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ABSTRACT 

The S matrix of e-e scattering has the structure of a projection operator that projects incoming separable product states 
onto entangled two-electron states. In this projection operator the empirical value of the fine-structure constant α acts as 
a normalization factor. When the structure of the two-particle state space is known, a theoretical value of the normaliza- 
tion factor can be calculated. For an irreducible two-particle representation of the Poincaré group, the calculated nor- 
malization factor matches Wyler’s semi-empirical formula for the fine-structure constant α. The empirical value of α, 
therefore, provides experimental evidence that the state space of two interacting electrons belongs to an irreducible 
two-particle representation of the Poincaré group. 
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1. Introduction 

The development of quantum electrodynamics (QED) 
belongs to the greatest successes of theoretical physics. 
Provided that a sufficient number of terms of the pertur- 
bation series are included, the results of QED agree with 
the experimental data to any required degree of precision. 
This is a strong support for the correctness of the pertur- 
bation algorithm of QED. Nevertheless, we are far from 
completely understanding this algorithm. Although the 
success of QED has widely been considered as a confir- 
mation of the concept of interacting quantum fields, i.e., 
of the electron field’s interacting with the photon field, 
theoretical considerations (e.g., Haag’s Theorem [2]) call 
into doubt that QED is really a quantum field theory of 
interacting fields. Aside from this open question of the 
compatibility of QED with the concepts of quantum field 
theory, notorious divergences plague the users of the al- 
gorithm. These divergences can be removed by renor- 
malization, but their mere existence makes it difficult to 
really understand the perturbation algorithm. This does 
not prevent the majority of practitioners of QED from 
successfully using the perturbation algorithm, following 
the famous slogan: “Shut up and calculate” [3]. 

A similar situation is often encountered in software 
engineering, when a software program is available only 

as a (machine readable) object program, but not as (hu-  
man readable) source code. Here, such situations are suc- 
cessfully handled by means of “reverse engineering” [4]. 
From Wikipedia [5]: “Reverse engineering is the process 
of discovering the technological principles of a device, 
object, or system through analysis of its structure, func- 
tion, and operation.” 

The term “reverse engineering” originally described the 
(sometimes illegal) use of mechanical engineering to ana- 
lyze competitor’s products, when the original blue prints, 
for understandable reasons, were not available. Nowa- 
days, reverse engineering is well-known in software en- 
gineering as a powerful, though sometimes cumbersome, 
method for reconstructing the original source code of a 
program by decompiling or disassembling the binary ma- 
chine code when the source code is not available— 
whether it has been lost or whether it has not been made 
available by the original manufacturer. 

When we buy a software product, we usually have to 
sign a licensing agreement similar to: “The use of the 
software is subject to the following restrictions: You are 
prohibited from decompiling, reverse engineering, or dis- 
assembling the software, or otherwise attempting to de- 
rive their source code.” In QED we are in the advanta- 
geous position that its perturbation algorithm is “public 
domain”, although we are not sure whether or not we are 
in the possession of the correct and complete “source  

*Parts of this article were presented at the 7th International Conference 
on Quantum Theory and Symmetries (QTS7) in Prague 2011 [1]. 
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code”. In any case, there is no licensing agreement that 
can prevent us from reconstructing the “source code” by 
reverse engineering. In view of six decades of “Shut up 
and calculate”, at least an attempt is long overdue. 

In line with the approach used in software engineering, 
we will isolate the basic building blocks of the perturba- 
tion algorithm, and find each one’s mathematical func- 
tionality. Then we will put these building blocks together, 
to find their combined functionality. If carefully done, 
this will result in a consistent description of the perturba- 
tion algorithm, which can be regarded as the “source 
code” behind the algorithm. This description may then 
serve as a basis for a physical interpretation. It should not 
come as a surprise, however, if this interpretation turns 
out to not reproduce the physical concepts that histori- 
cally led to the design of the perturbation algorithm. 

Reverse engineering is usually followed by re-engi- 
neering the object under study, with the goal of improv- 
ing or extending its functionality. The present paper is 
limited to the reverse engineering phase, and we will take 
strict care not to change the perturbation algorithm. 

2. A Short Review of Quantum 
Electrodynamics 

The following is a short overview of QED, as formulated 
by Feynman in his seminal papers of 1949/1950 [6-8]. 

