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ABSTRACT 

High-order finite element method (FEM) formulation also referred to as spectral element method (SEM) formulation is 
currently implemented in this paper for 3-dimensional (3-D) elasto-plastic problems in stability assessment of large- 
scale slopes (vegetated and barren slopes) in different instability conditions such as seismic and saturation. We have re- 
viewed the SEM formulation, and have sought its applicability for vegetated slopes. Utilizing p (high-order polynomial 
degree or spectral degrees) and h (mesh operation for quality meshing in required elemental budgets) refining tech- 
niques in the existing FEM, the complexity of problem domain can be well addressed in greater numerical stability. Un- 
like the existing FEM formulation, this high-order FEM employs the same integration and interpolation points to 
achieve a progressive response of the instability, which drastically reduces the computational costs (formation of di- 
agonalized mass matrix) and offers significant benefits to slope instability computations for serial and parallel imple- 
mentations. With this formulation, we have achieved the following three qualities in slope instability modeling: 1) 
geometric flexibility of the finite elements, 2) high computational efficiency, and 3) reliable spectral accuracy. A sam- 
ple problem has also been presented in this paper, which has accommodated all aforesaid numerical qualities. 
 
Keywords: Finite Element Method; Spectral Element Method; Slope Instability; Vegetated and Barren Slopes; Parallel 

Algorithm 

1. Introduction 

The high-order finite element method (FEM) is also re- 
ferred to as spectral element method (SEM), which is 
originally applied in fluid mechanics, but is now being 
applied by many researchers in many fields. Because of 
its capacity to deliver low numerical dispersion with re- 
spect to existing finite element methods, many research- 
ers have adopted SEM methods in seismic wave propa- 
gation analysis (e.g., [1-10]). The SEM method combines 
the flexibility of FEM with the accuracy of a spectral 
approach, adopting the hexahedral elements satisfactorily, 
which represents the complexities of problem domain. 
The domain of the hexahedral elements is discretized 
using high-degree Lagrange interpolants, and integration 
over an element is accomplished based on the Gauss- 
Lobatto-Legendre (GLL) integration rule. A combination 
of discretization and integration effort results in a diago- 
nalized mass matrix, which drastically reduces the com- 
putation effort, and supports parallel implementation, 
which demonstrates the most effective and efficient 
method among all methods currently in use for slope 
instability computations. In this context, a use of SEM in 

slope instability has been made for the first time by 
Gharti et al. [11], in elasto-plastic framework (i.e., 
Specfem 3d Geotech, an open source package). This pa- 
per further implements the SEM package for vegetated 
slope stability incorporating root reinforcement formula- 
tion. With this formulation, the role of vegetation in soil 
slope stability can be justified analytically and numeri- 
cally. 

The advantage of SEM over existing FEM is in the use 
of high-order basis functions. High-order elements are 
well established in geotechnical FEM (e.g., 15 node tri- 
angles), but the computational burden is not addressed by 
any existing FEM methods. The advantage of forming a 
diagionalized mass matrix for a pseudo-static analysis is, 
in fact, not sufficient. However, this paper finds a broad- 
er scope for pseudo-static applications for vegetated and 
barren slope instability, and predicts reliable values of 
safety factors through certain refinement techniques, i.e., 
p-increase in spectral degree and h-increase in elemental 
budgets, and ensuring the quality mesh in the SEM. It 
investigates the application of SEM to 3-D slope instabil-
ity analysis in elasto-plastic framework. As an applica- 
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tion, this paper utilizes the same source package to dem- 
onstrate the stability aspects of vegetated and barren 
slope in different instability conditions such as seismic 
and saturation. 

2. Mathematical Foundation 

2.1. High-Order FEM Formulation 

Traction or stress vector  2
it N m 

n

 can be written in 
tensor notation as per Cauchy’s formula as follows. 

ˆi ijt i                     (1) 

where,  2
ij N m   and  are known respectively as 

the Cauchy stress tensor and unit outward normal to the 
boundary. 

