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ABSTRACT 

Silica-grafted N-propyl-imidazolium hydrogen sulfate ([Sipim]HSO4) is employed as a recyclable heterogeneous ionic 
liquid catalyst for the synthesis of 3,4-dihydropyrano[c]-chromenes by the reaction of aromatic aldehydes, malononitrile 
and 4-hydroxycoumarin at 100˚C under solvent-free conditions. Also, heterogeneous ionic liquid catalyst was used for 
the synthesis of pyrano[2,3-c]-pyrazoles by the reaction of aromatic aldehydes, malononitrile and 3-methyl-l-phenyl- 
5-pyrazolone at 110˚C under solvent-free conditions. The heterogeneous ionic liquid showed much the same efficiency 
when used in consecutive reaction runs. 
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1. Introduction 

In the recent years, ionic liquids were used as solvents 
due to their particular properties, such as the ability to 
dissolve many organic and inorganic substances and un- 
detectable vapor pressure [1]. In addition, Brønsted aci- 
dic task-specific ionic liquids (BAILs), such as those po- 
ssessing 4  as a counter anion find a broad applica- 
tion in organic synthesis, acting as both solvents and 
catalysts. Keim and co-workers reported the synthesis of 
1-butyl-3-methylimidazolium hydrogen sulfate ([bmim] 
HSO4) [2]. In addition, in the year of 2002 ([bmim]HSO4) 
was used as a catalyst in the Friedel-Crafts alkylation [3]. 
The other applications of these acidic ionic liquids such 
as acetalization and thioacetalization of carbonyl com- 
pounds [4], Fischer indole synthesis [5], acetylation of 
alcohols and phenols [6], preparation of azides from al- 
cohols [7], selective nitration of phenols [8], synthesis of 
1,8-dioxo-octahydroxanthenes [9], formylation of alco- 
hols [10], synthesis of polysubstituted quinolines [11], 
have been proceeded with very good yields and selectivi- 
ties. Recently, immobilization of acidic ionic liquids on 
solid supports has been designed and it can offer impor- 
tant advantages in handling, separation and reuse proce- 

dures. Based on economic criteria, it is desirable to mini- 
mize the amount of ionic liquid utilized in a potential 
process. Immobilized acidic ionic liquids have been used 
as novel solid catalysts, e.g., for esterification, nitration 
reactions [12], acetal formation [13], Baeyer-Villiger 
reaction [14], synthesis of α-aminonitriles [15] and bis- 
pyrazolones [16]. 

HSO

Dihydropyrano[c]chromenes and their derivatives are 
of considerable interest as they possess a wide range of 
biological properties [17], such as spasmolytic, diuretic, 
anti-coagulant, anti-cancer, and anti-anaphylactic activity 
[18,19]. In addition, they can be used as cognitive en- 
hancers, for the treatment of neurodegenerative diseases, 
including Alzheimer’s disease, Parkinson’s disease, AIDS 
associated dementia and Down’s syndrome as well as for 
the treatment of schizophrenia and myoclonus [20]. Also, 
a number of 2-amino-4H-pyranes are useful as photo- 
active materials [21]. A number of methods have been 
reported for the synthesis of 3,4-dihydropyrano[c] chro- 
menes such as piperidine in organic solvent, i.e. ethanol 
and pyridine [22], K2CO3 under microwave irradiation 
[23], diammonium hydrogen phosphate [24], tetrabu-
tylammonium bromide [25], sodium dodecyl sulfate [26], 
DBU [27], morpholine [28], α-Fe2O3 nanopatricles [29], 
CuO nanopatricles [30], and silica-bonded N-propyl- *Corresponding author. 
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piperazine sodium propionate [31].  
In continuation of our studies on the design and appli- 

cation of acidic ionic liquids or silica-grafted ionic liq- 
uids as catalyst in organic transformations (Scheme 1) 
[8-11,15,16], herein, we describe the application of silica- 
grafted N-propyl-imidazolium hydrogen sulfate ([Sipim] 
HSO4) in the synthesis of pyrano[c]chromenes and pyra- 
no[3,4c]pyrazoles. 

2. Results and Discussion 

2.1. Synthesis of Dihydropyrano[c]chromenes 

To study the effect of catalyst loading on the synthesis of 
2-amino-4-aryl-5-oxo-4H,5H-pyrano[3,2-c]chromene-3- 
carbonitrile the condensation reaction of malononitrile, 
4-chlorobenzaldehyde, and 4-hydroxycoumarin was cho- 
sen as a model reaction (Table 1). The results show 
clearly that ionic liquids and silica-grafted ionic liquids 
(SGILs) are effective catalysts for this condensation and 
the optimal amount of SGILs was 0.1 g per 1 mmol of 
aldehyde under solvent-free conditions at 100˚C. The 
best result was obtained in the presence of [Sipim]HSO4. 
This condensation was carried out with the lower amounts 
of [Sipim]HSO4 0.05 g and 0.07 g and the corresponding 
product was obtained in 88% and 91% yield (Table 1, 
entries 4 and 5). 

