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ABSTRACT 

In this paper, a class of slightly perturbed equations of the form    F x x     x  will be treated graphically and 

symbolically, where  x  is an analytic function of x. For graphical developments, we set up a simple graphical 

method for the real roots of the equation   0F x   illustrated by four transcendental equations. In fact, the graphical 

solution usually provides excellent initial conditions for the iterative solution of the equation. A property avoiding the 
critical situations between divergent to very slow convergent solutions may exist in the iterative methods in which no 
good initial condition close to the root is available. For the analytical developments, literal analytical solutions are ob-
tained for the most celebrated slightly perturbed equation which is Kepler’s equation of elliptic orbit. Moreover, the 
effect of the orbital eccentricity on the rate of convergence of the series is illustrated graphically.  
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1. Introduction 

Symbolic Computation is a modern area of research of 
interdisciplinary character that is placed in the common 
area of action of mathematics and the sciences of com- 
putation. Symbolic computing is concerned with the rep- 
resentation and manipulation of information in a sym- 
bolic form. It is based on defining objects not as numeri- 
cal quantities but as entities that have certain mathemati- 
cal properties. The representation of mathematical ob- 
jects in a symbolic rather than numeric computational 
form has existed since the early days of computer science 
[1]. The 1970s and 1980s have seen the development, 
however, of environments that place a greater emphasis 
on computation with mathematical objects in an implicit 
or symbolic form. A brief history of symbolic mathe- 
matical computation is given in [2] and references 
therein. 

Symbolic and graphical computations utilized with 
nowadays existing symbols used for manipulating digital 
computer programs, they are definitely invaluable for ob- 
taining solutions with any desired accuracy [3,4].  

In the present paper, a class of slightly perturbed equa-
tions of the form 

   F x x     x ,             (1) 

will be treated graphically and symbolically where 
 x  is an analytic function of x. 
Advances in graphical technology have now made it 

possible to interact with information in innovative ways, 
most notably by exploring multimedia environments and 
by manipulating three-dimensional virtual worlds. In 
many situations, the graph offers much more insight into 
the problem than does the algebra. Moreover it makes 
easy to understand and interpret data at a glance and helps 
to make comparisons among many things. For the itera-
tive solution of equations, graphical solution usually pro-
vides excellent initial conditions. 

The above mentioned advantages motivated us intro- 
ducing graphical and symbolic developments to a class of 
slightly perturbed equations that would have some appli- 
cations in the future.  

2. Graphical Computations 
*Corresponding author. Current address: Department of Mathematics, 
Qassim University, P. O. Box 6595, Buraidah 51452, Saudi Arabia. In this section, simple graphical method for the real roots 
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Table 2. Kepler’s equation for som nd Mof the equation 

    0,  1F x  x x       ,         (2)  

will be developed, where   and   are

ctangular system of axes and construct the 
cu

 given and x is 
required.  

Take a re
rve and the straight line whose equations are 

 

 

,y x

1
.y x 






  

                (3) 

The abscissa of their point of intersection is the value 
of

  

 x satisfying the equation; for, eliminating y, Equation 
results (1). Instead of drawing the straight line a straight- 
edge can be drawn between the two points  ,0  and 
 ,      , with 100β   (say). 

cy of thThe accura e computed root (or roots)  0 say  x
may checked by the condition that  0F x  , where   
is of order 10−3 to 10−1 at most. 

The following are two sets of examples, for the first 
set we considered four equations listed together with the 
values of   and   in Table 1. While the second set 
of examples is four cases of the most celebrated slightly 
perturbed equation which is Kepler’s equation of elliptic 
orbit given as  

sinM E e E                 (4) 

where 

   3M t n t
a

                (5) 

The angle M, called the mean anomaly by Kepler, E 
the eccentric anomaly, e the eccentricity of the orbit 
 1e  ,   the gravitational parameter, n the mean 

 a e semi-major axis of the orbit, t the time, and 
τ  is the time of passage through pericenter (the closet 
oint to the focus of the orbit). The solution of Kepler’s 

equation is to find E when M and e are given.  
The four cases of Kepler’s equation are listed i

motion,  th

p

n Table 
2. 

 and 2 give the solutions of the two sets of 
eq

Table 1. Equation (2) for some 

Figures 1
uations mentioned in Tables 1 and 2 respectively. 

 
 ,   and  . 

No  x      

1 0 8sin 0 5cos. x .  x 0.73 1.3439 

2 

Laguerre polynomial: 

  3 21
9 18x x x     

e e a . 