ˆin

According to Newton’s Law of conservation of linear 
momentum, the time rate of change of linear momentum 
of particles equals the net force exerted on them, which is 
expressed as follows. 

 d

d

mv
F

t
                 (2) 

where,  and ,m v F  are respectively the mass of the 
particle, its velocity, and net force acting on the particle. 
For an arbitral (sub) domain   of a solid continuum of 
density  subjected to body forces (per unit 
volume) 

 3/m
 3




kg
N/m ,f

2
 and surface forces (per unit area)

 N/mt  acting on the boundary  the principle of 
conservation of linear momentum can be written as fol- 
lows. 

,

2

2
d d

u
df t

t


 


   

 

          (3) 

where,  is known as the displacement vector. Us- 
ing the Cauchy’s formula, the Equation (3) can be writ- 
ten as both tensor form and general elaborated form. 
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

; inij j i i
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         

         
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






    (4) 

where, i  is known as the particle acceleration. We use 
a semicolon (;) for covariant differentiation. The gener- 
alized Hooke’s Law can be written in the following form. 

u

ij ijkl klC                      (5) 

where,
 

 is known as elasticity ten- 

sor for linearly elastic isotropic material, i.e., 

 ijkl m ijklm n
C W C

     
   1 ,

ijkl m ijkl r ijkl s ijkln r
m

ijkl ijklr

C W C W C W C

r C r C

  

  



and i ii
W   is known as mass density, i.e.,  

 1 .i i r r s s r r r sW W W a a            

here,
 i  and iW   are known respectively as the weight 

and density function of soil material [12]. These two ex- 
pressions include root reinforcement effect of vegetation, 
where s, , ,r sW W , r   and r  are known

 
respectively 

as weight function of roots, weight function of soil, den- 
sity of roots, density of soils, and root area ratio (RAR). 
RAR denotes the fraction of soil cross-section occupied 
by roots

a

 .RA A An additional cohesion due to the pres- 
ence of roots can be calculated by two major characteris- 
tics of root systems RT  (average tensile strength of root 
fibers),

 
and RAR. Both RT  and RAR are influenced by 

species and site factors such as local climate, soil type, 
season, root type and size as well as root architecture 
(e.g., [13,14]). Using perpendicular root reinforcement 
model, the additional root cohesion r  can be com- 
puted by the following relation as follows. 

C

rC k tr                         (6) 

where, k  and rt  are known respectively as the com- 
mon coefficient factor and a mobilized tensile strength of 
root fibers as follows. 

 sin cos tan

r R r

k

t T a

      


 


         (7) 

where,   and   are known respectively as the angle 
of shear distortion in shear zone and angle of internal 
friction of soil. The common value of  can be taken 
as 1.15 [15] or 1.2 [16]. To account the variability of root 
diameter, expression  can be further written as fol- 
lows. 

k

rC

 
1

N

r r r
i

c k T a i


                  (8) 

where, r  and ra  are known respectively as the ten- 
sile strength of root and RAR, both specified per diame- 
ter class  and  is the number of class considered 
[17]. 

T

,i N

Soil is considered as anisotropic material (soil material 
properties varies in all direction). The symmetry of 
Cauchy’s stress tensor ij ji   and the generalized 
expression of Hooke’s Law (Equation (5)) implies that 

.ijkl jiklC C  In the above expression (5),  2N/mijklC  
and  mkl  are respectively known as fourth-order 
elasticity tensor and Cauchy strain tensor. 

In tensor form, the Cauchy strain can be further writ-
ten as follows. 

 ; ;

1

2kl k l l ku u                    (9) 
s

 Further, the Equation (4) first expresses to weighted 
integral form and then follows integration by parts and 
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rearranges the expressions simultaneously in the follow- 
ing form [18]. 

