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ABSTRACT 

The current approach of a system of two bodies that interact through a gravitational force goes beyond the familiar ex- 
positions [1-3] and derives some interesting features and laws that are overlooked. A new expression for the angular 
momentum of a system in terms of the angular momenta of its parts is deduced. It is shown that the characteristics of 
the relative motion depend on the system’s total mass, whereas the characteristics of the individual motions depend on 
the masses of the two bodies. The reduced energy and angular momentum densities are constants of motion that do not 
depend on the distribution of the total mass between the two bodies; whereas the energy may vary in absolute value 
from an infinitesimal to a maximum value which occurs when the two bodies are of equal masses. In correspondence 
with infinite possible ways to describe the absolute rotational positioning of a two body system, an infinite set of 
Laplace-Runge-Lenz vectors (LRL) are constructed, all fixing a unique orientation of the orbit relative to the fixed stars. 
The common expression of LRV vector is an approximation of the actual one. The conditions for nested and intersect- 
ing individual orbits of the two bodies are specified. As far as we know, and apart from the law of periods, the laws of 
equivalent orbits concerning their associated periods, areal velocities, angular velocities, velocities, energies, as well as, 
the law of total angular momentum, were never considered before.  
 
Keywords: Two-Body System; Laplace-Runge-Lenz Vector; Nesting Orbits; Laws of Equivalent Orbits; Total Areal 

Velocity 

1. Introduction 

A simple approach of the two-body problem based on 
equivalent characterization of an orbit reveals some in- 
teresting new features that either were overlooked in the 
existing expositions [1-3], or did not appear at all. The 
relative motion can be characterized by a set of constants 
of motion in which the individual masses appear only 
through their sum. The conditions for various types of 
nesting or intersecting elliptic orbits of the individual 
gravitating particles are determined in a transparent way. 
Equivalent orbits, which by definition have the same 
semi-latus rectum and eccentricity, are realizable for dif-
ferent total masses provided the associated relative ve-
locities are proportional to the square root of the total 
mass.  

The origin of LVL vector [4-9] is highlighted through 
extracting from the eccentricity, which is a function in 

the energy and angular momentum reduced densities, and 
infinite set of vectors each of which provides the same 
information about the orbit. In passing, we mention that 
the LRL vector has an interesting history extending for 
more than three centuries [4,10,11,13-18], but because it 
was not well-known by physicists, it was rediscovered a 
number of times.  

We finally derive a set of laws for equivalent orbits 
that relate their relative velocities, periods, areal veloci- 
ties, and energies to the corresponding total mass. As far 
as we know, apart from the law of periods, these laws 
were not stated before.  

In a subsequent work we show that the Galileo’s sim- 
ple observations concerning the free fall cannot be ele- 
vated to a level of a principle, and highlight the contra- 
diction between the predictions of the Newtonian me- 
chanics and general relativity, with the former being not 
a true approximation to the latter.  
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2. Basics of Two-Body Central Force  
Problem  

Consider a closed system of two particles of masses 
 interacting through a force that 

depends only on the separating distance r. We take our 
inertial frame the center of mass frame S and denote the 
relative position vector of  with respect to  by  

1 2 1 2and  m m m m  ,

2m 1m

2 1. r r r                 (2.1) 

The relative velocity and acceleration are  

2 1 2 1(i) , (ii) ,   v v v a a a        (2.2) 

respectively (Figures 1 and 2). Since  

1 1 2 2 0,m m r r                (2.3) 

we have 

1 1 2 2 1 1 2 2(i) 0, (ii) 0,m m m m   v v a a    (2.4) 

and the Newton’s second law of motion 12 21 0 f f , 
where  12 1 1 21 2 2,m m f a f a ,  is the force acting on 
the first (second) particle, is automatically satisfied. 
From Equations (2.2ii) and (2.4ii) we have 

1 2

2 1

,
m m M


 

a a a
              (2.5) 

where 1 2M m m   is the total mass of the system. 
Multiplying both sides with  we obtain  1 2 ,m m

1 1 2 2 ,m m   a a a             (2.6) 

where  

1 2 2
2

1 2

,
m m m

M m
m m M

   


         (2.7) 

is the reduced mass of the system. It can be easily seen 
that, with M is fixed, the reduced mass is an increasing 
function in 2  with a minimum value ,m 2m   for 

 and a maximum value 2 ,m M 4M   for 2m   
m1. The positions and velocities of the two particles sat- 
isfy relations similar to (2.5) and (2.6), namely 

1 1 2 2 ,m m   r r r             (2.8i) 

1 1 2 2 .m m   v v v            (2.8ii) 

From (2.6) we have  

 12 21 ,r   f f a f          (2.9) 

where 

     21 , and .r r f r  f f I I r r    (2.10) 

2 1 r r r  

The relative momentum is defined by 

1 1 2 2 .m m   p v v v            (2.11) 

The Kinetic energy of the system is  

 
2

2 2 2
1 1 2 2

1 1
.

2 2

p
T m v m v v

2
          (2.12) 

The work done by the internal forces on the particles 
when displaced by  respectively is  1d an d dr 2r

12 1 21 2

2

d d d

1
d d .