QED uses a perturbation approach to the S matrix, 
which, for an electromagnetic scattering process, delivers 
the transition probabilities between the incoming and 
outgoing two-particle states. The incoming and outgoing 
states are described by states in Fock space. These states 
are constructed through repeated application of “creation” 
operators to a “vacuum” state. A particle in a Fock state 
can be annihilated through a corresponding “annihila- 
tion” operator. Creation and annihilation operators satisfy 
certain commutation or anticommutation rules, which en- 
sure that the generated multi-particle states have the cor- 
rect symmetry of either Fermi—Dirac statistics (elec- 
trons) or Bose—Einstein statistics (photons). Multipar- 
ticle states are first generated as pure product states. 
They are used to describe the “incoming” and “outgoing” 
states. Because these states are separable, there are no 
correlations between the individual particle states other 
than by the mentioned statistics, so that the incoming and 
outgoing states describe “free” particles. Linear combi- 
nations of separable product states, which in general will 
not be separable but entangled, then make up a full pro- 
duct state space, corresponding to a product represen- 
tation of the Poincaré group. 

The idea behind the concept of the S matrix is that 
without knowing exactly what happens in the “interac- 
tion region”, we should formulate a quantum mechanical 
scattering theory on the basis of the incoming and out- 
going states, because only these states are directly ac-  

cessible to the experimenter [9]. But since the incoming 
and outgoing states describe non-interacting particles, a 
heuristic “interaction term” is needed, to describe, at least 
in a phenomenological form, the process inside the inter- 
action region. Since it seems reasonable that the inter- 
action process is uniquely determined by incoming and 
outgoing states, it has been tried to construct interaction 
terms from creation and annihilation operators of the in- 
coming and outgoing states. Relativistic (Poincaré) in- 
variance greatly restricts the structure of such terms. It 
turns out that with the additional requirement of gauge 
invariance (of second kind), the interaction term 

     e x x A x
               (1) 

is uniquely determined, up to a constant factor e. The 
factor e, the electromagnetic coupling constant, has been 
determined experimentally. Its square is the electro- 
magnetic fine-structure constant   (with the conven- 
tion    ,1c  ). The  field operators x x   and 

 A x  are operator-valued distributions. 
   x x and  

   

 are field operators of the electron— 
positron field (cf. e.g. Scharf [10])  

        
3 2

†i i

2π

d e e ,px px
s s s s

x

b u d v

 





 p p p p p
  (2) 

   † 0x x     is the Dirac adjoint operator,    are 
the Dirac matrices, and  means Hermitian adjoint. †

 u ps  and  psv  are solutions of the Dirac equation 
of, respectively, positive and negative energy. 

 A x

   

  is the field operator of the electromagnetic 
field 

3 2

0

d
2π

2
A x

k


 
k     †i ie ekx kxa a 

 k k  (3) 

 0A(ignoring the fact that x  is usually defined in a 
slightly different way to ensure manifest Lorentz co- 
variance). 

The creation operator bs(p)† creates from the “vacuum 
state”  an electron state with momentum p and spin  0

 s, 
†

, 0ss bp p . The Hermitian adjoint operator  

 sb p  is the corresponding annihilation operator; for the  

 vacuum state 0 0sb p    †
,s sd dp p

   †
,a a k k
k

   

 holds.  are  

the respective operators for positrons.  
create and annihilate a photon with momentum . We 
have the anticommutation rules  

         

 

† † †

3

,

,

s s s s s s

ss

b b b b b b

 

  



   

 

p p p p p p

p p

        

 (4) 

 † †
, , 0s s s sb b b b   p p p p      (5) 
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—analogous rules apply to —and 
the commutation rules  

   †
ands sd dp p

   †
a a k k

 †
, 0.a  k

2e

       

 

† †

3

,

,

a a a a   

 

    
 

k k k k

k k
 (6) 

     †
,a a a  

   k k k         (7) 

The lack of precise information about the “physical” 
processes inside the interaction region, and the associa- 
tion of the terms “creation” and “annihilation” with real 
dynamic processes, has led to our present picture of QED: 
a highly dynamic, not to say chaotic, interplay of par- 
ticles, continuously created from the vacuum, annihilated 
just a short time later, only controlled by some conserved 
quantum numbers, such as charge and lepton number. 