;d d di i i j ij i i i iw u w w f w t 
   

         d   (10) 

The Equation (10) is the weak form of the governing 
equation, where,  and  are known respectively as 
the volume of the domain and boundary of the domain. 
The next step would be the use of Lagrange interpolation 
function and find out the displacement field as per spec- 
tral element approach. Interpolation functions in both 
local (e.g., 

 

1x  denotes for origin and 2x denotes for cer- 
tain positive x  “ l ” distance), and natural (e.g., denotes 
for origin and  for positive “1 x ” coordinate, “ 2x ” 
and  for negative “1 x ” coordinate, “ 1x ”) coordinates 
are as follows. 

, 1 , 1

n n
j j

i i
i j j i j ji j i j

x x

x x

 
 

    

       
        (11) 

We have used Gauss-Legendre-Lobatto (GLL) inter- 
polation points jN

1
 of polynomial of degree  by the

 
relation, j  in each direction of element. The 
expansion of any element is accomplished based on La- 
grange polynomials of suitable degree  constructed 
for  interpolation nodes. The total number of in- 
terpolation points is the product of the number of GLL  

n
N n

n
1n 

points along each direction, 
3

1
j

j

N N


 . The work in-  

terpolation is carried out using Lagrange polynomials 
defined on the GLL points to obtain the progressive re- 
sponse of displacement field. It needs to evaluate the 
displacement, its spatial derivatives, and integrals en- 
countered in the weak formulation in those nodes. With 
this technique, each element of the mesh contains 

 GLL points, where grid points that lie on the 
sides, edges, or corners of an element are shared amongst 
neighboring elements of the domain (e.g., 

 3
1n

3n  , total 
GLL points = 64 Nos.). The displacement field (i.e., 
computations of displacement) as per the SEM can be 
expressed as follows (i.e., similar displacement function 
as uses in FEM formulation, i.e., i iu u ). 

   
1

N

i iu u 


  



              (12) 

where, the interpolation function   in natural coordi- 
nates is, determined by the tensor product of 1-D La- 
grange polynomials as follows. 

       
 

3

1 , 1

j
j

j
j

N
j j

j j j j
j j j


 

 
  

 
     

   

    
 

   (13) 

where,   is the index of a GLL point located at 

1 2, , 3.    For this numerical integration, a point  

 ix x  in a deformed element is mapped to a point  

 j   in the natural element as follows. 

   
1

gN

x x 


  



                (14) 

where,   and gN  are known respectively as
 
a shape 

function, and gN  is
 
the number of geometrical nodes 

x  of an element. The GLL points are used as quadra- 
ture points (integration points) for this numerical integra- 
tion. A quadrature rule is an approximation of the defi- 
nite integral of a function, usually stated as a weighted 
sum of function values at specified points within the do- 
main of integration. The most important issue of SEM is 
the use of GLL quadrature for spatial integration, using 
the same points for interpolation and integration, and 
formation of diagonalized mass matrix. The SEM is a 
continuous Galerkin method, in which the interpolation 
function   is taken as the test function  Substitut- 
ing the value of i

.iw
w   in

 
the Equation (12), we obtain 

the following relation [18]. 

   
1

N

i i iu u w


 



               (15) 

Substituting the value of  iu   in the weak formula- 
tion, this equation turns as follows [17]. 

e e e e eM U K U F                (16) 

In the Equation (16), e  and eU  are known respec-
tively as the acceleration and displacement vectors. 
Similarly, 

U

,e e ,M K  and eF  are known respectively as 
the mass matrix, stiffness matrix and force vector of an 
element, and are given as follows. 

T

T

T T

d ,

d ,

d d

e

e

e e

e

e

e

M

K B CB

F f t
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 





 
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 
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



 

 

where,  and eT   are known respectively as
 
transpose 

and volume of an element. Other notations such as, , B  
and are known respectively as the interpolation func- 
tion matrix, the strain-displacement matrix, and elasticity 
matrix. With these considerations, the elemental mass 
matrix can be further written as follows [18]. 