2

W

v T





 d  

   






f r f r a  r

      (2.13) 

The central force is derivable from the potential  

    dV r r f r r     f r d

d .

,     (2.14) 

and hence 

 d dV V f r d T       r       (2.15) 

As a result   0,d T V   and the mechanical energy 
E T V   is conserved. Because d d 0,t   L r f the 
angular momentum about CM, 

1 2 1 1 1 2 2 2

,

m m


     
 

L l l r v r v

r v
      (2.16) 

is conserved at its initial value 0L . It follows that the 
constant vector 0L  is always perpendicular to , and 
hence, both particles move in a plane through CM and 
perpendicular to 0

r

.L  Employing polar coordinates 
 ,r   in the plane of motion with  is the polar axis 
and  is its unit vector, the equations of the relative 
motion (2.9) take the form  

Cx
i

   2(i) ,

(ii) 2 0,

r r f r

r r

 

 

 

 


 

         (2.17) 

where  ˙  denotes differentiation with respect to time. 
Equation (2.17ii) yields a first integral 2h r L   , 
which is a constant of motion. The available constants of 
motion: 

   2 2 22 2E r r V r ,          (2.18i) 

2 ,h r L               (2.18ii) 

express the conservation of the total energy E and the 
angular momentum 2r    L h k  respectively, where 
k is a unit vector perpendicular to the plane of motion.  
 

 
Figure 1. Position of m2 relative to m1 in CM system. 

 
 

a

a1 a2  

Figure 2. The relative acceleration for m1 > m2. 
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3. Motion under a Gravitational Force  

For the gravitational force    2
1 2 ,r Gm m r f  I  

where G is the gravitational constant, the relative accel- 
eration is, by (2.9), 

 2 .GM r a  I              (3.1) 

At an explicit discrepancy with Galileo’s law of free 
fall, which asserts that the acceleration of a freely falling 
particle in a gravitational field is independent of its mass, 
the latter form shows that the relative acceleration de- 
pends on the sum of the masses of the gravitating parti- 
cles. Equations (3.1), in which the masses of the particles 
appear only through their sum, show that all character- 
istics of the relative orbit do not depend on how the total 
mass is divided between the two particles. However, the 
absolute acceleration of a particle, or its acceleration in 
the frame of the center of mass  depends only on the 
other particle’s mass as it is evident from (2.5) and (3.1). 
Indeed,  

,S

  2 2
1 2 2 1,Gm r Gm r  a I a  .I      (3.2) 

Here, the constants of motion (2.18) take the forms  
2 ,h r L                (3.3) 

2
2

2

2
2 2

h GM
E r

rr
     ,         (3.4) 

where we set in (2.18), 1 2V Gm m r GM r    . The 
quantities   and h represent the energy and angular 
momentum of the system per unit reduced mass; they 
will be called the reduced energy and angular momen- 
tum densities respectively.  

The orbit of the system is determined by a well-known 
method [1-4],  

  ,
1 cos p

P
r

e  


 
           (3.5) 

where p  is a constant of integration that depends on 
the choice of the polar axis (i.e. the zero of ;  it has 
nothing to do with the zero of time), and  

 1 22 2(i) , (ii) 1 2 ,P h GM e h G M   2 2   (3.6) 

are the semi-latus rectum and the eccentricity of the or- 
bit. 

By a suitable choice of a new polar axis we may take 
0p 

S
 in (3.5), and by (2.8i) the orbits of the particles 

in  are given by  

     1 2
1 2, ,

1 cos 1 cos

P P

e e
 

 
  

 
r I r I   (3.7i) 

where 

2 1
1 2

1 2

, .
m m

P P P P P
m M m M

4. The Relative Orbit and Individual Orbits 

The trajectory  r r   of the system, or the relative 
orbit, can refer to the trajectory of either particle, say m2 
 1 ,m  in a frame  1 2s s  co-moving with  21m m  and 
not rotating relative to the fixed stars, or in the frame S, 
in which case the measured length is  
      ,r1 2r r     and CM is the origin of the polar 

coordinates. The relative orbit in S in then the abstract 
locus  r r   with focus at the CM. This orbit is 
merely the collection of the pairs  ,r   at various in- 
stants of time, referred to a polar system with origin at 
CM.  

The relations (3.7) determine the orbits of the particles 

1  and 2  in the center of mass’ frame  It must 
be noted that 
m m .S

  in (3.7) refers to the polar angle of the 
radius vector 2  relative to the polar axis , and it is 
also the polar angle of the radius vector 1  with the po- 
lar axis 

,r Cx
r

Cx  which is directly opposite to the axis .  Cx
Assuming 1e  , the latter two relations show that 

each particle traces out an ellipse with the same eccen- 
tricity but with different semi-latus rectums, and the par- 
ticles are radially opposite to each other with respect to 
one focus. In other words, each radius vector makes the 
same angle   with the polar axis of the corresponding 
trajectory, with the polar axes of the two trajectories are 
directly opposite to each other. The two ellipses have one 
common focus at the center of mass, while the other foci 
are on two opposite sides on the polar axis x Cx  (Fig- 
ure 3). The case of  is drawn in (Figure 4).  1e 

In one polar system of coordinates with polar axis , 
the simultaneous positions of the particles at their tra-
jectories are expressed by the equations  

Cx

 
 

 2 1
1 2, ,

1 cos π 1 cos

m M P m M P
r r

e e 
 

  
       (4.1) 

with   and π   are the simultaneous polar angles 
 2r  and 1r  respectively. We note that while there is 

no restriction on
of

   for elliptic orbits, π   for para- 
bolic orbits, and    1 1cos 1 cos 1e e       for 
hyperbolic orbits. 