Also, this three-component condensation was accom- 
plished in the presence of [Sipim]HSO4 in ethanol and 
water at reflux conditions in longer reaction time and 
lower yield (Table 1, entries 1 and 2). Moreover, the 
model reaction was examined under solvent-free condi- 
tions at 80˚C gave 1b after 90 min in 80% yield (Table 1, 
entry 8). The model reaction was reacted in the presence 
of N-(3-silicapropyl) imidazolium chloride ([Sipim]Cl), 
N-(3-silicapropyl) imidazolium dihydrogen phosphate 
([Sipim]H2PO4), and N-(3-silicapropyl) imidazolium tri- 
flate ([Sipim]OTf), under solvent-free conditions at 100˚C 
in 80%, 80%, and 75% yield respectively (Table 1, en- 
tries 10-12). In addition, the same model reaction was 
carried out in the presence of ionic liquids such as imi- 
dazolium chloride, imidazolium hydrogen sulfate, me-
thylimidazolium hydrogen sulfate, and imidazolium bro- 
mide under solvent-free and at 100˚C in 85%, 80%, 80%, 
and 85% yield respectively (Table 1, entries 13-17). 
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Scheme 1. Preparation of silica-grafted propyl imidazolium 
hydrogen sulfate ([Sipim]HSO4). 

Table 1. Investigation the effect of catalyst and solvent on 
the reaction of 4-chlorobenzaldehyde, malononitrile and 4- 
hydroxycoumarin. 

Entry Catalyst 
Catalyst 

loading (g) 
Solvent/ Temp. 

(˚C) 
Time 
(min)

Yield 
(%)a

1 SiO2

O
O

O

Si N NH
HSO4

0.1 EtOH/Reflux 75 75

2 SiO2

O
O

O

Si N
NH

HSO4

0.1 H2O/Reflux 75 75

3 SiO2

O
O

O

Si N NH
HSO4

0.1 
EtOH/H2O 

(1:1)/Reflux 
60 86

4 SiO2

O
O

O

Si N NH
HSO4

0.05 Solvent-free/100 120 88

5 SiO2

O
O

O

Si N
NH

HSO4

0.07 Solvent-free/100 90 91

6 SiO2

O
O

O

Si N NH
HSO4

0.1 Solvent-free/100 30 95

7 SiO2

O
O

O

Si N NH
HSO4

0.15 Solvent-free/100 30 95

8 SiO2

O
O

O

Si N
NH

HSO4

0.1 Solvent-free/80 90 80

9 SiO2

O
O

O

Si N NH
HSO4

0.1 Solvent-free/120 30 95

10 SiO2

O
O

O

Si N
NH

Cl  0.1 Solvent-free/100 30 80

11 SiO2

O
O

O

Si N NH
H2PO4

0.1 Solvent-free/100 30 80

12 SiO2

O
O

O

Si N
NH

OTf 0.1 Solvent-free/100 60 75

13 HN NH Cl 0.2 Solvent-free/100 120 85

14 HN
NH HSO4 0.2 Solvent-free/100 150 80

15 H3CN NH HSO4 0.2 Solvent-free/100 210 80

16 HN NHH2PO4 0.2 Solvent-free/100 120 75

17 HN NH Br 0.2 Solvent-free/100 120 85

aIsolated Yield. 
 
The synthesis of 2-amino-4-aryl-5-oxo-4H,5H-pyrano- 

[3,2-c]chromene-3-carbonitrile was achieved by the three- 
component condensation of an aromatic aldehyde, malo- 
nonitrile, and 4-hydroxycoumarin in the presence of 
[Sipim]HSO4 (0.1 g, 0.08 mmol of H+ [15]) under solvent- 
free conditions at 100˚C (Table 2).  

Thereafter, a series of different 3,4-dihydropyrano- 
[c]chromene derivatives were prepared successfully from 
different aromatic aldehydes bearing electron-with- 
drawing and electron donating groups, 4-hydroxycou- 
marin and malononitrile under solvent-free conditions. 
Electron-withdrawing groups such as 3-nitro, 4-nitro, and 
2-nitro-benzaldehyde reacted under optimized conditions 
into corresponding 1f, 1g, and 1h in 93%, 90%, and 89% 
yield after 30 min (Table 2, entries 6-8). Electrondo-  
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Table 2. [Sipim]HSO4 catalyzed synthesis of dihydropyrano 
[c]chromene derivatives.a 