3. The S Matrix of (Elastic) 
Electron—Electron Scattering 

The perturbation approach to QED uses the interaction 
term (1) as a “perturbation” to the “free” theory and ex- 
pands the S matrix into a series of increasing orders in 

. The first order contribution is obtained from the two- 
point distribution built from an iteration of the interaction 
term,  

 
       

2 1 2

2
1 1 1 2

,

: : :

D x x

e x x A x x 
        2 2: ,x A x

:

 2 2 1 2,x D x x

 

(8) 

where the colons “ : “ mean “normal ordering” (cf. e.g. 
Scharf [10]). Higher orders are constructed by iterating 
this first order contribution. 

After inserting the explicit form of the field operators 
(2) and (3) into the two-point distribution (8), the corre- 
sponding first-order S matrix, 

4 4
12 1d dS x           (9) 

can be evaluated. By combining the phase factors of the 
field operators (2) and (3) with the integrations in Equa- 
tion (9), we can construct   functions of the form 

 
 i4

4

1
d e

2π

x p k  4 ,x p k       (10) 

which can be used to rearrange the momenta. As an 
intermediate result, we obtain several terms of the struc- 
ture (all c-numbers are replaced by ““)  
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†
1 2

b b
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 


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†
2 2 2
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b b


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    (11) 

Contraction (permutation) of the photon operators 
results in . By integrating over , we 

obtain 

       † †
1 2 1 1 2 2d d d .b b b b

    p p k p k p p k p

k

2p

2

 

(12) 

Although this term contains only electron operators, its 
familiar interpretation is this: a gauge particle (the pho- 
ton) with momentum  is emitted from particle 2 and 
absorbed by particle 1, causing transitions from  to 

p k p p k

k
p p

p
p

 and from  to . 1 1

Mathematically, this term has a more prosaic inter- 
pretation: The S matrix, when evaluated between incom- 
ing and outgoing states, describes a transition from an in- 
coming two-particle product state to an entangled two- 
particle state and then back to an outgoing product state. 
The entanglement is caused by the integration over , 
whereas the integration over 1  and 2  means an in- 
tegration over a complete set of base states of the product 
state space. 

4. Two-Particle State Space and the 
Fine-Structure Constant 

The functionality of the (first order) S matrix, as just de- 
scribed, closely resembles the operation of a projection 
operator onto an intermediate two-particle subspace of 
the product state space. In the following, this will be fur- 
ther substantiated. 

Observe that the range of integration over 1  and 

2  is automatically restricted to the subspace of the 
parameter space with a total momentum P, which equals 
the sum of the momenta of the incoming particles. This 
means, the total momentum is conserved at each “vertex”. 
This property is preserved in higher orders of the per- 
turbation series, because these are obtained by iterating 
the first order S matrix. The entangled intermediate states, 
therefore, belong to a subspace of the product state space, 
characterized by a constant total momentum P. The fact 
that the states are entangled indicates a further restriction. 
Since the perturbation algorithm is formulated in a cova- 
riant way, we can assume that this subspace is part of a 
relativistically invariant subspace, characterized by P2 = 
some constant. Let   be a manifold that parametrizes 
this subspace and let  V   denote the volume of  . 

The states of this invariant subspace can be re- 
presented by linear combinations of base states 1 2 , 
generated from the vacuum by two creation operators  

,p p

   † †
1 2 1 2, 0 ,b bp p p p

 2 2 constantp p P  

       (13) 

with 1 2 . The corresponding “bra” 
states are 

   1 2 1 2, 0 .b bp p p p         (14) 

Observe, however, that by the anticommutation rule 
(4), these states are still normalized to the volume of the 
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full product state space. Since a correct normalization is 
a precondition for the calculation of transition proba- 
bilities, the normalization has to be adjusted to the vol- 
ume of this subspace. 

Let us, for a while, forget that the volumes of the 
parameter spaces considered so far are infinite. Then the 
correct normalization factor of a base state should be 
determined by the volume  

3 3
V , calculated from an 

embedding of  into the parameter space   
 

 of  

the product state space, resulting in a factor 1 V  .  

When these states or their creation/annihilation operators, 
respectively, are used to construct a projection operator 
such as integral (12), then the normalization factor enters 
as  1 V 

 

. 
Since the goal of reverse engineering is a consistent 

mathematical description, we have to prove that this pro- 
jection operator is in fact used in a way that is mathe- 
matically consistent with the requirements of a correct 
normalization. Therefore our next step is, in general 
terms, to calculate 1 V 

 V 


 3 3

 and then compare this value 
with a corresponding normalization factor that is ex- 
tracted from the perturbation algorithm. 

 can be determined independently from the eva- 
luation of integral (12) by calculating the Lebesgue in- 
tegral over the manifold . With the metric induced on 

 by its embedding into  

 
1 2,d ,



  

, the Lebesgue integ- 
ral can formally be written as 

V p p

1 2,d

          (15) 

where p p 

 V 

 

 is the Lebesgue measure on . 