Because they have the same eccentricity e, the orbits 
of the system and its components (i.e.  and ) are  1m 2m
 

 
P

 
        (3.7ii) 

Figure 3. Nesting elliptical orbits. 
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Figure 4. Unbound orbits always intersect. 
 
the same type of conic sections. By (3.10ii) the orbit’s 
type is determined by the quantity 

2
2 1 2 ,

h
e

GM
     
 

                 (4.2i) 

2 2
2

2

2
.

h h M
r

GM rr

      
     

 G 
    (4.2ii) 

Depending on   (or E) the orbit is a hyperbola if 
0,   a parabola if 0  , an ellipse if 0  , or a  

circle if  i.e. 0,e   21
.

2
GM h   

2

 The knowledge  

of the relative orbit and the mass of each particle deter- 
mines the orbit of each particle in S by (3.7). Conversely, 
if the trajectory of each particle is known in S, the sys- 
tem’s trajectory is determined by .  1r r r 

5. Intersection of the Particles’ Orbits  

We determine here a necessary and sufficient condition 
for the intersection of the orbits of the two particles in the 
center of mass’ frame S. The intersection of the orbits 
can happen if and only if there exists a value of   for 
which  

   2 1 π .  r r             (5.1) 

If such a value exists then there exists another value, 
namely   , which corresponds to another intersection, 
i.e.    2 1 r r π .  


 Substituting from (3.7) in (5.1) 

and solving for cose   we obtain the equation  

 1 2cos ,e m m   M          (5.2) 

in which 1 2  are known. This equation may or 
may not have solutions for 

, andm m e
.  The orbits intersect if the 

latter equation admits solutions; otherwise they do not.  
The special case  which corresponds to a 

circular motion, reduces (5.2) to the impossible for 

1  and to an identity in 

 0 ,e  

2m m   for 1 2  Thus, 
for  the particles trace out circles with a common 
center; these circles do not intersect if the particles’ 

masses are different and coincide if they are equal (Fig- 
ure 5).  

.m m
0,e 

We proceed now to consider the general case in which 
0.e   

Necessary and Sufficient Condition for Intersection: 
As 0,e   Equation (5.2) yields  

 1 2cos ,m m eM             (5.3) 

which has solutions if and only if  

1 2.eM m m                (5.4) 

We distinguish the following cases 
1) If (5.4) holds the two orbits interest at two points:  

1 1 2cos .
m m

eM
    

 

           (5.5) 

This applies to all types of orbits, bound or unbound. 

For 1 2 ,m m  
1
π,

2
    and the radii vectors of the 

points of intersection are perpendicular to the polar axis.  
2) For unbound motion the inequality (5.4) holds 

strictly, since , and we have always two distinct 
points of intersection (Figure 4). Because in this case the 
argument of the arccosine is strictly less than 1, 

1e 

0   
cannot be a solution, and the orbits of unbound motion 
cannot be tangential.  

3) There can be no intersection of orbits if 1eM m   
m2. The latter condition may hold only in bound motion 
(elliptic orbits), where 1.e   In this case the orbit of the 
heavier particle lies entirely inside the orbit of the lighter 
one (Figure 3).  

4) Assuming 1 2 ,m m  Equation (5.3) admits the so- 
lution 0,   which corresponds to tangential orbits 
(Figure 6), if  

 1 2 .e m m M               (5.6) 

Since the value prescribed for e by the last equation is 
less than 1, tangential orbits can occur only in bound 
motion. 

5) When the inequality (5.3) holds strictly (i.e. with 
(>)) there exist two intersections specified by (5.5) (Fig- 
ures 4 and 7). 

In the special case  1 2 ,m m m   the points of in-  
 

 

Figure 5. The case (e = 0) corresponds to concentric circles 
for m1 > m2 (left), and to one circle for m1 = m2 (right). 
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Figure 6. Orbits can be tangential only for  1 2e m m M  . 

 

 

Figure 7. Intersecting elliptic orbits. 
 

tersection occur for 
1
π,

2
    i.e. when the radii vec-  

tors are perpendicular to the polar axis (Figure 8). 
6) When the mass 1  is dominant m 1 2m m , the 

condition of intersection (5.4) cannot hold for bound mo- 
tion. This implies that orbits in bound motion do not in- 
tersect if one mass is dominant. In this case the orbit of 
the lighter mass encircles the orbit of the heavier one. 
This persists for one dominant mass and many minor 
lighter masses whose mutual interactions can be ne- 
glected in comparison with the magnitude of their inter- 
action with the dominant mass. In this case the orbit of 
each minor particle does not intersect the orbit of the 
dominant mass. An example of this is the solar system.  