Mo e No 

20 0.34 1 

80 0.56 2 

3 46 0.2 

0.65 87 4 

3. Symbolic Computations 

Kepler’s equation in Lagrange’s approach to solving 
1770s, led to useful expansion of the Equation (1) as   

  , 1.y x y         

  where is to be considered a small parameter-origi- 
nally identified with a planetary eccentricity. Then y 
could be expanded in terms of x and   [5] as 

 
1dn n

n
y x

 


    .     
1

1 ! d n
n

x
n x 


      (6) 

Lagrange’s series is, of course, the Taylor series rep- 
resentation of the root of the functional equation  

  0y x x   . Sufficient conditions for a unique 
root are o  by a direct application of Rouche’s 
theorem for analytical function of a complex variable [6]. 

In what follows we shall illustrate the symbolic com- 
pu

btained

tations by considering the applications of Equation (6) 
on the two sets of equations mentioned in Section 2. 

3.1. Symbolic Computations of the First Set of  

Beca only three terms for the 

Table 1 

use of space limitations, 
symbolic expressions of the functions of Table 1 are 
given without specification of the values of   and  . 

We can write each of these expansions as a third de- 
gree polynomial in   as 

1b b 2 3
0 2 3b b      

The b’s coefficients are listed in for each function. In 
what follows, 

For the function: 0 8sin 0 5cos. x . x  

0b x  

   1 0.5cos 0.8sinb x   x

     2 0.4cos 2 0.39cos sinb x x   x
3 6

6
L x   0.06 5.04 

3 2 xx e  

   
   

3 0.055625cos 0.313125co 3

0.089sin 0.033sin 3 .

b x

x x

  

 
 

s x

For the Laguerre polynomial L3(x)   

0.8 0.9 

4 4cos 2x  0.5 1  .5708
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                         0.8sin 0.5cos , 1.3439x x    , 0.73    3 21
9 18 6 , 5.04, 0.06

6
x x x         

1 2 3 4 5
x

0.5

0.5

y

0.00016F(x)

     

1 2 3 4 5
x

0.5

0.5

1.0

1.5

2.0

y

0.0085F(x) 

 
(a)                                                      (b)         

2 , 0.9, 0.8xe x                                      4cos (2 ), 1   .5708, 0.5x    

1 2 3 4 5
x

0.1

0.2

0.3

0.4

y

0.00813F(x) 

   1 2 3 4 5
x

0.2

0.4

0.6

0.8

y

0.00243F(x) 

 
(c)                                                        (d) 

 

       

Figure 1. Graphical solutions of the functions of Table 1. 

 4
1 cos 2b x  0b x  

 1

1
1 6 3

6
b x          7

2 8cos 2 sin 2b x    x x x

       2

1
6 6 6 6 3

12
b x x x           x x

     10 10
3 40cos 2 48cos 2 cos 4 .b x x   

    

 
3

1
6 6 3

12

126 276 189 4 12 .

b x x x

x x x x

      

      
 

2


For the function x

x

3.2. Symbolic Computations for Kepler’s  
Equation of Table 2 

 

,

Comparing Equation (1) with Equation (4) we get:

; ;   1;  siny E   x M    e y y   

x e  then applying Lagrange’s expansion theorem as given by 
Equation (5) we obtain: 

0b x  

2
1

xb e x   
1

1

d
sin

!

n n
n

n
n

e
u E M M

n M






   ,       (6) 
1 d

it could be shown that [6],  2 3
2 2xb e x x     

   

1

  3 4
3

1
10 3 4 .

2
xb e x x x      

4

1

1

d n

n

M 

 
12

0

d
sin

2
1 sin 2 ,

2

n
n

n
k

k

M

nn k
n k M

k



   



      
   


  (7) 

For the function cos 2x  

0b x  
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(c)                                                           (d) 

Figure 2. Graphical solutions of Kepler’s equations of Table 2. 
 
where [z] is the integer part of z. Using Equation (7) into 
Equation (6) we get: 

 
1

2

,
1 0

sin 2 ,n k M          (8) 

n

n
n k

n k

u e A

 
   

 

  
where 

   
 

1n
k



,

11
2

! !n k

n k
A

k n k

 



.            (9) 

Equation (8) gives the solution of Kepler
series in the eccentricity e with the coefficient 
turned out to be linear combinations of sine func- 

tions of integer multiples of the mean an
shown [5] that is t
the series (8) to represent the unique root of Kepler’s 
eq

e would now cal

written as: 

           (10

’s equation as 
power 
which 

omaly M. It was 
he requirement for 0.66274341e    

uation for all values of M. Laplace is the first to show 
that if e exceeds this critical value, then the series will 
diverge for some values of M. 