 
HSO4

SiO2

O
O

O

Si N
NH

O

OH

O

+Ar-CHO +
CN

CN Solvent-free, 100 oC O

O

O

Ar

NH2

CN

2 3 4 1  

Entry Ar Product Yield (%)b 

1 C6H5- 1a 94 

2 4-ClC6H4- 1b 95, 95, 93, 91, 90c 

3 3-ClC6H4- 1c 93 

4 4-BrC6H4- 1d 94 

5 2,4-(Cl)2C6H3- 1e 90 

6 3-O2NC6H4- 1f 93 

7 4-O2NC6H4- 1g 90 

8 2- O2NC6H4- 1h 89 

9 4-MeC6H4- 1i 94 

10 3,4,5-(CH3O)3C6H2- 1j 89 

11 4-HO-C6H4- 1k 93 

aReaction conditions: 4-hydroxycoumarin (1 mmol), malononitrile (1 mmol), 
aldehyde (1 mmol), solvent-free conditions at 100˚C for 30 min. bIsolated 
yield. cThe recovered [Sipim]HSO4 was used as catalyst. 

 
nating groups such as 4-Me, 3,4,5-(MeO)3-benzaldehyde 
were treated with malononitrile and 4-hy- droxycoumarin 
under optimized conditions gave corresponding products 
1i and 1j in high yields (Table 2, entries 9 and 10). The 
results clearly indicate that reactions can tolerate a wide 
range of differently substituted aromatic aldehydes. 

The possibility of recycling the catalyst was examined 
using the reaction of malononitrle, 4-chlorobenzaldehyde 
and 4-hydroxycoumarin under the optimized conditions. 
Upon completion, the reaction mixture was washed with 
warm ethanol (3 × 30 mL). The recovered catalyst was 
dried and reused for subsequent runs. The recycled cata- 
lyst could be reused fourth times without any additional 
treatment. No observation of any appreciable loss in the 
catalytic activity of [Sipim]HSO4 was made (Table 2, 
entry 2). 

2.2. Synthesis of Pyrano[2,3-c]pyrazoles 

Condensed pyrazoles are also biologically interesting com- 
pounds and their chemistry has recently received con- 
siderable attention [32,33]. Several pyrano[2,3-c] pyra- 
zoles are reported to have useful biological effects, such 
as analgesic and anti-inflammatory activities [34]. More- 
over, the biological activity of fused azoles has led to 
intensive research on their synthesis [35,36]. Recently, 
three component one-pot condensation of 3-methyl-1- 

phenyl-1H-pyrazol-5(4H)-one, aldehydes and malononi- 
trile for the construction of 1,4-dihydropy-rano[2,3-c] 
pyrazole derivatives has been reported under different 
conditions [37-41]. However, most of the reported meth- 
ods have their drawbacks. For example, hexadecyltri- 
methylammonium bromide (HTMAB) is a harmful and 
irritant catalyst which is dangerous for the environment 
[39]. In addition, the reusability of the catalysts such as 
D,L-proline is not reported in a number of cases [40]. 
Heteropoly acids, silica-supported bases or acids have 
been reported the synthesis of 1,4-dihydropyrano[2,3-c] 
pyrazole derivatives via multi-component condensation 
reaction [42-48]. 

The scope of this methodology was extended to the 
synthesis of pyrano[2,3-c]pyrazols. Initially three-com-
ponent condensation reaction of malononitrile, 4-chloro- 
benzaldehyde, and 3-methyl-1-phenyl-1H-pyrazol-5 (4H)- 
one was chosen as a model reaction and the effect of dif-
ferent catalysts was investigated at 110˚C under sol- 
vent-free conditions (Table 3).  

Again, the results show clearly that ionic liquids and 
silica-grafted ionic liquids (SGILs) are effective catalysts 

 
Table 3. Investigation the effect of catalyst on the reaction 
of 4-chlorobenzaldehyde, malononitrile and 3-methyl-1- 
phenyl-1H-pyrazol-5(4H)-one at 110˚C under solvent-free 
conditions. 

Entry Catalyst 
Catalyst 

loading (g) 
Time (min) Yield (%)a

1 SiO2

O
O

O

Si N NH
HSO4 0.05 120 80 

2 SiO2

O
O

O

Si N NH
HSO4 0.07 120 85 

3 SiO2

O
O

O

Si N NH
HSO4 0.1 90 90 

4 SiO2

O
O

O

Si N NH
HSO4 0.15 90 95 

5 SiO2

O
O

O

Si N NH
HSO4 0.2 90 95 

6 SiO2

O
O

O

Si N
NH

Cl  0.15 100 90 

7 SiO2

O
O

O

Si N NH
H2PO4 0.15 100 90 

8 SiO2

O
O

O

Si N
NH

OTf 0.15 120 70 

13 HN NH Cl 0.2 120 85 

14 HN NH HSO4 0.2 150 80 

15 H3CN NH HSO4 0.2 150 80 

16 HN
NHH2PO4 0.2 150 70 

17 HN
NH Br 0.2 120 85 

aIsolated Yield. 
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for this condensation and the optimal amount of SGILs 
was 0.15 g per 1 mmol of aldehyde under solvent-free 
conditions at 110˚C. 

