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Using local dynamical models as the base of path fol- 

lowing control systems results in uncompensated initial 
position off tracks though the tracked orientation trajec- 
tory by the AGV becomes accurate [4]. To overcome this 
difficulty, two dynamical models of AGV are developed 
using global posture variables. Therefore, using con- 
straints (5) to replacing the local velocity and accelera- 
tion components in (20) by corresponding global kinds 
results as: 

The elements of inertial matrix and nonlinear vector, 
 associated with the global dynamical model (21) are 

obtained as: 
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By use of kinematical model (6),  and  could X Y
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be written in terms of  and v   

2V v

. Hence, (21) is 
changed to the second dynamical model in global coor- 
dinate system as: 

2 11

3 21
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Unlike the model (21), the represented model (30) is 
simple and its inertial matrix doesn’t include the posture 
variables of AGV. Therefore, this new dynamical model 
(30) is not affected by probable measurement noises of 
orientation variable,  . 

4. Wavelet Neural Network (WNN) 

As the base of a control system, the mathematical models 
are not preferred due to modeling uncertainties and ex- 
ogenous inputs affecting real systems. In this section 
dynamical modeling of the AGV is considered as a 
self-constructing wavelet neural network (SCWNN) sys- 
tem. As shown in block diagram of Figure 2, the 
SCWNN receives a vector of desired reference position, 
velocity and orientation trajectories, d  that should be 
tracked by the AGV. Through the learned SCWNN, the 
input torque vector, T which should be imposed on the 
driving wheels of the AGV is generated. Therefore, the 
AGV will track the desired position and orientation pos- 
ture variables by applying the intelligently produced 
torque vector, T. The structure of the designed wavelet 
neural network (WNN) model is shown in Figure 3. 

q

The proposed SCWNN has a four-layer structure 
comprising of the input layer, wavelet layer, product 
layer, and output layer. The input data to the first layer of 
the network is a n-dimensional vector of posture vari- 
ables as,  1 2  which is normalized into the 
interval 

, ,q q q 


, nq
0,1 . The activation functions of wavelet nodes 

in the second layer are derived from the mother wavelet, 
 with a dilation, d and a translation t as:  q

   q 2q 


, . The mother wavelet is selected 

in such a way that it constitutes an orthonormal basis in 
. The derivation of a differentiable Mexican-hat  

2 2d d d t

2 nL R

function is considered as a mother wavelet herein [8], 

   2 21 e qq q               (35) 

where  stands for 2-norm of vector. Consequently, 
the activation function of the j-th wavelet node connected 
with the i-th input data is represented as: 
where, n is the number of input-dimensions and m is the 
number of the wavelets. The wavelet functions (35) with 
various dilations and translations are presented in Figure 
4. Then, each wavelet in the product layer is labeled P, 
i.e., the product of the jth multidimensional wavelet with 
n input dimensions , can be defined 
as 

 T
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According to the theory of multi-resolution analysis 
(MRA), see [8], any  2f L R  can be regarded as a 
linear combination of wavelets at different resolution 
levels. For this reason, the function f  is expressed as 
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j j
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Y X f X w X
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If  1 2, , ,j m    

, , ,jw w w w

 is used as a nonlinear trans- 
formation function of hidden nodes and weight vectors 
and 1 2 m   defines the connection weights, 
then Equation (38) can be considered the functional ex- 
pression of the SCWN modeling function Y. 

4.1. Self-Constructing Learning Algorithm 

In this section, the degree measure method and the 
well-known back propagation (BP) algorithm are used 
concurrently for constructing and adjusting the SCWN 
algorithm. The degree measure method is used to deter- 
mine the number of wavelet bases in the wavelet layer 
and the product layer. Furthermore, the BP algorithm is 
used to adjust the parameters of the wavelet bases and 
connection weights. At the initial time, the SCWN sys- 
tem does not comprise any wavelet bases. Therefore, the 
first task is to decide when a new wavelet base should be 
generated. The partition-based clustering techniques are 
used to perform cluster analysis in a data set. For each 
incoming pattern i , the firing strength of a wavelet 
base can be regarded as the degree of the incoming pat- 
tern belonging to the corresponding wavelet base. An 
input datum i , with a higher firing strength means that 
its spatial location is nearer to the center of the wavelet  

q

q
t

 

 
2

2 2 22
2 1 2 e 1, , , 1, ,,

dij
i ijij ij

q td d
i i ijq q t i n j m

       
 

 
j jd t                   (36)

   

Copyright © 2013 SciRes.                                                                                  POS 



Self-Constructing Neural Network Modeling and Control of an AGV 165

 

AGV Modelqd

TWNN

Tr

AGV q

+

-

 

Figure 2. Block diagram of SCWNN modeling system. 
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Figure 3. Structure of wavelet neural network. 
 

 

Figure 4. Wavelet functions of (35) with various dilations 
and translations. 
 
base j , than those with smaller firing strength. Based 
on this concept, the firing strength obtained from Equa- 
tion (37) in the product layer can be used as the degree 
measure. 

t

, 1, ,j jF j   q              (39) 

where,  is the number of existing wavelet bases and q

j , is the absolute value of j . According to the de- 
gree measure, the criterion of a new wavelet base gener- 
ated for new incoming data is described in the block dia- 
gram of Figure 5. 