C

     d
e

eM x x x    


       (17) 

In this relation,   and   vary
 
from 1 to  The 

elemental mass matrix can be further expressed with the 
integration based on GLL quadrature over the GLL 
points as follows [18]. 

.N
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side the elements in which the fields are described. Dis- 
placement function is expressed in each element in terms 
of high-degree Lagrange interpolants (polynomials). The 
integrals are then composed based on GLL quadrature 
points, which are used to form an exact diagonal matrix, 
and are therefore simplified the algorithm. In this formu- 
lation, both integration point and interpolation point lie in 
the same point that ensures the reduction of interpolation 
effort for the displacement and stress computation (Fig- 
ure 1), and leads to fast and exact solution with greater 
numerical stability. 

       
1

N

eM w J      



      


     (18) 

where, w  and  J   are known respectively as the 
integration weights and the determinants of the Jacobian 
matrix evaluated at the th  integration point. The ele- 
mental mass matrix can be further expressed with using 
the orthogonality of the interpolation function in the fol- 
lowing relation [18]. 

  
1

N

eM w J     


   



           (19) 

To address the different degree of soil saturation and 
pore-water pressure, the following relation can be ap-
plied in aforesaid formulation [18]. 

In the above expression,   represents the Kronecker 
delta  that simplifies the mathe- 
matical problem. Therefore, the elemental mass matrix is 
diagonal, which is true for global mass matrix. This fa- 
cilitates an effective time-marching scheme, which is a 
significant advantage of the SEM over the existing FEM. 
A set of global equation can be obtained by assembling 
the elemental equations [18]. 

 1, ;0,ij i j i   j

ij ij ijP                     (22) 

where, w wP h  denotes the water pressure computed 
from simple hydrostatic relation ( w :

 
unit weight of wa- 

ter, : depth of water column). wh

MU KU F                  (20) 2.2. Strength Reduction Technique 

where,  and , ,e
e

U K K e
e

F F  are known re-  The shear strength reduction technique is first proposed 
by Zienkiewicz et al. [19], and is further extended to 
achieve the safety factor for the slope instability assess- 
ment by different researchers (e.g., [20-25]). In this tech- 
nique, an application of gravity loading is followed by a 
systematic reduction in soil strength until failure occurs, 
which is achieved using a strength reduction factor (SRF), 
to the frictional and cohesive components of strength in 
the form of factored frictional f  and cohesive compo- 
nent fc  in the basic equation of tan .c    

 

spectively as global displacement vector, global stiffness 
vector and global force vector ( eK : elemental stiffness 
matrix, eF : elemental force matrix). This formulation 
can only address the time-dependent elasto-plastic prob- 
lems relevant to slope instability in the following form. 

KU F                   (21) 

The scope of SEM is in dynamic slope instability 
problems; however, it offers significant benefits to static 
slope instability from computational point of view. The 
SEM is an elegant formulation of the FEM with a high 
degree piecewise polynomial basis (high-order FEM). 
The major difference between the existing FEM and 
SEM is in the choice of the basis (form) functions in- 

 arctan tanf

f

SRF

c c SRF

   
  

           (23) 

At certain stage of computation, Gauss points undergo 
plastic deformation, which requires a large number of 

 

 

Figure 1. Diagrammatical interpretation of solution procedure for FEM and SEM.   
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iterations for the convergence of the results. We consider 
it as failure stage, and consider factor of safety (FOS) to 
that stage of SRF. 