Let us, after the calculation of , replace the Le- 
besgue measure by  

1 2
d 

1 2, ,

1
d ,

V


p p p p

1 2,d

        (16) 

and then convert  p p

2
, 1 2d d ,  p p

 into a normalized Cartesian 
volume element  

1 2
d p p            (17) 

where 

1 2,2

1 2

d
.

d d


  p p

p p

 

                (18) 

Besides the factor 1 , V  2  contains an addi- 
tional factor due to the conversion of the non-Cartesian  

1 2,d p p 1 2d dp p

2
1 2d d 1. p p

2

 into the Cartesian volume element .  

Then integral (15) takes on the form 

1 2,d 
 
 p p        (19) 

The way in which 

element 
1 2,d p p

d dp p

2

 to the infinitesimal volume element  

1 2  needs to be determined. Therefore, we are free to 
map both parameter spaces onto, for example, a finite 
(bounded) parameter space, before we perform the cal- 
culation of  , provided that this mapping does not 
change the ratio of the infinitesimal volume elements. 

2Based on Equation (18),   can be understood as a 
measure for the number of irreducible two-particle states 
contained in the infinitesimal volume element 1 2d dp  
the product representation, or as a weight factor that 
weights the contribution of the subspace to the full pro- 
duct state space. In the following, we will therefore refer 
to 

p  of

2  as a “weight factor”. Because of the relativistic 
covariance of the S matrix, 2  does not depend on the 
frame of reference. 

2 2After having calculated  , we will try to insert   
into integral (12), to give this expression the consistent 
structure of a projection operator. However, when in- 
serting 2 , we notice that in the same position, the 
square of the empirical electromagnetic coupling con- 
stant e, i.e., the fine-structure constant  , is also in- 
serted “by hand” to reproduce the experimental data. 
Hence, after having inserted the empirical value of  , 
we cannot, in addition, insert the calculated weight factor 
without affecting the calculated transition amplitudes. 
This conflict is resolved if 2  and the weight factor   
associated with the two-electron state space are one and 
the same. 

2Under this premise, the calculation of   takes on an 
entirely new significance: We should be able to identify 
the correct two-particle state space of e-e scattering by 
selecting a promising state space, calculating the numeri- 
cal value of 2 , and comparing it to the experimentally 
determined value of  . If we find that the two coincide, 
i.e.,  

2 ,                   (20)  

we can consider this as experimental evidence that we 
have found the correct two-particle state space. 

Now let us see how this idea can be put into practice. 

5. Irreducible Two-Particle Representation 

The smallest relativistic invariant subspace of the product 
state space is the space of an irreducible two-particle re- 
presentation of the Poincaré group. It represents the 
quantum mechanically correct description of an isolated 
two-particle system. 

 0
1 1 1,p p p  0

2 2 2,p p p

2 2 2
1 2 ,p p m 

m

 and  be the 4-momenta Let 

of two electrons. They satisfy the mass shell relations 

             (21) 

where  is the mass of the electron. We also introduce 
the total and relative momentum by 

  is presented in Equation (18) 
indicates that only the ratio of the infinitesimal volume  
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1 2 andP p p  1 2q p p 

P q

0.Pq 

 3SO

2 2P M

2 2 24 0q m M  

2 2 24 .P q m 

2 22 2M m 

2
1 22 2 .p P M 

 2SO p p
q

 ,P M 0

3 1




 2SO
SO

2

.        (22) 

By this definition,  and  satisfy 

                  (23) 

Based on relation (23), any two-particle state (redu- 
cible or irreducible) can be described by a total momen- 
tum P and a spacelike momentum q, perpendicular to the 
timelike vector P. Perpendicular to a timelike vector 
means that q is allowed to rotate by the action of a 

 subgroup of the Lorentz group. 
For an irreducible two-particle representation, the rela- 

tion 

                 (24) 

(mass hyperboloid) holds. The “mass” M corresponds to 
the value of one of two Casimir operators (see below) 
that characterize an irreducible two-particle representa- 
tion of the Poincaré group. From Equation (24) we obtain  

.            (25) 