A range of different substituted groups on aromatic 
aldehydes involving electron-withdrawing groups such as 
3-nitro, 4-nitro, and electron-donating groups such as 3,4- 
dimethoxy-benzaldehyde reacted under optimized condi- 
tions into corresponding 5f, 5g, and 5h in 90%, 88%, and 
90% yield after 90 min (Table 4, entries 6-8). 4-Hy- 
droxy-benzaldehyde was treated with malononitrile and 
3-methyl-1-phenyl-1H-pyrazol-5(4H)-one under optimiz- 
ed conditions gave corresponding products 5i in 90% 
yield (Table 4, entry 9). 

The possibility of recycling the catalyst was examined 
using the reaction of malononitrle, 4-chlorobenzaldehyde 
and 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one under the 
optimized conditions. Upon completion, the reaction mix- 
ture was washed with warm ethanol (3 × 30 mL). The 
recovered catalyst was dried and reused for subsequent 
runs. The recycled catalyst could be reused fourth times 
without any additional treatment. No observation of any 
appreciable loss in the catalytic activity of [Sipim]HSO4 
was made (Table 4, entry 2). 

3. Experimental Section 

3.1. General 

Chemicals were purchased from Fluka, Merck and Al- 
drich Chemical Companies. All the products were char-  

 
Table 4. [Sipim]HSO4 catalyzed synthesis of dihydropyrano 
[2,3-c]pyrazole derivatives.a 

 
HSO4

SiO2

O
O

O

Si N
NH

+Ar-CHO +
CN

CN Solvent-free, 110 oC
N

N O

Ph

Me

O

N
N

Ph

CN

NH2

ArMe

2 3 6 5  

Entry Ar Product Yield (%)b 

1 C6H5- 5a 92 

2 4-ClC6H4- 5b 95, 94, 92, 90, 89c 

3 2,4-(Cl)2C6H3- 5c 89 

4 4-BrC6H4- 5d 95 

5 4-FC6H4- 5e 90 

6 3-O2NC6H4- 5f 90 

7 4-O2NC6H4- 5g 88 

8 3,4-(CH3O)2C6H3- 5h 90 

9 4-HO-C6H4- 5i 90 

aReaction conditions: 3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (1 mmol), 
malononitrile (1 mmol), aldehyde (1 mmol), solvent-free conditions at 110 
oC for 90 min. bIsolated yield. cThe recovered [Sipim]HSO4 was used as 
catalyst. 

pyl-imidazolium hydrogen sulfate ([Sipim]HSO4) was 
acterized by comparison of their IR, 1H NMR and 13C 
NMR spectroscopic data and their melting points with 
the reported values [24-31,38-41]. Silica-grafted N-pro- 
prepared according to our previous reported procedure 
[15]. 

3.2. General Procedure for the Synthesis of 
3,4-Dihydropyrano[c]chromenes  

To a mixture of aromatic aldehyde (1 mmol), malonitrile 
(1 mmol), and 4-hydroxycoumarin (1 mmol), catalyst 
[Sipim]HSO4 (0.1 g, 0.08 mmol of H+) was added and 
the mixture was heated at 100˚C under solvent-free con- 
ditions. After completion of the reaction, as indicated by 
TLC, ethanol (10 mL) was added and the reaction mix- 
ture was filtered. The remaining was washed with warm 
ethanol (3 × 5 mL) in order to separate heterogeneous 
catalyst. After cooling the crude products were precipi- 
tated. The crude products were purified by recrystalliza- 
tion from ethanol (95%). The recovered catalyst was 
dried and reused for subsequent runs. 

2-Amino-4-phenyl-4,5-dihydro-5-oxopyrano[3,2-c]c
hromene-3-carbonitrile 1a: mp 258˚C - 260˚C, (Lit.: 
256˚C - 258˚C, [24]). 1H NMR (400 MHz, DMSO-d6): δ 
(ppm) 4.46 (s, 1 H), 7.23 - 7.27 (m, 3 H), 7.31 - 7.35 (m, 
2 H), 7.43 - 7.52 (m, 2H), 7.72 (dt, 1 H, J1 = 7.8 Hz, J2 = 
1.6 Hz), 7.92 (dd, 1 H, J1 = 8.0 Hz, J2 = 0.8 Hz). 13C 
NMR (100 MHz, DMSO-d6): δ (ppm) 58.41, 104.47, 
113.42, 117.06, 119.68, 122.98, 125.18, 127.62, 128.10, 
129.01, 133.45, 143.80, 152.60, 153.89, 158.36, 158.40, 
160.05. 

