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ABSTRACT 

The paper presents finite element modeling of crack tip blunting for numerical estimation of fracture parameter of a 
Mode I crack, in weak alloy steel, which is near and normal to the interface of elastically identical but stronger marag-
ing steel. The bimetallic body is subjected to monotonic load in K dominated regime. Crack tip yield zone across the 
interface, treated as Dugdale’s cohesive zone, is isolated from the bimetallic domain and is modeled alone under the 
action of respective cohesive stress over yield zones for obtaining the contribution of mismatch between yield strength 
of the steels in crack energy release rate component, . Effect of far field load on  is found separately 

from a theoretical model. Numerical and theoretical results of  are in good agreement. 
interfaceJ interfaceJ

interfaceJ
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1. Introduction 

The effect of strength mismatch between two un-identi-
cal bodies is felt by the crack tip in parent body as it ap-
proaches the interface body [1] due to crack tip plasticity 
or yield zone spreading over into the interface body. If 
plasticity is modeled by Dugdale’s hypothesis, then the 
part of yield zone in interface body is subjected to clos-
ing cohesive stress different from that acting over the 
part of yield zone in parent body tip due to strength mis-
match between the bodies. As such, the plasticity in-
duced load transfer towards the interface or parent body, 
depending upon the direction of strength gradient across 
the interface, changes the stress field around the crack 
which induces shielding or amplification effects at its tip. 
This phenomenon has also been confirmed with the help 
of finite element analysis [2]. J integral over the path far 
away from the crack tip around the interface provides the 
applied value of J integral, applied , whereas the integral 
over the path near the crack tip in parent body without 
crossing the interface results in J integral at the crack tip, 

J

tipJ . tipJ  is less or more than  depending upon 

the crack approaching a stronger or weaker material re-
spectively. Difference in strength between the bodies 
results in non-homogeneity effect of the mismatched 
interface that is represented by, , or J integral at the 
interface,  [3]. 

aJ pplied

inhc

interface

Previously, Bhat and Ukadgaonker [4], while adopting 
a different approach to simplify the analysis, isolated the 
Dugdale’s cohesive zone from the bimetallic domain of 
elastically identical but strength and plastically mis-
matched steels viz., Mode I cracked ASTM 4340 alloy 
steel joined with ultra strong MDN 250 maraging steel 
and modeled it alone under the effect of cohesive stress 
over yield zones by finite element method. J integral, 1

J

J , 
over the path in yield zones around the interface was 
obtained from the numerical solution whereas J integral, 

2J , representing the effect of far field load at the inter-
face was determined separately from a theoretical model. 
Evaluation of 2J  in such a manner was justified by the 
fact that finite element analysis of the crack under far 
field load is a common exercise which previously was 
undertaken by many researchers with their results 
matching closely with the theoretical estimations. 1J  
and 2J  were superimposed to obtain . The ef-interfaceJ*Corresponding author. 
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fect of crack tip blunting was however not presented in 
that work although it was included in the analysis. Since 
blunting is of significance in the problem, this paper re-
ports the methodology of its inclusion in evaluation of 

interface  for the crack that is near and normal to the in-
terface between the stated steels using Dugdale’s plastic-
ity model. Numerical value of interface  is found to be in 
good agreement with that obtained from the theoretical 
model. 

J

 0v

J

2. Theoretical Model 

Refer Figure 1. As the crack in ductile homogenous 
body is subjected to monotonic far field load, its tip 
blunts by opening in load line direction by distance, 

, from the axis and by extending longitudinally by 
distance,  .   represents the size of, highly stressed, 
process or fracture zone at the crack tip in which the ma-
terial degradation or damage occurs by nucleation of  

voids [5]. The parent crack finally merges with the proc-
ess zone. The value of   is approximately of the order 
of 1.6 to 2 times the value of crack tip opening displace-
ment (CTOD) or 3.2 to 4 times the value of  0v . The 
yield zone surrounds the process zone. The concept holds 
good for the crack in strength mismatched bi-material as 
well although the value of  may not be exactly same as 
that in homogenous body. 

Refer Figure 2. The crack is in the parent body, A, 
with its tip at distance, a, from the interface body, B. Its 
cohesive zone has penetrated into the interface body by 
distance, l, with total length of cohesive zone, b, being 
equal to  a l . The height of cohesive zone above the 
crack axis,  v x , and crack tip stress intensity parameter, 

tipK , under the action of applied stress intensity parame-
ter, , due to far field tensile load and cohesive 
stress 

applK ied

andA B   over cohesive zones in parent and 
interface bodies respectively in small scale yielding (SSY) 
or K dominated regime are given as follows [6]: 

 

      

 
 
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                        

                                   



         (1) 
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              (2) 

    
applieK d  in the case of Dugdale’s cohesive zone across the interface is written as [7]: 

 

   applied

2 2
2 2

π π
A Bl a l

K   


   A

A

                            (3) 

 
A  Y  (Yield strength of body, A) and B BY   

(Yield strength of body, B) in plane stress condition. 