Equations (24) and (25) can be combined to 

               (26) 

Equation (25) can be rewritten as  

1 2p p             (27) 

or 

p P            (28) 

Equations (27) and (28) correlate the particle momenta 
by fixing the angle between them and with respect to P. 
Provided that P is not in its rest frame, rotations with 
rotational axis P preserve these angles. Since these ro- 
tations leave P invariant, they can be related to a rota- 
tional degree of freedom that is independent of the kine- 
matics of P. These rotations are described by an action of 

, acting synchronously on 1  and 2  and 
therefore also on the relative momentum . For P in its 
rest frame, , the orientation of the axis of the 

 rotations is undetermined, which allows for any 
axis perpendicular to . 



 
 2SO

1 2

Within an irreducible representation, the relative mo- 
mentum q can therefore be understood as a (2 + 1)- 
dimensional vector embedded in . 

p p

The action of  on P, together with the action 
of  on q, generates the manifold , which 
parametrizes the state space of an irreducible two-particle 
representation labeled by M. The  moves within 

 as P moves through the hyperboloid (24). The 
manifold  can therefore be described as a circle bun- 
dle over a hyperboloid. 

3,1SO
 2SO

 3,1


6. Calculation of the Weight Factor 

To determine the numerical value of   for an irredu- 
cible two-particle representation, we will evaluate the 
Lebesgue integral (19) “from scratch”, using a bounded 
parametrization of  , to take advantage of the finite 
environment. 

Due to the hyperbolic/circular structure of  , we can 
expect that 2  will contain contributions of volumes of 
circular or hyperbolic shapes. This should remind us of a 
finding of the Swiss mathematician Armand Wyler, who 
in 1971 published a formula that approximates the elec- 
tromagnetic fine-structure constant   to a high degree 
of precision [11]. When Wyler found his formula, his fa- 
vorite subject was: “the various components of the boun- 
daries of complex domains associated with Lie groups” 
[12]. He observed that an expression, derived from the 
volumes of some homogeneous domains, related to Max- 
well’s equations, delivered the numerical value of the 
fine-structure constant. He published his finding in the 
hope that “if he piqued the interest of the physics com- 
munity, there might be more study of his favorite sub- 
ject” [12]. Unfortunately, the physics community neither 
understood his intention nor his mathematics. Since Wy- 
ler was not able to put his observation into a convincing 
physical context, his paper was criticized [13] and, in the 
following decades, it was considered as fruitless numero- 
logy [14]. 

2Our calculation of   will show that Wyler was per- 
fectly right when he proposed his formula. Just like 
Wyler, we will make use of some elements of the mathe- 
matical theory of symmetric homogeneous (bounded) 
domains (cf. e.g. [15]). 

We can understand a symmetric homogeneous domain 
as an abstract parameter space on which a Lie group acts 
transitively as a symmetry group. “Transitively” means 
that all points of the homogeneous domain can be ob- 
tained from any given point by an action of the symmetry 
group. Accordingly, a quantum mechanical state space 
that has been parametrized by a symmetric homogeneous 
domain can be generated from a given point of the do- 
main by the simultaneous application of the full sym- 
metry group to both the parameter space and the state 
space. Thereby a one-to-one relation between the para- 
meter space and the state space is established. This makes 
homogeneous domains an easy to handle tool for dealing 
with the corresponding state spaces. 

The form of Equation (26), together with relation (23), 
suggests a combination of P with the (2 + 1)-dimensional 

 to a (5 + 2)-dimensional vector u , by identifying q
       1 2 3 4 5 1 2, , , , , , , , ,u P u q u u u P P P u u q q   

2 2 2 2 2 2 2 2
0 0 1 2 3 4 5 4u u u u u u u m      

0 0 0 0 1 2 3 . 
Equation (26) then becomes 

.       (29) 

This expression has the form of a “mass hyperboloid” 
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with an  symmetry. However, we have to keep 
in mind that on the hyperboloid (29) there are no sym- 
metry operations that “rotate” a spatial component of P 
into a spatial component of . So the values of  and 

 are separately kept constant under all (permitted) 
symmetry operations. 

 5,2SO

q 2P

2P 2q

 5, 2SO



2q

Nevertheless, we can obtain rotations of spatial com- 
ponents of P into such of q, provided that the timelike 
components P0 and q0 are automatically adjusted. Then 
the values of  and  are again separately kept 
constant. We will take advantage of this possibility be- 
low. 