In Figure 5 F  is a prespecified threshold that should 
decay during the learning process, limiting the size of the 
SCWN model and 1 1 1  are new wavelet’s pa- 
rameters according as regarded Initially, there are no 
wavelet bases in the SCWN controller. The first task is to 
decide when a new wavelet base is generated. We adopt 
partition-based clustering techniques to perform cluster 
analysis in a data set. For each incoming pattern i , the 
firing strength of a wavelet base can be regarded as the 
degree of the incoming pattern belonging to the corre- 

sponding wavelet base. An input datum i  with a 
higher firing strength means that its spatial location is 
nearer to the center of the wavelet base j  than those 
with smaller firing strength. 

, ,q q qt d w  

q

q

t
F  is defined as, 

0.1 ,0.5n n  

w

 where, n is the number of input variables. 
After the network structure has been adjusted accord- 

ing to the current training pattern, the network then en- 
ters the second learning step to adjust the parameters of 
the wavelet base and the connection weight (  and 

) with the same training pattern. The parameter- 
learning algorithm is based on a set of input/output pairs 

,t d

  , dq y q . If the error function is 

  de y q y q                  (40) 

where  y q  is the model output and  dy q is the de- 
sired output, then the cost function E can be defined as 

21

2
E e                   (41) 

and can be minimized by all adjustable parameters using 
an iterative computational scheme. Assuming that W is 
the adjustable parameter in the wavelet layer and the 
output layer, the general learning rule used is 
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Figure 5. Block diagram for generation of new wavelets in 
SCWN. 

Copyright © 2013 SciRes.                                                                                  POS 



Self-Constructing Neural Network Modeling and Control of an AGV 166 

       1
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         

    (42) 

where   and  represent the learning rate and the 
iteration number, respectively. The gradient of the cost 
function in Equation (41) with respect to the vector of 
arbitrarily adjustable parameter  is defined as 

k

E
W

E
e

W W

 
 

 
y

               (43) 

With the above equation defined, we can infer that the 
free parameters adjusted in the SCWN are as follows. 
The connection weight of the output layer is updated by 

   1j j j

j w w
j

w k w k w

E
w e

w
 

   


    


            (44) 

Similarly, the updated laws of  and  are shown 
as follows: 

ijt ijd

   1ij ij ijt k t k t                (45) 

   1ij ij ijd k d k d               (46) 

where 

4.2. Wavelet Neural Network Control of AGV 

Neural networks have known as an attractive method to 
model the complex non-linear systems due to its inherent 
ability to approximate arbitrary continuous functions. 
During the 1980’s and the early 1990’s, conclusive 
proofs were given by numerous authors that feed-forward 
neural networks with one hidden layer are capable of 
approximating any continuous function on a compact set 
in a very precise and satisfactory sense [12]. Recently, 
wavelet decomposition method has been used as a new 
powerful tool for function approximation in a manner 
that readily reveals properties of the arbitrary L2 function 
(energy-finite and continuous or discontinuous) [13]. 
Combination of wavelets and neural networks methods 
results in wavelet neural network models with efficient 
constructive approach. Besides precise approximation of 
arbitrary L2 functions, the wavelet neural networks could 
result in a convex cost index for which simple iterative 
solutions such as gradient descent rules are justifiable 

and are not in danger of being trapped in local minima 
when choosing the orthogonal wavelets as the activation 
functions in the nodes [8]. In this paper, the WNN tech- 
nique is used as the inverse dynamic model of the AGV 
to generate sufficient robustness against modeling uncer- 
tainties and exogenous disturbances. Considering the 
proposed dynamical model (17), the input variables to 
the WNN system are supposed as follow. 

 2 3 2 3, , ,q                     (49) 

Owing to the fact that the nonholonomic AGV is a 2 
DOF dynamic system, two separate WNN systems are 
used to approximate the input torque of every driving 
wheels of the AGV. In this way, two control actions for 
trajectory tracking control of the AGV, RT  and LT  are 
computed by the right and left WNN as shown in Figure 
6. 

5. Simulation Results 

Using simulations, the effects of the proposed wavelet 
neural network controller on the convergence of AGV to 
reference trajectories are evaluated. Therefore, the fol- 
lowing example trajectories are used to produce the ref- 
erence position and orientation angle of the AGV. 

4 3 6 4 8 53 10 7 10 5 10t t        t        (50) 

100 3.9596R                 (51) 

100 3.9596L                  (52) 

The simulation of the WNN controller results in a per- 
fect trajectory tracking performance of the AGV. The 
comparison of tracked X, Y and also the complete circu- 
lar path of the AGV with the reference values are shown 
in Figures 7-9, respectively. From these figures, the 
tracking convergence of AGV along both X and Y tra- 
jectories is very fast. 

6. Conclusion 

An intelligent wavelet neural networks modelling and 
control method of an AGV has been proposed. Owing to 
the self-constructing nature of the proposed WNNT, the 
number of nodes in the layers of the WNNT system is 
adjusted automatically. Therefore, the proposed method  
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Figure 6. block diagram of AGV control system with in- 
verse dynamic. 
 

 

Figure 7. Tracking of AGV along X axes. 
 

 

Figure 8. Tracking of AGV along Y axis. 
 
does not require the fixed number of nodes and thereby 
the computation cost is reduced. Unlike kinematic mod- 
els, the SCWNN dynamic model of the AGV results in 
considering the inertial, Coriolis and centripetal accelera-  

 

Figure 9. Tracking of AGV on XY plane. 
 
tions in the trajectory tracking control of the vehicle. 
According to simulation results, the WNNT control sys- 
tem yields a perfect trajectory tracking of the AGV. 
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