2-Amino-4-(4-chlorophenyl)-4,5-dihydro-5-oxopyra
no[3,2-c]chromene-3-carbonitrile 1b: mp 263˚C - 
265˚C, (Lit.: 252˚C - 255˚C, [28]). 1H NMR (400 MHz, 
DMSO-d6): δ (ppm) 4.49 (s, 1 H), 7.31 (d, 2 H, J = 8.4 
Hz), 7.38 (d, 2H, J = 8.4 Hz), 7.45-7.51 (m, 2 H), 7.72 (t, 
1 H, J = 7.8 Hz), 7.91 (d, 1 H, J = 8.0 Hz). 13C NMR 
(100 MHz, DMSO-d6): δ (ppm) 57.94, 103.94, 113.39, 
117.06, 119.54, 123.01, 125.18, 128.92, 130.12, 132.18, 
133.51, 142.80, 152.64, 154.02, 158.34, 158.38, 160.03. 

2-Amino-4-(3-chlorophenyl)-4,5-dihydro-5-oxopyra
no[3,2-c]chromene-3-carbonitrile 1c: mp 241˚C - 243˚C, 
(Lit.: 246˚C - 248˚C, [26]). 1H NMR (400 MHz, DMSO- 
d6): δ (ppm) 4.52 (s, 1 H), 7.26 (d, 1 H, J = 7.2 Hz), 7.31 
- 7.38 (m, 3 H), 7.47 - 7.53 (m, 2 H), 7.73 (t, 1H, J = 7.6 
Hz), 7.91 (d, 1H, J = 7.6 Hz). 13C NMR (100 MHz, 
DMSO-d6): δ (ppm) 57.81, 103.63, 113.43, 117.02, 
119.55, 123.06, 125.13, 127.03, 127.66, 128.06, 130.87, 
133.48, 133.54, 146.26, 152.66, 154.19, 158.37, 158.42, 
160.06. 

2-Amino-4-(4-bromophenyl)-4,5-dihydro-5-oxopyra
no[3,2-c]chromene-3-carbonitrile (1d): mp 254˚C - 
256˚C, (Lit.: 247˚C - 249˚C, [26]). 1H NMR (400 MHz, 
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DMSO-d6): δ (ppm) 4.48 (s, 1 H), 7.25 (d, 2 H, J = 8.0 
Hz), 7.46 - 7.52 (m, 4 H), 7.73 (t, 1 H, J = 7.4 Hz), 7.91 
(d, 1 H, J = 7.6 Hz). 13C NMR (100 MHz, DMSO-d6): δ 
(ppm) 57.85, 103.88, 113.39, 117.08, 119.54, 120.71, 
123.02, 125.20, 130.50, 131.85, 133.54, 143.23, 152.65, 
154.03, 158.32, 160.04. 

2-Amino-4-(2,4-dichloro-phenyl)-4,5-dihydro-5-oxo
pyrano[3,2-c]chromene-3-carbonitrile (1e): mp 258˚C 
- 259˚C, (Lit.: 253˚C - 255˚C, [30]). 1H NMR (400 MHz, 
DMSO-d6): δ (ppm) 4.98 (s, 1 H), 7.35 - 7.41 (m, 2 H), 
7.48 - 7.54 (m, 4 H), 7.60 (d, 1 H, J = 2.0 Hz), 7.74 (dt, 
1H, J1 = 8.0 Hz, J2 = 1.6 Hz), 7.92 (dd, 1 H, J1 = 8.0 Hz, 
J2 = 1.6 Hz). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 
34.33, 56.43, 102.96, 113.29, 117.12, 119.18, 123.04, 
125.25, 128.36, 129.34, 132.56, 132.88, 133.61, 133.82, 
139.91, 152.70, 154.62, 158.57, 159.94. 

2-Amino-4-(3-nitrophenyl)-4,5-dihydro-5-oxopyran
o[3,2-c]chromene-3-carbonitrile (1f): mp 266˚C - 
267˚C, (Lit.: 262˚C - 264˚C, [24]). 1H NMR (400 MHz, 
DMSO-d6): δ (ppm) 4.74 (s, 1 H), 7.46 - 7.53 (m, 2 H), 
7.58 (s, 2H, NH2), 7.64 (t, 1H, J = 8.0 Hz), 7.74 (dt, 1 H, 
J1 = 7.9 Hz, J2 = 1.4 Hz), 7.82 (d, 1 H, J = 7.6 Hz), 7.93 
(dd, 1 H, J1 = 8.0 Hz, J2 = 1.2 Hz), 8.12 - 8.15 (m, 2 H). 
13C NMR (100 MHz, DMSO-d6): δ (ppm) 57.36, 103.33, 
113.39, 117.07, 119.45, 122.77, 122.93, 123.10, 125.19, 
130.56, 133.61, 135.26, 145.96, 148.30, 152.73, 154.35, 
158.52, 158.57, 160.10. 