Considered as a hyperboloid with full  sym- 
metry, the domain (29) is isomorphic to the quotient 
group      ˆ 5, 2 5 2SOSO SO  , which is a homo- 
geneous domain with a transitive action of  5,2SO

2
ˆ

. 
With the group actions of the full , (29) is an 
unbounded realization of the abstract manifold 

5,SO
 . If we 

restrict the group action to  and 3,1SO   2SO



̂

, then 
(29) is an unbounded realization of our parameter ma- 
nifold . 

A well-known bounded realization of the homogene- 
ous domain  is the complex Lie ball [11,16] 

 25 5;1 2 0, 1D z zz zz zz       
5D

 1 ,0 π.xx   

z z

.     (30) 

The boundary of  is given by  
5 i 5e ; ,Q x x        (31) 

(The vector  is the transpose of , z
z

 is the com- 
plex conjugate of .) The Lie ball is included in the 
complex unit ball 

 5 5; 1zz 

 5 5; 1 .xx 

5

̂

C z            (32) 

and contains the real unit ball 

B x            (33) 

The complex unit ball is isomorphic to the upper half- 
space of , whereas the Lie ball is isomorphic to the 
forward light cone in 5 + 2 dimensions. 

There is some similarity to the mapping of the (un- 
bounded) complex plane into the (bounded) Riemann 
sphere by a Möbius transformation. Möbius transforma- 
tions are conformal transformations. They leave invariant 
the form of volume elements but they change their sizes. 
Whereas a subdomain of the complex plane may have an 
infinite volume, the volume of its image in the Riemann 
sphere is finite. The Riemann sphere without the image 
of “infinity” has the same non-compact topology as the 
complex plane, but is bounded. By adding the image of 
infinity, the Riemann sphere becomes compact (this is 
the compactification of the complex plane). On the in- 
ternet, a very instructive animation of the Möbius trans- 
formation can be found [17]. Readers not familiar with 

Möbius transformations or the Riemann sphere may want 
to load the video of this animation before continuing. 

Since the unbounded as well as the bounded realiza- 
tions are true realizations of , they are isomorphic. 
Both can be used to parametrize a (fictive)  5,2 -SO

5D
ˆ

 
invariant state space, but the bounded realization  of 
  has the advantage that it provides a finite environ- 
ment for calculating the Lebesgue integral (19). There- 
fore, the following evaluation of this integral will be 
based on the bounded realization of . ̂

5Q
5D

5

4d .
Q

We can separate the integral into a spherical integral 
over the surface  and a second integral over the ra- 
dial direction of . The spherical part is given by 

                  (34) 

The normalization of this integral requires the factor  

   5 5Q

 
V Q  is the volume of . This  51 V Q , where 

51 V Q 2delivers a first contribution of  to  . 
We can immediately integrate over the phase   on 

the boundary (31), which to 2  adds a factor , and 
allows replacing the volume elem 4d

π
ent   by 4d x  

with real parameters x. 

5D
Next we have to add the integration in the radial 

direction of . As indicated above, we want to obtain 
the infinitesimal volume element as a Cartesian volume 
element. Mapping a spherical volume to a rectangular 
one includes a step that is known as the “quadrature of 
the circle”. (As an example: the volume of the unit ball in 
three dimensions equals the volume of a cube with edge 
length .) 3 4π 3

5
Consider the formula that relates the volume of a Lie 

ball RD
5D

 with radius R to the volume of the unit Lie ball 
 

   5 5 5 .RV D R V D

5D
5B 4  5

               (35) 

When we project the volume of  onto the real ball 
 with surface S , then RV D

 

 

 can be expressed by 
the integral  

4

4

5 4 4

0

1
5 4

5 d d ,

with , if d 1.

R

R x

S

x

S

V D r r v

v V D







 

 



1 2 3 4
0 0 0 0 0

5 d d d d d
R r r r r

r v x v x v x v x

      (36) 

A rectangular volume with the same numerical value 
is given by 

 .             (37) 

This integral is an analogue to the “quadrature of the 
circle”. Unfortunately, it maps the volume of the Lie ball 
not to a cube, but to the cuboid 
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 1R v v v v  

d d

5   .            (38) 

The infinitesimal volume element xr   of integral 
(36) (e.g. at ) is accordingly mapped to the 
infinitesimal volume element of integral (37) 

, 1,r x 

1 2 3 4d d d .x v x v x

 

0

d drv x v             (39) 

Consequently, to obtain an isotropic volume element, 
the coordinate in the radial direction must be replaced 
(rescaled) according to 

1
5 4

5 5d .V D x

4d

d dr v x          (40) 

Therefore, to extend the 4-dimensional volume ele- 
ment x  to a five-dimensional Cartesian isotropic vol- 
ume element 5d x , we have to multiply 4d x  by the 
right hand side of relation (40). This adds a factor of  

 
1

5 4V D 2 to  . 