3. Spectral Element Discretization 

SEM works primarily on hexahedral elements. Each hex- 
element contains at least 20 nodes in 6 faces for nonlin- 
ear problems, however, we have worked on symmetric 
node numbers (GLL points, i.e., , where repre- 
sents the polynomial degree) of 2, 3, 4, 5 etc., in each 
direction (i.e., X, Y, and Z) of the problem domain that 
respectively equivalent to 8, 27, 64, 125 by a simple rela- 
tionship  The governing equations of non-lin- 
ear problems contain high-degree of polynomials or 
power terms to capture the complexities of the problem 
domain. The non-linear solution thus required also de- 
mands huge number of iteration. SEM discretization, as 
shown in Figure 2, has great influence on numerical sta- 
bility. Poor quality mesh creates numerical instability 
(i.e., increase in the computational cost, lack of conver- 
gence, and the inaccuracy of the results). Different re- 
searchers have worked on hexahedral meshing and have 
emphasized on quality meshing for greater numerical 
stability (e.g., [26-29]). The successful application of the 
SEM includes the effective mesh operation, which in- 
cludes descretization and mapping. SEM discretization 
follows five steps: 1) the domain is split into hexahedral, 
2) each sub-domain is mapped into a reference element, 
3) NGL nodes are then introduced, 4) spectral grid points 

are then mapped back into the domain, and 5) whole do- 
main is mapped with spectral grid points (Figure 2). 

1n  n

 3
1 .n

4. An Application to Large-Scale Slope 
Instability Modeling 

As an application to large-scale slope instability, we have 
used a newly released open-source program SPEC- 
FEM3D_GEOTECH along with mesh generating toolkit, 
CUBIT [30] and result visualization tool, Paraview [31]. 
With this implementation, we have ensured the reliable 
results in less and less computational burden using h- and 
p-refinement techniques. We have found a reliable result 
at 3 GLL points and 10,000 hexahedron elements with 
quality meshing operation followed as per the SEM tech- 
nique. The results show that this package works effi- 
ciently to large and complex slope instability problems of 
different degree of complexities. The program efficiently 
uses fully unstructured hexahedral meshes, and shows 
capacity of discretizing the problem domain. We have 
successfully used the program in parallel implementation 
(using Message passing interface, MPI [32] and parti- 
tioning tool, SCOTCH [33]) for Linux platform of 4- 
processor computer, and have dealt with partially and 
fully saturated soil slope condition along with pseudo- 
static seismic condition for vegetated and barren soil 
slopes. In this formulation, we have employed initial and 
final water table to the model so that the program 
counted partially saturated slopes, and water pressure 
acted in the wet region of the slope along with gravity 

 

 

Figure 2. Spectral element discretization technique. 
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load that reduced the soil strength parameters. It consid- 
ers a homogenous soil layer below and above the water 
table, which considered the same material properties with 
or without considering the soil saturation effects. The 
meshing effort accommodates the submerged meshes 
while calculating the hydrostatic pressure. It easily iden- 
tifies submerged nodes of uniform meshing sizes; how- 
ever, it considers inaccurately when the water table 
touched the mesh of sharp corners. With this accommo- 
dation, we have observed a complete ground water fluc- 
tuation effect on soil slope instability, which we have 
used to evaluate the stability of slopes in possible slope 
stability enhancement projects. 

Figure 3(a) shows a typical model for large-scale 
slope instability of slope layer height, (m), slope 
length, (m), slope breadth, (m), and 
slope angle 

5H 
100B 200L 

26.6 
3dr 

(degrees). We have considered root 
depth of (m), and have assumed the water table 

positions to be at every single meter height of the slope 
layer (i.e., 1wh   to 5

 
m). We have considered hori- 

zontal seismic coefficient, hK  of 0.10 g for a severe 
earthquake event as per Terzaghi [34]. Figure 3(b) and 
Figure 3(c) represent respectively the hexahedron mesh- 
ing model in 3D, and domain decomposition into 4 sub- 
domains. Figure 3(d) represents the typical displacement 
field of 4 representative safety factors of 1.05, 1.10, 1.15, 
and 1.20 in case of slope material model of ML along 
with root-cohesion of 20 kN/m2, and water table position 
of 1wh  m. The results show that there is distinct 
change in displacement at SRF of 1.15 and 1.20, which 
indicates the possible safety factor for that computation. 
Computations proceeds in each case of slope instability 
prepared for different soil slope material conditions as in 
Table 1. This computational framework adopts modulus 
of elasticity and poissons ratio E   respectively

 
of

 
11000 kN/m2 and 0.3 for silty sand, many fines (SM-ML) 