2-Amino-4-(4-nitrophenyl)-4,5-dihydro-5-oxopyran
o[3,2-c]chromene-3-carbonitrile (1g): mp 259˚C - 
261˚C, (Lit.: 258˚C - 260˚C, [24]). 1H NMR (400 MHz, 
DMSO-d6): δ (ppm) 4.68 (s, 1 H), 7.47 - 7.54 (m, 2 H), 
7.58 - 7.61 (m, 2 H), 7.75 (dt, 1 H, J1 = 8.0 Hz, J2 = 1.2 
Hz), 7.93 (dd, 1H, J1 = 8.0 Hz, J2 = 1.2 Hz), 8.21 (d, 2 H, 
J = 8.4 Hz). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 
57.20, 103.27, 113.36, 117.13, 119.34, 123.09, 124.22, 
125.26, 129.67, 133.69, 147.08, 151.23, 152.74, 154.42, 
158.43, 158.47, 160.07. 

2-Amino-4-(2-nitrophenyl)-4,5-dihydro-5-oxopyran
o[3,2-c]chromene-3-carbonitrile (1h): mp 258˚C - 
260˚C, (Lit.: 258˚C - 260˚C, [31]). 1H NMR (400 MHz, 
DMSO-d6): δ (ppm) 5.25 (s, 1 H), 7.46-7.59 (m, 6 H), 
7.67 (t, 1 H, J = 7.6 Hz), 7.73 (t, 1 H, J = 7.8 Hz), 7.91 (d, 
2 H, J = 7.6 Hz). 13C NMR (100 MHz, DMSO-d6): δ 
(ppm) 56.52, 103.75, 113.27, 117.09, 119.22, 123.03, 
124.45, 125.21, 128.93, 131.65, 133.57, 134.16, 137.83, 
149.66, 152.63, 154.06, 159.08, 160.19. 

2-Amino-4-p-tolyl-4,5-dihydro-5-oxopyrano[3,2-c]c
hromene-3-carbonitrile (1i): mp 253˚C - 255˚C, (Lit.: 
259˚C - 260˚C, [28]). 1H NMR (400 MHz, DMSO-d6): δ 
(ppm) 2.27 (s, 3H), 4.41 (s, 1 H), 7.11 - 7.15 (m, 4 H), 
7.40 (s, 2 H, NH2), 7.46-7.52 (m, 2 H), 7.72 (dt, 1 H, J1 = 
7.8 Hz, J2 = 1.6 Hz), 7.91 (dd, 1 H, J1 = 7.8 Hz, J2 = 1.4 
Hz). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 21.10, 
58.53, 104.59, 113.42, 117.03, 119.71, 122.94, 125.15, 

128.00, 129.55, 133.38, 136.78, 140.86, 152.56, 153.72, 
158.30, 160.01. 

2-Amino-4-(3,4,5-trimethoxy-phenyl)-4,5-dihydro-5
-oxopyrano[3,2-c]chromene-3-carbonitrile (1j): mp 
236˚C - 238˚C, (Lit.: 236˚C - 238˚C, [31]). 1H NMR 
(400 MHz, DMSO-d6): δ (ppm) 3.64 (s, 3 H), 3.72 (s, 6 
H), 4.44 (s, 1 H), 6.53 (s, 2 H), 7.41 (s, 2 H, NH2), 
7.47-7.52 (m, 2 H), 7.73 (dt, 1H, J1 = 8.0 Hz, J2 = 1.6 
Hz), 7.91 (dd, 1 H, J1 = 8.0 Hz, J2 = 1.6 Hz). 13C NMR 
(100 MHz, DMSO-d6): δ (ppm) 56.36, 58.32, 60.39, 
104.11, 105.38, 113.54, 117.05, 119.71, 123.04, 125.11, 
133.39, 137.03, 139.46, 152.64, 153.30, 153.98, 158.38, 
160.14. 

2-Amino-4-(4-hydroxy-phenyl)-4,5-dihydro-5-oxop
yrano[3,2-c]chromene-3-carbonitrile (1k): mp 266˚C - 
268˚C, (Lit.: 260˚C - 263˚C, [28]). 1H NMR (400 MHz, 
DMSO-d6): δ (ppm) 4.33 (s, 1 H), 6.71 (d, 2 H, J = 8.4 
Hz), 7.06 (d, 0.72 H, J = 8.8 Hz), 7.36 (s, 2 H, NH2), 
7.43 - 7.49 (m, 2 H), 7.69 (dt, 1H, J1 = 7.8 Hz, J2 = 1.6 
Hz), 7.89 (dd, 1 H, J1 = 7.8 Hz, J2 = 1.4 Hz), 9.41 (s, 1H, 
OH). 13C NMR (100 MHz, DMSO-d6): δ (ppm) 58.84, 
104.92, 113.43, 115.59, 116.96, 119.87, 122.89, 125.09, 
129.20, 133.25, 134.23, 152.48, 153.42, 156.80, 158.32, 
160.02. 