The fifth dimension also adds a factor to the norma- 
lization of the projection operator, but for the Lie ball of 
radius 1 this factor is equal to 1, as can be seen by in- 
spection of integral (37). 

The infinitesimal volume element now refers to the 
full -symmetric manifold , but remember 
that the original manifold  is subspace of 

 5, 2SO ̂
 ̂  that is 

generated by rotations around four rotational axes instead 
of five. Therefore, the volume of   is smaller by a 
factor equal to the volume of the quotient group  

   5 SO
4S

   

4SO , which is isomorphic to the real unit 
sphere  in five dimensions (cf. e.g. [18]). Hence, 

  4ˆ V S .            (41) V V 

However, there is no indication that the perturbation 
algorithm excludes the integration over the direction of 

5x . Therefore, we cannot do other than keep this inte- 
gration, together with the corresponding normalization  

volume . Keeping the five dimensions of the   ˆV 



P q

S

   

volume element means that on  we integrate through 
the P-q boundary (on an integration path that connects 

 with ). Thereby we add up more points of the pa- 
rameter space than the one-to-one relation between the 
parameter space and the state space allows. But, as indi- 
cated above, these additional point are valid parameter 
combinations provided that the timelike components are 
determined “automatically”. This is indeed the fact, be- 
cause the integration variables are the space-like compo- 
nents, whereas the timelike components are determined 
from them via the mass shell relations. If we perform the 
same five-dimensional integration in the  matrix ele- 
ment (12), we add up multiple copies of states, with mul- 
tiplicity given by the volume of 5 4SO

 

SO . We can 
compensate for the extra copies by simply adjusting the  

normalization of each state by a common factor and in- 
clude this factor beforehand in the infinitesimal volume 
element. This adds a factor of 41 V S 2 to  . 

This is a trick that works well with a projection oper- 
ator that integrates with equal weights over the full para- 
meter space. But it conceals the fact that we are evaluat- 
ing a five-dimensional integral over a basically four-di- 
mensional manifold. This discloses an inherent weakness 
in the perturbation algorithm of QED, which becomes 
obvious when the first order term is iterated: The eva- 
luation of higher order terms involves contractions (per- 
mutations) of creation and annihilation operators. There- 
by the structure of the projection operator gets lost and 
may become replaced by one of the notorious divergent 
loop structures of QED. Then the extra integration th- 
rough the P-q boundary cannot be compensated for as 
easily as before. It becomes visible as an extra degree of 
freedom, leading to ill-defined integrals, which call for 
another trick to “regularize” them. (A regularization me- 
thod, based on distribution theory, can be found in Scharf 
[10].) The insight into the mechanism that may lead to 
these divergences points out a way to solve the diver- 
gence problem right at its source—but that means re- 
engineering the perturbation algorithm, which is not the 
subject of this paper. 

So far we have ignored spin degrees of freedom. When 
we include spin, the number of possible intermediate 
two-particle states is extended by a factor of 4, due to the 
2 × 2 spin states of the electrons. In a scattering experi- 
ment, additional states open up additional channels for 
transitions. Therefore, the empirical value of the coupling 
constant   should be four times larger than the value 
of 2 , calculated without spin degrees of freedom, in- 
dicates. To allow for a comparison with the empirical 
value, we therefore add a factor of 4 to 2 . This is a 
somewhat heuristic argumentation. A more in depth dis- 
cussion would probably require a precise analysis of ex- 
perimental setups, which at present is beyond the au- 
thor’s capabilities. 

When we replace the total and relative momentum by 
the individual particle momenta  and , the Jaco- 
bian 

1p 2p

 
 1 2

,

,

P q

p p




2

                (42) 

contributes a factor of 2 to the infinitesimal volume 
element. 