6. Orbit’s Characterization 

For simplicity we assume that the polar axis is chosen to 
pass through the perihelion, and hence 0p   in (3.5). 
The orbit is then determined in the plane of motion by a 
set of two parameters  , ,P e  which can also refer to 
any orbit in any plane of motion. i.e., we may look on 
one orbit as a representative of a class of equivalence of 
orbits, with two orbits are equivalent if they have the 
same eccentricity and semi-latus rectum. It is clear that 
the elements of the class of orbits  ,P e  result from 
one orbit through rotation, inversion, or translation. The 
latter fact follows from the homogeneity of the space 
with respect to any closed system and hence its isotropy 
[19]. 

Equivalent Characterization: At an arbitrary point of 
the system’s trajectory, both components of the relative  

 

Figure 8. The radii vectors at the intersections are perpen- 
dicular to the polar axis when m1 = m2. 
 
velocity I Jv v v I J  in the moving system  ,I J  
are non-zero in general. At the perihelion, pr r , the 
radial velocity vanishes  0 ,Iv r   and the velocity is 
purely tangential; it is given by .p p  Insert- 
ing these values in (3.6i) and (4.2ii) yields  

pv r h r 

22
2 ,p
p

vh
P r

GM GM
                (6.1) 

2 22
2 2

2 2 2 21 .
22 2p p

p
p

r vh P
e v

GMG M M

MG

rG

      
 

 


   (6.2) 

Assuming that the motion is in the positive sense and 
solving for and h   we get  

 2 1
, .

2

GM e
h GMP P


          (6.3) 

The characterization  ,p pr v  is based on the 1-1 
correspondence 

   (i) 1 , (ii) 1 ,p pr P e v e GM P        (6.4) 

in which the first equation follows from (3.5), and the 
second from 

2 1.p pe r v GM                (6.5) 

Equation (6.5) results from calculating e from (6.4i) 
and substituting for P from (6.1) in terms of pr  and 

pv . 
We have found therefore the explicit forms of the 1-1 

correspondences 

     , , ,p p ,P e r v h           (6.6) 

given by (6.3) and (6.4). The latter correspondences can 
also be obtained on noting that the Jacobian determinant 
in each case is not zero for the allowed range of variables. 
Excluding the pair  , ,P h  each pair obtained from the 
quantities  

 , , , , , ,p pP e r v h             (6.7) 

is sufficient as any of the pairs (6.6) to determine the 
orbit. Moreover, given a pair the remaining pairs are de- 
termined uniquely.   

Any trajectory  ,P e  can be realized by pr  given 
by (6.4i) and  
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 1
.p

p p

e GMPGM
v

r r


        (6.8) 

Since  any distance 0,e  pr  can be made a com- 
mon perihelion for a family of trajectories simply by let- 
ting pv  varies in the range 

.p pv GM r               (6.9) 

According to the value pv  at ,pr  the following 
types or orbits occur:  
 Circular Orbits: Setting 0e   in (6.8) we find that a 

circular orbit is realized if  

.p pv GM r             (6.10) 

 Elliptical orbits occur for 0 1,e   which by (6.8) is 
equivalent to:  

2 .p pGM r v GM r  p       (6.11) 

 A parabolic orbit occurs for 1e  , in which case (6.8) 
yields  

2 .p pv GM r           (6.12) 

 Hyperbolic orbits occur for 1,e   which is equiva- 
lent to:  

2 .p pv GM r              (6.13) 

The Escape Velocity: The escape velocity is the 
minimum relative velocity at the perihelion which yields 
an unbound orbit; it is given by (6.12). Fixing pr  and 

pv  but changing the total mass slightly in the vicinity of 
the value 2 2p pM r v G  can change the orbit from 
bound to unbound or vise-versa. This applies also to 
changing the mass of one body while keeping the other 
fixed.  

Kepler’s Third Law: The period   of a bound mo- 
tion is derived as usual [1-3]  

3 22π ,a GM             (6.14) 

where a is the length of the semi-major axis of the el- 
lipse. 

7. The Laplace-Runge-Lenz Vector 

The solutions of the equation of motion (3.1) contain six 
arbitrary constants which are determined by the initial 
conditions     0 0 0 0,t t r r v v

   , , 1, ,6 ,i  

. Since any constant of 
motion 1  is a function of the coordinates and veloci- 
ties, there can be no more than five functionally inde- 
pendent constants of motion [20], because if there were 
six of them then the solution of the six equations  

i i  for the coordinates and ve- 
locities yields them all constants, which means that there 
is no motion, or no force. For central motion, four con- 

stants of motion are already available, namely, 

C

 r vC f

and h  
(or L and E) which determine the plane of motion, the 
eccentricity, and the latus rectum of the orbit.  