3.3. General Procedure for the Synthesis of 
Dihydropyrano[2,3-c]pyrazoles  

To a mixture of aromatic aldehyde (1 mmol), malonitrile 
(1 mmol), and 3-methyl-1-phenyl-1H-pyrazol-5(4 H)-one 
(1 mmol), catalyst [Sipim]HSO4 (0.15 g, 0.12 mmol of 
H+) was added and the mixture was heated at 110˚C un-
der solvent-free conditions. After completion of the reac-
tion, as indicated by TLC, ethanol (10 mL) was added 
and the reaction mixture was filtered. The remaining was 
washed with warm ethanol (3 × 5 mL) in order to sepa-
rate heterogeneous catalyst. After cooling the crude 
products were precipitated. The crude products were pu-
rified by recrystallization from ethanol (95%). The re-
covered catalyst was dried and reused for subsequent 
runs. 

6-Amino-3-methyl-1,4-diphenyl-1,4-dihydro-pyran
o[2,3-c]pyrazol-5-carbonitrile (5a): mp 170˚C - 171˚C, 
(Lit.: 168˚C - 170˚C, [38]). 1H NMR (400 MHz, CDCl3): 
δ (ppm) 1.92 (s, 3 H), 4.69 (s, 1H), 4.71 (s, 2 H, NH2), 
7.27 - 7.40 (m, 6 H), 7.49 (t, 2 H, J = 7.8 Hz), 7.68 (d, 
2H, J = 8.0 Hz). 13C NMR (100 MHz, CDCl3): δ (ppm) 
12.94, 37.44, 63.88, 98.36, 119.14, 121.22, 126.80, 
127.62, 127.91, 128.83, 129.31, 137.57, 142.00, 143.84, 
146.46, 158.17. 

6-Amino-4-(4-chlorophenyl)-3-methyl-1-phenyl-1,4- 
dihydro-pyrano[2,3-c]pyrazol-5-carbonitrile (5b): mp 
174˚C - 176˚C, (Lit.: 174˚C - 177˚C, [43]). 1H NMR 
(400 MHz, CDCl3): δ (ppm) 1.92 (s, 3 H), 4.68 (s, 1 H), 
4.74 (s, 2 H, NH2), 7.22 (d, 2H, J = 8.4 Hz), 7.33-7.37 (m, 
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3H), 7.49 (t, 2 H, J = 7.8 Hz), 7.67 (d, 2 H, J = 8.0 Hz). 
13C NMR (100 MHz, CDCl3): δ (ppm) 12.97, 36.91, 
63.36, 97.87, 118.95, 121.25, 126.92, 129.06, 129.28, 
129.34, 133.44, 137.45, 140.57, 143.80, 146.28, 158.23. 

6-Amino-4-(2,4-dichlorophenyl)-3-methyl-1-phenyl- 
1,4-dihydro-pyrano[2,3-c]pyrazol-5-carbonitrile (5c): 
mp 183˚C - 185˚C, (Lit.: 182˚C - 184˚C, [38]). 1H NMR 
(400 MHz, CDCl3): δ (ppm) 1.92 (s, 3 H), 4.78 (s, 2 H, 
NH2), 5.29 (s, 1H), 7.17 (d, 1 H, J = 8.4 Hz), 7.26 - 7.28 
(m, 1 H), 7.35 (t, 1 H, J = 7.2 Hz), 7.46-7.51 (m, 3 H), 
7.67 (d, 2 H, J = 8.0 Hz). 13C NMR (100 MHz, CDCl3): δ 
(ppm) 12.77, 33.53, 61.98, 97.58, 118.62, 121.28, 126.97, 
128.04, 129.35, 129.68, 131.49, 133.95, 137.41, 137.86, 
143.95, 146.04, 158.84. 

6-Amino-4-(4-bromophenyl)-3-methyl-1-phenyl-1,4- 
dihydro-pyrano[2,3-c]pyrazol-5-carbonitrile (5d): mp 
182˚C - 184˚C, (Lit.: 176˚C - 177˚C, [40]). 1H NMR 
(400 MHz, CDCl3): δ (ppm) 1.92 (s, 3H), 4.67 (s, 1 H), 
4.73 (s, 2H, NH2), 7.17 (d, 2H, J = 8.0 Hz), 7.35 (t, 1 H, 
J = 7.4 Hz), 7.48 - 7.53 (m, 4H), 7.67 (d, 2 H, J = 7.6 Hz). 
13C NMR (100 MHz, CDCl3): δ (ppm) 12.98, 36.98, 
63.31, 97.78, 118.92, 121.26, 121.60, 126.93, 129.34,  
129.63, 132.01, 137.45, 141.08, 146.28, 158.22. 