 

 

Figure 3. Typical slope instability modeling: (a) schematic diagram of slope model; (b) hexahedral meshing in CUBIT; (c) 
domain decomposition to 4 sub-domains, and (d) displacement field of soil material model ML (as per USCS category) at 
SRF 1.05, 1.10, 1.15, and 1.20. 
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Table 1. Average geotechnical soil parameter of 8 soil types (as per USCS category) adopted by Krahenbuhl and Wagner 
[35]. 

Material Unit weight (kN/m3) Cohesion (kN/ m2) Frictional angle (0) 

Silty sand, many fines (SM-ML) 20.00 0.00 34 

Silty to clayey sand (SM-SC) 21.00 5.00 31 

Clayey sand, many fines (SC-CL) 20.50 5.00 28 

Clayey sand, with high plastic fines (SC-CH) 18.50 10.00 27 

Silt (ML) 19.00 0.00 33 

Silt to clayey soil (CL-ML) 21.00 30.00 15 

Clayey silt (CL) 20.00 20.00 27 

Clay (CH) 17.50 25.00 22 

 
to silt (ML), and respectively of 8500 kN/m2 and 0.325 
for silt to clayey soil (CL-ML) to clay (CH), as per the 
common practice of soil parameters followed in geotech- 
nical FEM. Figure 4(a) shows the comparative instabil- 
ity conditions with 8 soils as per USCS category at water 
table position 1 m from the bottom of soil layer (i.e, 

m). Results show respectively that 3 soil types, 
such as CL-ML, CL, and CH perform higher safety fac- 
tors of 1.4, 1.45, and 1.60; 2 soil types SM-SC and 
SC-CH perform average safety factors of 1.10 and 1.15; 
2 soil types SC-CL and ML perform critical safety factor 
of 1.0, and remaining soil type SM-ML performs unsta- 
ble safety factor of 0.85 with the slope model considered 
(Table 2). Figure 4(b) shows 4 instability cases (i.e., C1 
- C4) of slope model for soil type of ML. Results con- 
firm that slope model performs highly unstable condition 
in case of dry water table and dry and wet season (partial 
and full saturation) seismic condition as well as wet sea- 
son static condition, however, slope performs fairly sta- 
ble result with dry static and dry season static cases (Ta- 
ble 3). Computations show that fully saturated seismic 
soil slope condition is the worst scenario of slope insta- 
bility and slope model increases FOS significantly in the 
case of lowering the water table to a significant depth 
(Figure 4(c), and corresponding Table 4). 

1wh 

Figure 5(a) shows the effect of root-reinforcement on 
FOS. The computation suggests the slope performs con- 
siderable stability with increase in root cohesion in case 
of low level water table position (e.g., m). The 
contribution of root-reinforcement in slope stability can 
only be achieved with fairly stable soil slope conditions. 
The contribution of root cohesion can only be effective in 
dry season static conditions of the slope model consid- 
ered (Table 5). Theoretically, it performs the positive 
effect on slope stability whatever the degree of instability 
existed within the modeled domain; however, the stabil- 
ity greatly depends on geometry of the slope model as 
compared to possible contribution by root-cohesion. Fig- 

ure 5(b) indicates elastic and plastic iterations for elasto- 
plastic modeling. It shows that elastic and plastic parts of 
the curve respectively, which require less and high num- 
ber of iterations for the convergence of the results. We 
observe FOS respectively of 1.10 in first 2 root-cohe- 
sions (i.e., 

1wh 

0c   kN/m2 and  kN/m2) and 1.15 in 
case of remaining root cohesion values (i.e., 

10c 
20c   

kN/m2 and 30c  kN/m2), which indicate the influence 
of slope geometry and soil material properties on slope 
stability than with root-reinforcement, however, its effect 
on slope stability is no longer excluded in the analysis 
because the contribution of root-reinforcement solely de- 
pends on as model. With this accommodation, the safety 
factors thus obtained in each possible case have become 
the best possible measurements to evaluate the stability 
of various stages of landslides. With the application of h 
(i.e., mesh, elemental budgets) and p (i.e., spectral degree, 
degree of interpolation, GLL points) refinement tech- 
niques, SEM performs to be an efficient method over the 
existing FEM. 