A given pair  ,P e , (or  , p pr v ), determines a triple 
infinite family of orbits. These correspond to determine 
the plane of motion   through CM by two parameters, 
which are the components of its unit normal (unit of an- 
gular momentum), and to determine the direction of the 
perihelion vector 21p p  in  by one parameter, 
which is the angle 

m m 
p  it makes with the polar axis. Al- 

ternatively, an orbit is determined by the perihelion vec- 
tor 1 2 ,p p p prm m I  and the relative velocity vector 

p pv J  in the plane Π  perpendicular to the perihelion 
vector. However, with pr  is given, the perihelion vector 
(or pI ) is determined in the 3-space by two parameters, 
say  ,  ; and with pv  is given, the relative velocity 
vector (or pJ ) is determined by one parameter in the 
plane Π .  Thus we need to fix five parameters, or initial 
conditions, to realize one specific orbit; the sixth initial 
condition corresponds to a zero radial component of the 
relative velocity at the perihelion. In our previous treat- 
ment, an orbit  ,P e  (or equivalently  ,p pr v ) refers 
to that in the given plane of motion and passing through 
the given perihelion  , .p pr   Without specifying p  
we still have a one parameter family of equivalent orbits 
 Γ | ,p p pr v  in the plane of motion, enveloped by a 

circle of radius pr  which is formed by their perihelions. 
It is understood that the parameters that follow (|) are 
held constant.  

If we restrict our discussion to the plane of motion 
then only four initial conditions  0 0  are 
involved, and only three parameters, say 

0, , Ir v 0, Jv
 , ,0,p p p , 

are necessary to determine the orbit. To set up the link 
between the three parameters necessary to determine an 
orbit and the constants of motion we revert to the 1-1 
correspondences (6.6) which are valid for a fixed M. Be- 
cause of these correspondences, the same one-parameter 
family of orbits 

r v

 Γ | ,p p pr v  determined by  ,p pr v   

or  ,P e  is also determined by  ,h  i.e.  hΓ , p   

   Γ , Γ ,p p p .P e r v  p  This means that even know- 
ing the energy and the angular momentum vector does 
not determine the orientation of the orbit in the plane of 
motion, and that any additional independent constant of 
motion can only specify the axis of symmetry of the orbit, 
or .p  We shall see now that the Laplace-Runge-Lenz 
vector [4-9] plays the role mentioned in the latter state- 
ment, and moreover, there exist an infinite set of LRL 
vectors.  

To see how the familiar LRL vector emerges we con- 
sider the equality  

 d
,

dt
  a h v h              (7.1) 

which is valid for any central force since 2r h k  is 
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conserved. As long as the force of interaction obeys the 
inverse square law we have 

2

d
.

d

GM
h GM GM I

tr
     a h I k J     (7.2) 

Comparing the latter two expressions we obtain  

 d
0,

d
GM

t
  v h I           (7.3) 

which means that the vector field 

,GM  A v h I             (7.4) 

defined on every orbit, is constant on each orbit; it is 
called the LRL vector.  

Another LRL vector can be obtained from the inverse 
square law (3.1):  

2

d
,

d

GM GM GM

t hr
    v

I I
d

dh t

J
    (7.5) 

which shows that the vector field  

h GM B v J               (7.6) 

is also a constant of motion.  
For the time being we adhere to the familiar LRL vec- 

tor A. It is clear that the vector A is perpendicular to L, 
and thus is in the plane of motion    , ,I J i j . The 
analytic expression of this vector is  

 
2

.
h

r r h GM GM hr
r


 

       
 

 A I J k I I J  (7.7) 

Taking the inner product of A and v, we obtain  

,GMr   v A                (7.8) 

which shows that the vector A is perpendicular to the 
velocity (and to the orbit) only at the perihelion. The 
length of LRL vector, 

2
2 2 2 2

2

2 2 2

2

2 ,

h GM 2A h r G M
rr

h G M

        
   

 


      (7.9) 

depends on the system’s energy and angular momentum 
reduced densities. By the first equality in (6.2), 22 h   

 and hence  2 2 2 2 2 ,G M G M e
2 2 2 2A G M e               (7.10) 

The vector A which is constant on an orbit has the 
same value it takes at the perihelion of that orbit: 

,pGM GMe   A v h I I         (7.11) 

where pI  is the value I at the perihelion, i.e.  
 , p p pr I I . We could have obtained the latter rela- 

tion from (7.7) through setting the second term equal to 
zero at the perihelion and employing (6.5):  

 2 .p ph r G  M GMeA I I


 The vector A doesn’t ex- 
ist for  and when exists , it is parallel to 

the perihelion vector. 

0,e   0e 

The familiar definition of LRL vector is obtained by 
multiplying the right-hand side of (7.4) by 2 : 

 

2

21
1 2 .

GM

GM m m




  

  

A p L I

p L I
       (7.10) 

This vector is constant at the value  
 22 1

1 2 .p pGMe GM m m e I I  For ,  1 2m m
1

,p4
GMeA I  and when m1 is dominant, i.e.,  1m M ,  

we get the commonly used form of LRL vector:  
2 2
2 2 .pGMm GMm e   A P L I I       (7.11) 

The utility of the LRL vector in determining the orbit’s 
orientation comes from the local information it provides. 
i.e., any observations of v  and  and consequently ,r
 h r v  are sufficient to determine the perihelion (and 

the orbit). If the calculated value of A is along a unit 
vector ,pI  then starting from the focus CM we know in 
which direction the perihelion exists and where. For a 
given h the motion takes place in the plane    , ,I J i j  
that contains the CM and is perpendicular to h; A is 
along the perihelion vector in this plane. Moreover, and 
since e is expressible in terms of and h , the only new 
information that A provides and not provided by h and 
  is contained in pI , which is determined by the angle 