tip a  if ppliedK K B A   and vice versa. Difference 
between tipK  and  depends upon, , and the 
mismatch between 

appliedK
A

a
  and B . Equation (2) and 

Equation (3) are solved by numerical iterative conver-
gence scheme. Input values are applied  and a, 
the output values being  and tip

, ,A B K 
l K . With the known 

value of , the value of is obtained from Equation 
(1). interface  is equal to . At fracture, 
Equations (1)-(3) are rewritten by replacing 

l
 

v a
J     B A v a2

  tip, ,v x l K  
and applied  by  and  K   , ,v x l A

CK
bimetallicC  respec-

tively where 
K

A
CK  is plane stress fracture toughness of 

cracked body A and  bimetallicC  is plane stress fracture 
toughness of the bimetallic body. int  in such a con-
dition is equal to . 

K

2 B A 
erfaceJ

 v a 

)0(2v

λ  

Un-loaded state 

Loaded state

Tip 

 Dugdale’s yield/cohesive zone

Parent crack 

Extended crack 

Process zone

 

Figure 1. Opening and blunting of loaded crack.    
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Figure 2. Cohesive zone across the bimerallic interface. 
 
3. Case Study 

The stated theoretical model is applied to material com-
bination of weak ASTM 4340 alloy steel, A, and strong 
MDN 250 maraging steel, B. Refer Table 1. The results 
presented as Case I and Case II, represent fracture data of 
alloy steel at different positions of crack near the inter-
face of maraging steel when subjected to monotonic load 
in SSY regime under plane stress condition. Material and 
crack data are suitably selected. Refer Figure 3. Stress 
field at the interface of maraging steel in both the cases, 
defined conventionally by,  

   bimetallic
higher order terms

2π

CK
f

a
  , 

reveals nil yielding of maraging steel at and beyond the 
interface. But on viewing the bimetallic domain in com-
parison with the homogenous body of alloy steel, load is 
still transferred elastically to maraging steel due to its 
higher yield limit than that of alloy steel. Elastically 
strained zone in maraging steel under stress less than its 
yield strength is replaced by much smaller cohesive zone 
under the action of larger cohesive stress to make the 
application of the theoretical model possible. However, 
maraging steel shall also yield as the crack grows nearer 
towards the interface. Before undertaking the finite ele-
ment analysis, the results of the selected cases are veri-
fied in the following manner: 

Case I 

 

 

   

2

tip

2
bimetallic

applied

interface

112.5 N mm

134.3 N mm

2 21.78 N mm

A
C

C

B A

K
J

E

K
J

E

J v a  

  

  

    

 

Table 1. Results of case study. 

5

700 MPa, 1800 MPa  

 2 10 MPa, 0.3

150 MPa m

A A B B

A B A B

A

C

Y Y

E E E

K

 
 

   

     



 

Parameter CASE I CASE II 

a (mm) 7.21 6.31 

l  (mm) 1.22 1.53 

 bimetallicC
K   MPa m  163.9 167.8 

 v a  (mm) 0.0099 0.01286 

   2

0 0.08
2

A

C

A A

K
v

E 
   mm  

Y: Yield strength;  : Poisson’s ratio 
E: Modulus of elasticity 

A

CK : Plane stress fracture toughness of cracked body 

 bimetallicC
K : Plane stress fracture toughness of bimetallic body 

Subscript A and B - Alloy steel and maraging steel respectively 
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Alloy steel 

Maraging steel 

AY

BY

Strain at/beyond interface 

Load transfer  

 

Figure 3. Load transfer effect. 
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Case II 

tip

applied

interface

 112.5 N mm

140.78 N mm

28.3 N mm

J

J

J



 

 

 

A
CK  of the alloy steel is assumed as 150 MPa m . 

tipK  is considered as equal to A
CK  in the theoretical 

model due to fracture conditions. The value of l is 
iteratively assumed in Equation (3) till the output applied  

satisfies Equation (2). Final value of applied  equals 

 

K
K

bimetallicC . Since the crack faces a stronger steel 
(weak-strong interface), 
K

 bimetalCK lic  is greater than A
CK .  

The Value of   bimetallic CC AK K  is more in Case II than  

in Case I because the crack is nearer to the interface in 
Case II. The conservation of energy release rate criterion, 

applied tip interface , is satisfied in both the cases. Due 
to stronger interface, tip appl  and  has a 
positive value in both the cases. 

J J J 
iedJ J interfaceJ

4. Finite Element Analysis and Results 

The cohesive zones of both the cases are modeled by 
finite element method. Half of the cohesive zone is only 
considered in each case due to symmetry. , at frac-
ture, tapers from 

 v x
 0v  at crack tip to  at the 

interface, finally reducing to zero at the tip of the cohe-
sive zone. As cohesive zone has minimal lateral dimen-
sions when compared to its length, its height is assumed 
constant as 

v a 

 0v  over distance, a, in alloy steel and 
over distance, l, in maraging steel to facilitate 

modeling. 
 v a

Refer Figure 4. 2D, 8 noded quadrilateral plane 82 
elements are chosen for meshing. Cohesive stress, A  
and B , are applied as pressure in -ve y direction over  

the boundary nodes of cohesive zones in steels A and B 
respectively. Plane stress with thickness option is 
adopted. Since the blunting zone is unsupported and the 
value of   is not exactly known, nodes ahead of the 
crack tip, up to the distance of , are initially 
left unconstrained. Remaining nodes on crack axis are 
constrained in y direction. The mesh model is displayed 
in Figure 5. 