5. Conclusion 

SEM formulation allows the simulation of the compli- 
cated stress-strain behavior of soils, which can cope with 
irregular geometries, complex boundary conditions, and 
pore-water pressure regimes in large-scale problem do- 
main of vegetated and barren slopes. With application of 
h- (i.e., mesh, elemental budgets), and p (i.e., spectral 
degree, degree of interpolation, GLL points) refinement 
techniques, SEM performs to be an efficient method over 
the existing FEM. It relates with high-order FEM that 
can capture the complexity of the problem domain, and 
forms the diagonalized mass matrix, which significantly 
reduces the computation burden. As an application of 
SEM, we have utilized a recently released open source 
program SPECFEM3D_GEOTECH, which has capacity 
of simulating progressive failure in 3D for large-scale    
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Figure 4. Displacement versus SRFs: (a) 8 soil material models from SM-ML to CH (as per USCS soil category) in case of hw 
= 1 m; (b) seismic (Kx = 0.1 g) and saturation (hw = 1 m) condition of soil material model ML (as per USCS category), and (c) 
ground water fluctuations effect on slope instability at water table positions, hw, of 1.0 m, 2.0 m, 3.0 m, 4.0 m, and 5.0 m from 
the bottom of soil surface of same material model of ML. 
 

Table 2. Summary of the FOS in different soil material models as per USCS category. 

SM-ML SM-SC SC-CL SC-CH ML CL-ML CL CH 

0.85 1.10 1.00 1.15 1.00 1.40 1.45 1.60 

 
Table 3. Summary of FOS in different instability cases. 

Dry water table (dry) Dry season water table (partially saturated hw = 1 m) Wet season water table (fully saturated hw = 5 m)Soil type 
(USCS) C1 C2 C3 C4 C5 C6 

ML 1.10 0.70 1.00 0.65 0.30 - 

 
Table 4. Summary of the FOS for different water table positions in static condition. 

Water table positions for dry and wet seasons (m) 
Soil type (USCS) 

hw = 1 hw = 2 hw = 3 hw = 4 hw = 5 

ML 1.00 0.85 0.85 0.65 0.30 
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Figure 5. Root-reinforcement effect (soil slope model of USCS soil ML at hw = 1 m): (a) displacement (m) versus SRFs, and (b) 
non-linear iteration (Nos.) versus SRFs. 
 

Table 5. Summary of the FOS for dry season water table (i.e., hw = 1.0 m) in different root-cohesion. 

Wet season water table (partially saturated, i.e., hw = 1.0 m in different root cohesion (kN/m2) 
Soil type (USCS) 

c = 0 c = 10 c = 20 c = 30 

ML 1.10 1.10 1.15 1.15 

 
problem domain in various cases of instability. The com- 
putations have carried out from several possible strength 
reduction factors (SRFs) to find out the reliable FOS 
from trial SRFs on the basis of abrupt change in dis- 
placement. We have successfully performed the role of 
following parameters on slope stability: 1) material pro- 
perties; 2) seismic and saturation conditions; 3) water ta- 
ble positions; and 4) root-reinforcements. Computations 
suggest that root-reinforcement effect contributes signi- 
ficantly on dry season slope stability (static condition). 
The geometry of problem domain along with soil mate- 
rial properties have greater role on slope stability. With 
this simple implementation, it has evidenced that the 
benefit of SEM over FEM approach can be well examin- 
ed in large and complex modeling domains of vegetated 
and barren slopes too. 
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