Lagrange rearrange the terms in the series (8) to obtain 
a form which w l a Fourier sine series. 
The Fourier coefficients were infinite power series in e 
which converge for all elliptic orbits. This series could be 

1

sim
m

n ,u H  mM


   ) 

where 

   
   

112 22
k

m

me
2

,

m k

m
0 ! !k

J me



    (11) H
m k m k m 

 
 

 nJ z  the Bessel function of the first kind of order n. 
In 1824, Bessel, attempted the direct solution of Ke- 

pler’s equation as a Fourier series and obtained the coef- 
ficients in an integral forms. The power series expansions 
of these integrals produced, of course, the same collec- 
tion of series that Lagrange had obtai
almost fifty years earlier-but, because Bessel made such 

nsive study of these functions for many years, 
they bear his name not of Lagrange. 

From the above discussions we can write u
compact form 

ned [Equation (10)] 

an exte

 in the 

1 sin
j

j jM

je
u C

  
   .             (12) 

 
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Of course, the analytical expression of any of the C's 
coefficients is computed from the truncated series of 
Equation (12). 

In what follows, we shall find the analytical expression 
for the coefficient sC o sin sM  or of se  for the series 
solution of Kepler’s equation for elliptic orbits repre- 
sented by m terms. To do so, let m er) the maxi- 
m

num f the required 
term of the series. 

3.2.1. Series Solution of the Kepler’s Equation in the 

(integ

ber o
um number of terms for the series solution of Kepler’s 

equation and s (integer) m  is 

Form:  i
i

E M C iM
1

sin


  

2 4e e
22, 5

2 6
m C      s

2 4 6 8 10

22, 10
2 6 48 720 17280

e e e e e
s m C         

8 10

8

128 2048
8, 10

315 2835

e e
s m C     

1, 15s m   



3 5 7 9 11

8 80

e e e e e
e 2

13 15

192 9216 7372 88473600

14863564800 3 9438515200

C

e e

    

 

 

32

7

7

16807
7, 7

46080

e
s m C     

3131, 30 0s m C     

3.2.2. Series Solution of the Kepler’s Equation in the 

Form i:  i
i

E M C
1

  e

 1
sin 222, 5

2
s m C M    

8, 15s m   

   

   

8

1 4
sin 2 sin 4

720 45
243 28

sin 6 sin 8
560 315

C M M

1
M M

   

 
 

 11, 15 sins m C M     

7, 7s m   

   

   
7

sin 243sin 3

9216 5120
3125sin 5 16807sin 7

9216 46080

M M
C

M M

  

 

 

10, 30s m   

     

   
10

sin 2 2187sin 616
sin 4

17280 945 8960
2048sin 8 78125sin 10

2835 145152

M M
C M

M M

   

 

 

3131, 3 0s m C0     

 111, 1 sins m C M     

3.3. Graphical Representations of the C's’  
Coefficients 

First: If jC  
pendi

are the coefficients of 
In ap x some graphics show e effect of the 

eccentricity e on the coefficients, that is, the effect of e 
on the convergence rate of the series.  

Second: If 

.je j  
ing th 

are the coefficients of sin .jM j  
C's coefficients 

jC  
Graphical representations of the 

sin jM j  are also given in appendix. 

4. Conclusion 

In this paper, symbolic and graphical computation meth- 
ation ods are developed for the real roots of the equ

  , 1x x          for a class of slightly pertu
tions. Figures 1

rbed 
equa (a)-(d) show the graphical represen- 

f th ns giv n in Table 1. 
Th

ly perturbed 
equation (Kepler le 2 are shown 
by
of the C's

tations o e transcendental equatio e
e literal analytical solution of Kepler’s equation of 

elliptic orbit is described by setting up simple graphical 
representations. The four cases of slight

’s equation) listed in Tab
 Figures 2(a)-(d). While the graphical representations 

 coefficients je  and sin jM , 
Appendix. Th

j
e effect

 are given 
by Figures 3 and 4 in the  of the or- 

n the rate of convergence of the series 

u io

bital eccentricity o
is illustrated graphically. One merit for applying graphi- 
cal solution is providing excellent initial conditions for 
iterative sol t ns of equations.  
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Appendix 
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Figure 3. Graphical representations of the C's coefficients je j . Note that, the series diverge for e ≥ 0.7 as proved by 

Laplace.  
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Figure 4. Graphical representations of the C's’ coefficients sin jM j . 