 , ,p  pI i  it makes with the polar axis. To see how 
A  injects this new information in an orbit, we first de- 

termine the relation between the coordinates of a point of 
an orbit on which the vector field A  takes the value 

.p pGMeA I  The radial component of A  is on one 
hand the spherically symmetric field 

 

 
21

,

I GM

h
GM GM

r r

    

     

I A v h I

r v h
     (7.12) 

and on the other hand  

 cos , ,p pGMe GMe   I A I I I I p     (7.13) 

Equating these two expressions yields  
21 ,pr e h GM P     I I         (7.14) 

which is a surface of revolution spanned by all orbits 
 ,e P  that have the same perihelion vector pI ; it is an 
ellipsoid of revolution if , a paraboloid of revolu- 
tion if 

1e 
1e  , and a hyperboloid of revolution if  

If h is known, the orbit is determined by the intersection 
of the surface (7.14) and the plane of motion. Thus the 
constants of motion h and A determine a unique orbit 

1.e 

 1 cos pr e P  .            (7.14) 

Conversely, we prove here that the LRL vector field is 
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implied by the orbital motion, which endows it with one 
value on each possible orbit. Let  p pI I  be the 
value of I at the perihelion. The LRL vector is obtained 
through the following implications resulting from the 
orbit equation (7.15)  

   21 cos prGM e h h          h h r v   

  on the orbitpGMr e        I I I r v h I  

0 on the orbitpGM eGM        r v h I I r  

at all orbit s points.pGM eGM   v h I I ’  

Thus, the vector A is constant on an orbit (7.15) at its 
value at the perihelion, namely .peGMI   

The latter results can be rephrased as follows: pro- 
vided the system total mass is fixed and the plane of mo-
tion is given, there corresponds to each orbit  
 , ,p p pr v   a unique value p p  of the LRL 
vector A. And conversely, there corresponds to each 
value 

GMeA I

pA  of A a unique orbit with pI  pointing in the 
direction of its symmetry.  

8. An Infinite Set of LRL Vectors  

Any unit vector pI  can be chosen as the axis of sym- 
metry of an orbit  ,e P .  The mystery of LRL vector is 
resolved if we can derive from pGMeI  a vector con- 
stant of motion. This can be achieved if e can be ex- 
pressed as a norm of a vector function in the coordinates 
and velocity components, and possibly in some constants 
of motion. The Equation (4.2i) (or (7.9)) written in the 
form:  

   
2

2 2 2 2 2 2
2

2
2 8

h GM
GMe h G M h r

rr


 
      

 
 .1 �

 
22

22 2 h
G M GM hr

r

 
   
 

  

provides the clue. The constant of motion on the furthest 
right-hand side is a function of the constants of motion 

 It is clear that each of the vectors   , .h


2

,p

h
GM hr GMe

r

 
    
 

A I J I     (8.2a) 


2

,p

h
hr GM GMe

r

 
    

 
 B I J J



    (8.2b) 

fulfills our quest, and is a constant of motion. The con-
stancy of A was already proven, while the constancy of B 
follows from the fact, 

, or .    B k A A k B         (8.3) 

The vector B is constant at the value pGMeJ  which 

it takes at the perihelion  ,p pr  . Other possible fac- 
torizations of e, which are not just different by a sign 
from the given ones, are not constants of motion. By (8.2) 
the vectors A and B preserve their forms under rotations 
or translations; a fact which promotes a search for a co- 
ordinate independent expressions for A and B. Indeed,  

 
,

h
G

r

h

r

r r

   
 

  


 

I

J

J

I

h r M

h r GM

GM

GM

  

   


  

  







A J I

k I I

h I I

v h

         (8.4) 

and the vector A, which is a constant of motion at an or- 
bit, is of covariant form under rotation, inversion, and 
translation. The covariant expression for B is 

 
   

GM

GM

h GM

   

    

 

B k v h I

k h v k v h J

v J

         (8.5) 

Since ,p pGMe GMe  A I B J


 the only informa- 
tion B adds to that given by ,h  is contained in ;pJ  
the directrix of the orbit is along ,pJ  which is perpen-
dicular to the perihelion vector. Indeed,  

  1
, π ,

2p  
 

J i p

  and B indicates that the directrix  

is at this angle with the polar axis, or the perihelion vec-
tor is at an angle p  with the polar axis. We may arrive 
to the same result through taking the inner product of J 
by both expressions of B on the claimed orbit:  

 cos ,p p   J J  

and  
2 .r h r GM      J B I A r A   

Equating these expressions we get the same orbit (7.14).  
Starting from A and B we may construct an infinite set 

of LRL vectors, with each vector has a meaning similar 
to that of A. Indeed, any vector of the form  
where 

a b C A B
 ,a b  is constant on an orbit  , , pP e  

  , ,p p pr v   at the value  p pI J
a

GMe a b
2 2 1,a b 

C . Without 
loss of generality we take  and set   
cos , sinb  , where   is the angle that C makes 
with A, i.e., C results from A through a rotation by an 
angle .  Noting that 