6-Amino-4-(4-fluorophenyl)-3-methyl-1-phenyl-1,4- 
dihydro-pyrano[2,3-c]pyrazol-5-carbonitrile (5e): mp 
170˚C - 171˚C, (Lit.: 167˚C - 168˚C, [38]). 1H NMR 
(400 MHz, CDCl3): δ (ppm) 1.91 (s, 3H), 4.69 (s, 1 H), 
4.73 (s, 2 H, NH2), 7.07 (t, 2 H, J = 8.6 Hz), 7.24 - 7.28 
(m, 2 H), 7.35 (t, 1 H, J = 7.4 Hz), 7.49 (t, 2H, J = 7.8 
Hz), 7.67 (d, 2H, J = 8.0 Hz). 13C NMR (100 MHz, 
CDCl3): δ (ppm) 12.94, 36.78, 63.69, 98.15, 115.86, 
119.01, 121.24, 126.88, 129.33, 129.54, 137.49, 143.77, 
146.32, 158.14, 162.17 (d, JC-F = 244.0 Hz). 

6-Amino-3-methyl-4-(3-nitrophenyl)-1-phenyl-1,4-d
ihydro-pyrano[2,3-c]pyrazol-5-carbonitrile (5f): mp 
190˚C - 191˚C, (Lit.: 190˚C - 192˚C, [43]). 1H NMR 
(400 MHz, CDCl3): δ (ppm) 1.92 (s, 3 H), 4.84 (s, 3H, 
CH & NH2), 7.37 (t, 1 H, J = 7.4 Hz), 7.51 (t, 2 H, J = 
7.6 Hz), 7.60 (t, 1 H, J = 8.0 Hz), 7.67 - 7.70 (m, 3 H), 
8.14 (s, 1 H), 8.21 (d, 1 H, J = 8.0 Hz). 13C NMR (100 
MHz, CDCl3): δ (ppm) 13.01, 37.38, 62.11, 97.21, 
118.76, 121.42, 122.87, 127.11, 129.37, 129.89, 134.17, 
137.33, 144.49, 145.92, 148.76, 158.75. 

6-Amino-3-methyl-4-(4-nitrophenyl)-1-phenyl-1,4-d
ihydro-pyrano[2,3-c]pyrazol-5-carbonitrile (5g): mp 
194˚C - 196˚C, (Lit.: 195˚C - 197˚C, [43]). 1H NMR 
(400 MHz, CDCl3): δ (ppm) 1.92 (s, 3 H), 4.83 (s, 3 H, 
CH & NH2), 7.37 (t, 1 H, J = 7.4 Hz), 7.47 - 7.53 (m, 4 
H), 7.78 (d, 2 H, J = 8.0 Hz), 8.27 (d, 2 H, J = 8.4 Hz). 
13C NMR (100 MHz, CDCl3): δ (ppm) 12.98, 37.33, 
62.26, 97.07, 118.58, 121.35, 124.28, 127.16, 128.88, 
129.40, 137.30, 143.83, 146.00, 147.46, 149.19, 158.56. 

6-Amino-4-(3,4-dimethoxyphenyl)-3-methyl-1-phen
yl-1,4-dihydro-pyrano[2,3-c]pyrazol-5-carbonitrile 

(5h): mp 167˚C - 169˚C, (Lit.: 193˚C - 195˚C, [38]). 1H 
NMR (400 MHz, CDCl3): δ (ppm) 1.91 (s, 3 H), 3.85 (s, 
3 H), 3.87 (s, 3 H), 4.62 (s, 1 H), 4.73 (s, 2 H, NH2), 6,73 
(d, 1H, J = 1.6 Hz), 6.79 - 6.85 (m, 2H), 7.31 (t, 1 H, J = 
8.0 Hz), 7.45 (t, 2H, J = 8.0 Hz), 7.66 (d, 2 H, J = 8.4 
Hz). 13C NMR (100 MHz, CDCl3): δ (ppm) 12.98, 37.06, 
55.86, 55.98, 63.92, 98.29, 110.82, 111.12, 119.22, 
120.18, 121.05, 126.71, 129.28, 134.56, 137.57, 143.80, 
146.52, 148.41, 149.20, 158.02. 

6-Amino-4-(4-hydroxyphenyl)-3-methyl-1-phenyl-1,
4-dihydro-pyrano[2,3-c]pyrazol-5-carbonitrile (5i): 
mp 206˚C - 208˚C, (Lit.: 206˚C - 207˚C, [40]). 1H NMR 
(500 MHz, DMSO-d6): δ (ppm) 1.78 (s, 3 H), 4.55 (s, 1 
H), 6.71 (d, 2 H, J = 7.8 Hz), 7.03 (d, 2 H, J = 7.8 Hz), 
7.10 (s, 2 H, NH2), 7.31 (t, 1H, J = 7.0 Hz), 7.48 (t, 2 H, 
J = 7.3 Hz), 7.77 (d, 2 H, J = 7.7 Hz), 9.31 (s, 1 H). 13C 
NMR (125 MHz, DMSO-d6): δ (ppm) 13.45, 36.88, 
59.68, 99.91, 116.07, 120.75, 120.96, 126.94, 129.62, 
130.18, 134.79, 138.45, 144.65, 146.22, 157.15, 160.305. 
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