 3.2 0  v

Using the post-processor displacement and stress solu-
tions, the required values are mapped over chosen path, P, 
around the interface to obtain J integral, J1, from the ex-  

pression, 1 d de x y
P

u v
dJ W y T s T s

x x

         [8], where  

eW  is the strain energy density, x x x xy yT n n    and 

y y y xy xT n n    are the traction components with nx 
and ny representing unit vectors in x and y directions and u 
and v as displacements in the stated directions. Since co-
hesive stress has a closing or compressive effect over the 
crack that opposes the effect of far field tensile load, the 
value of J1 is taken with a negative sense. Sample stress 
and displacement plots near the crack tip in cohesive 
zone of alloy steel in Case I and Case II are presented in 
Figure 6 and Figure 7 respectively. The plots at the in-
terface are available elsewhere [4]. Since the material 
properties employed in the analysis are linear in nature, 
very high stresses are found to develop at certain top 
locations in the cohesive zone due to bending caused by 
the unsupported part. This however can be eliminated by 
using the actual elastic-plastic properties of alloy steel. 
However, to avoid these hypothetical values, J integral 
paths are made to pass only through those areas that are 
elastically stressed. Different cyclic paths are tried. Ap-
propriate value of 1J  is obtained on path P that reaches 
right up to the crack tip where displacement values are 
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Figure 4. Finite element discretization of cohesive zone. 
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Figure 5. Mesh model. 
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Figure 6. Stress and displacement plots near crack tip at λ = 0.272 mm of Case I. 
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Figure 7. Stress and displacement plots near crack tip at λ = 0.288 mm of case II.    
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higher. The size of   or the number of unconstrained 
nodes is then increased and J1 is determined in each state 
till 1 2J J . The iterative scheme is finally stopped 
when 1 2J J  because interface  has a positive value 
in the present cases. Average of J1 obtained at all the 
values of 

J

  provides its magnitude. Refer Equation (1). 
Contribution of far field load over, , is determined   v a

by the term  bimetallic

2 2

πCK l
E

 . Integral, 2J , is there-  

fore equal to  

    interface 1 2bimetallic

4 2
,

π
B A

CK l J J J
E

      

In Case I, the condition, 1 2J J , is satisfied at and 
beyond the   of 0.288 mm. At   of 0.256 mm and 
0.272 mm, J1 is -67.54 N/mm and -88.10 N/mm respec-
tively. Average of J1 values is –77.82 N/mm. 2J  is ob-
tained as +100.46 N/mm. interface  given by 1 2J J J  is 
equal to 22.64 N/mm. This value is close to +21.78 
N/mm obtained from the theoretical model. Likewise in 
Case II, 1 2J J , is satisfied at and beyond   of 
0.304 mm. At   of 0.256 mm, 0.272 mm, 0.288 mm, J1 

is –65.0 N/mm, –87.1 N/mm and –104.2 N/mm respec-
tively. Average of J1 values is –85.44 N/mm. 2J  and 

interface  are equal to +115.18 N/mm and +29.74 N/mm 
respectively. Value of interface  is again in good agree-
ment with the theoretical value of +28.3 N/mm. 

J
J

J1 is not found to be path independent. As mentioned 
earlier, appropriate values of this integral are obtained 
over paths reaching up to the crack tip nodes where dis-
placements are higher. On paths terminating at con-
strained nodes, the displacements are less that result in 
reduced value of the integral. As the result,  is 
also not path independent. 

interfaceJ

5. Conclusion 

Blunted crack tip near the interface of elastically identi-
cal but strength and plastically mismatched bodies is 
modeled by finite element method to numerically obtain 
J integral, J1 ,that represents the contribution of mismatch 
in yield strength between the bodies on crack energy re-
lease rate component, interface . Numerical results are 
well validated thereby supporting the feasibility of iso-

lating the cohesive zone from the bimetallic domain and 
modeling it alone under the dual action of un-identical 
cohesive stress over yield zones in parent and interface 
bodies. The approach is simple and reasonably accurate. 

J
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	 of the alloy steel is assumed as .  is considered as equal to  in the theoretical model due to fracture conditions. The value of l is iteratively assumed in Equation (3) till the output  satisfies Equation (2). Final value of  equals . Since the crack faces a stronger steel (weak-strong interface),  is greater than . 
	The value of  is more in Case II than 
	in Case I because the crack is nearer to the interface in Case II. The conservation of energy release rate criterion, , is satisfied in both the cases. Due to stronger interface,  and  has a positive value in both the cases.