0 ,p p       A J B I I J J I  

 cos ,p p p     I I J J  

we get 

    2a b a b h r GM      A B I J I A  
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     cos ,p p pa b a b      I J I J  

which yield the same orbit (7.15). This result could be 
foreseen through the equivalence  

 .p pGMe GMe a b    pA I C I J  

It is clear that   2, 0, andC A B A     A B A B k.
Starting from A alone we may construct an infinite set 

of LRL vectors each of which plays the same role as A. If 
O is an arbitrary orthogonal  3 3  matrix, then each 
vector  is a constant of motion   A OA

  d d dt A O d 0 .t A  The equivalence,  
  ,A A OAp   A p  shows that the same informa- 
tion concerning the orientation of an orbit is contained in 
an LRL vector as in its transforms. In particular the vec-
tors B and C result from A through rotations by π 2  
and   respectively. 

9. Equivalent Orbits  

We have already seen that given the plane of motion, (or 
given ˆ hh h ), the pair  ,p pr v  determines an 1-pa- 
rameter family of equivalent orbits  ˆΓ | , ,p p pr v h , 
enveloped by a circle pr r  in the plane of motion. It is 
understood that all quantities which succeed the vertical 
bar are held as constant parameters, whereas p  is a 
free parameter whose values distinguish between the 
members of this family. Letting  vary we obtain a 3- 
family of equivalent orbits 

ĥ
 ˆ, |Γ ,p p pr v

.
h  enveloped 

by the spherical surface pr r  
Given pv  and the perihelion vector p pr I  in the 3- 

space there exists a 1-parameter family of equivalent 
orbits  Γ | ,p p pr vI ,  with the rotation angle   about 

pI  is the family parameter. This 1-family generates a 
conic section of revolution  Γ | ,I ,p p p  given by 
(7.14), which is perpendicular to the perihelion vector at 
its vertex.  

r v

Letting the direction of the perihelion vector arbitrary 
gives a 3-parameters family of equivalent orbits  
 Γ , | ,p p pr v I , which generates a 2-parameter family 

of conic sections of revolution  Γ | ,
p p p  enveloped 

by a sphere of radius 
r vI

.pr  It is clear that the family of 
equivalent orbits  Γ ,, |p p p  results from one orbit r v I
 ,p pr v  under the action of orthogonal transformations  

,R Or b                  (9.1) 

where O is an arbitrary orthogonal  matrix and b 
is an arbitrary  vector [21]. Indeed, and because 
the space is homogeneous with respect to a closed 
two-body system, the latter remains equivalent to itself 
after a rotation, translation or inversion applied to it as a 
whole. Mathematically, it sufficient to note that the 
characteristics of an orbit 

3 3 
3 1

,p pr v  are invariant, since 
the norm of a vector is preserved under (9.1), while the 

vector pI  is mapped to .p p I OI  

If we let  p pM rv G  vary we obtain 4-parmaeter  

family of orbits  Γ , , |p p pv rI  enveloped by the 
sphere pr r , with each point p pr I  of the enveloping 
sphere is the vertex of a 1-parameter family of solid 
conic sections  | r I

pv p  or equivalently, the vertex of 
a 2-parameter family 

p ,
 Γ , |p p pv r I  of orbits. Each 

value of pv  corresponds to 1-family of equivalent orbits, 
and orbits belonging to different 1-families (i.e. different 

pv ) are non-equivalent. When moving from a family to 
another the curvature decreases as pv  increases, and 
orbits are more flattened with increasing .pv  The fam-  

ily with p pv GM r  is subtended by all other fami-  

lies. As pv  increases the orbits gets broader and longer 
but remain bound till reaching the escape velocity, at 
which the orbits become unbound. Letting andp pr v  
vary, each point p pr I  of the space (excluding CM) is a 
vertex of a 2-parameter family of orbits  Γ , | .p p pv r I   

It is noted that the LRL vector changes with pv  
though pr  is fixed; this is because   and h changes, 
and hence e. Throughout our previous discussion the 
total mass M was fixed. We shall see soon that equivalent 
orbits with different velocities can be realized, however, 
with different total masses.  

10. Laws of Equivalent Orbits  

With M is fixed, equivalent orbits are characterized by 
the same  ,h .  Although a given orbit has specific 
values of angular momentum and energy reduced densi- 
ties, there correspond to the same orbit different angular 
momentum L h  and energy E   depending on 
the distribution of the total mass M among the two parti- 
cles. Thus the angular momentum and energy associated 
with the same relative orbit (and fixed M) may vary in 
absolute value from infinitesimal values corresponding to 
an infinitesimal reduced mass   to maximum values  

1

4
L Mh  and 

1

4
E M  corresponding to 1 2.m m    

We seek here a mass-independent characterization of 
relative orbits. Setting  

,p pv M               (10.1) 

the relations (6.1) and (6.5) yield  ,P e  in terms of pr
 

and ,p  by 
1 2 2 ,p p p pP G r e G r  1 2 1,        (10.2)  

provided .p pG r  Conversely, a given orbit  ,P e  
corresponds to 

   1 , 1p pr P e e G P    .       (10.3) 

It follows from (10.2)-(10.3) that equivalent orbits 
 ,P e  are also characterized by the pair  
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 ,p p pr v M  ,           (10.4) 

which embodies what we may call “degeneracy”, where 
the same orbit    , ,p pP e r   can be realized by mul- 
tiple values of pv  and M. The LRL vector  

G
M M M

        
 

v h v v
A I r GI    (10.5) 

is constant, on an orbit with perihelion vector ,p pr I  at 
the value p p  which is independent of the total 
mass. The form (10.5) is thus a mass-independent char-
acterization of equivalent orbits (10.4).  

eGA I

The following laws govern equivalent orbits with dif- 
ferent total masses: 

1) Given 1  and m pr , the same orbit occurs for any 

2  provided the corresponding m pv  leaves p  un- 
changed. Quantitatively, the same orbit occurs with a 
new mass  provided the new relative velocity is  2m

1 2

1 2

.p p

m m
v

m m

 


v             (10.6) 

2) No matter how a fixed total mass M is distributed 
between the two particles, the same relative trajectory 
occurs for the same initial conditions  ,p pr v .  

3) Law of Periods: by (6.14), systems with identical 
bound trajectories have periods that are inversely propor- 
tional to the square root of their total masses 

3 2

.
2π

Ga
M M             (10.7) 

If Jupiter, whose mass is about 1000 times the earth’s 
mass, replaces the earth on its orbit then its period will be 
about four hours less than our year.  

Defining  

21
, ,

2p p p
p

h G
h r

M rM

           (10.8) 

and employing (6.3) we obtain 

 2, 1h GP G e P   2 ,       (10.9) 

which shows that  ,h   is a characterization of equiva- 
lent orbits on equal footing with  ,p pr   or  ,P e . 
For equivalent orbits with different total masses M and 
M' we have ,h h     , and hence  

4) The Law of Areal Velocity: 

.
h h

M M





             (10.10) 

5) The Law of Orbit’s Energy 

.
M M

  



              (10.11) 

But since E   we have  

1 2 1 2

.
E E

m m m m




 
            (10.12) 

Combining the latter law with the Newton law of 
gravitation we obtain F E F E   at each point of the 
orbit. This relation however is not independent of the law 
of force and (10.12).  

6) The Law of Angular Velocity: Two systems of total 
masses  1 2M m m   and  1 2 M m m     can have 
equivalent trajectories provided they have the same pr  
and their respective relative velocities are proportional to 
the square root of their total masses:  

.p pv v

M M





             (10.13) 

Denote the points of two equivalent orbits  ,p pr   
corresponding to total masses M and M' by  ,r   and 
 ,r    respectively, and take .p p    For    
we have ,r r  and by (10.10),  

.
M M

 





            (10.14) 

7) The Law of Velocities: The relative velocities asso- 
ciated with the two orbits are  

d
,

d

d

d

r
r

r
r







   
 

       





v I J

v I J 
        (10.15) 

The parenthesized quantities in the latter two equations 
are equal in magnitude for   , because r r  and 
d d d dr r   . It follows that v v     for .   
Multiplying the latter equation side to side by equation 
(10.14) yields 

for .
v v

M M
 


 


       (10.16) 

The latter equation states that the relative velocity of 
the system is proportional to the square root of its mass. 
In other words, if the total mass M were replaced by M   
then its new velocity v  would be related to it its old 
velocity v at each point by (10.16).  

8) System’s and Parts’ Angular Momenta: We derive 
here the relation between the magnitude of the total an- 
gular momentum 1 2 L l l  and the magnitudes of the 
angular momenta of its parts. This law is valid for any 
type of central force. From their definition (2.16) and 
from the fact that  2 , 1,2i i im r i  ,i il m h   we have  

 2

1 2 ,h h h           (10.17) 

which is the law that determines the system’s areal ve- 
locity in terms of the areal velocities of its parts. From 
(10.17) we find that the magnitude of the total angular 
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momentum given by  
2

1 2

1 2

.
l lL

m m
 

 
 

         (10.18) 

11. Conclusion 

The approach followed in this work revealed features of 
the two-body problem that neither were highlighted in 
earlier expositions, nor appeared at all. Indeed, it was 
shown that the characteristics of the system’s motion 
depend on its total mass, while those of the individual 
motions depend on the individual masses. The possible 
energies associated with equivalent orbits with the same 
mass vary in absolute value from an infinitesimal to a 
maximum value although the reduced energy and angular 
momentum densities are the same. The types of intersec- 
tion or nesting of individual orbits were presented in a 
simple and a transparent manner. Corresponding to the 
infinite possible referential ways of specifying the abso- 
lute rotational positioning of a two-body system, an infi- 
nite set of LRL vectors can be constructed, all fixing a 
unique orientation of the orbit with respect to the remote 
universe. The commonly used LRL vector is an ap- 
proximation of one of the vectors derived in our ap- 
proach. As far as we know, and apart from the law of 
periods, the laws of equivalent orbits we have derived, 
which included the laws of periods, areal velocities, an- 
gular velocities, velocities, total angular momentum, 
were never considered before. The latter laws, together 
with other features of the two-body motion contradicting 
the general relativistic description will be the subject of a 
forthcoming work. 
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