Collecting all factors results in a total weight factor 
  of 

      
1

5 4 548π .V D V S V Q        (43) 

Expression (43) is identical to Wyler’s semi-empirical 
formula, which here has been derived by reverse en- 
gineering the perturbation algorithm of QED. 
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Finally, we map the normalized volume element, con- 
structed on the bounded realization, into the unbounded 
realization by a stereographic projection , :T x p

3 54

5 5 5

, , , .
1

x xx1 2

5 5

,
1 1 1 1

x x
p

x x x


     x x


  

2 5d

    (44) 

The transformation (44) is a conformal mapping. The 
proof is by writing down (44) for an infinitesimal cube. 
Therefore, the isotropic volume element x

2 5d p
5 2

 is map- 
ped onto the isotropic Cartesian volume element  
in . The value of   is not touched by this mapping. 
(A more intuitive, though less elegant, way would be to 
replace the unit Lie ball by a Lie ball with radius  and 
then let .) 

R


  V Q

 

R
The volumes  and  in Wyler’s for- 

mula (43) have been calculated by Hua [16]. With 
 5V D 5

3
5 8π

3
V Q 

 

                (45) 

5
5

4

π

2 5!
V D 


              (46) 

 
2

4 8π

3
V S                  (47) 

we obtain 
1 45

4 4

9 π 9

8π 2 5! 16π

1 13

 
  


1 4

3

π

120

7.03608245.

 
 
    (48) 

This value agrees up to a factor of 0.9999995 with the 
experimental (low energy) value of  , which is the 
reciprocal of 137.035999084 (51) [19]. 

Note that, while deriving Wyler’s formula, we have 
not touched the integrand of integral (12), which contains 
the “physics” of the S matrix. The whole calculation was 
based on the geometrical properties of the parameter 
space only, without any direct involvement of the state 
space. The operations on the parameter space, especially 
the mapping onto a finite domain and back onto the in- 
finite momentum space, followed transparent mathema- 
tical rules. Therefore, we can be sure that we did not in- 
advertently modify the physical contents of the S matrix. 

The extremely close agreement of 2  with the (low 
energy) empirical value of   is a strong experimental 
indication that the (low-energy) “physical” two-particle 
state space of elastic e-e scattering in fact matches an ir- 
reducible two-particle representation (of identical, mas- 
sive, spin-1 2  particles) of the Poincaré group. Since 
Joos’s paper [20] on the representations of the Lorentz 
group, these representations have been generally known. 

Moreover, the numerical value of   can be regarded 
as a kind of checksum that double-checks the decisive 
steps of the reverse engineering procedure presented 

above. In fact, the individual elements of Wyler’s for- 
mula helped the author more than once to avoid dead 
ends. 

The volume element on  still has only five dimen- 
sions, compared to six for the volume element 1 2  
in the expression (12) of the  matrix. This shortfall 
can easily be resolved, without affecting the  matrix, 
by simply extending the volume element of  to a six- 
dimensional one. This is because, in a two-particle scat- 
tering process, we can always orient the reference frame 
in such a way that the sixth momentum component of the 
incoming state is identically zero. So a six-dimensional 
volume element in (12) has only the “cosmetic” advant- 
age of making the  matrix look explicitly covariant. 


d dp p

S
S



S

π

Wyler’s formula defines a geometrical factor that re- 
lates an irreducible two-particle representation of the 
Poincaré group to a two-particle product representation, 
just as  relates the circumference of a circle to its dia- 
meter. In relating this geometrical factor to the empirical 
fine-structure constant, we have to keep in mind that the 
latter is determined experimentally. Therefore, all orders 
of the perturbation series, including non-elastic processes, 
contribute to its value. The accumulation of these con- 
tributions is described by the renormalization group. This 
leads to a weakly energy dependent “effective” coupling 
constant—the “running coupling constant”. At low ener- 
gies, and depending on the experimental setup, nonelastic 
contributions of “infrared photons” can be kept well 
under control. Therefore, the fine-structure constant mea- 
sured by low-energy e-e scattering comes close to the 
calculated value of the coupling constant for elastic scat- 
tering. This explains the success of Wyler’s formula in 
reproducing the empirical value of  . 

7. Angular Momentum and Entanglement 

Although we have identified the two-particle state space 
as an irreducible representation of the Poincaré group, it 
is not yet clear why the intermediate states in the S 
matrix are entangled. What explains the obvious absence 
of simple (separable) product states in the intermediate 
states? 

2Remember that we have based the calculation of   
on the observation that there is an internal rotational de- 
gree of freedom. This corresponds to an internal angular 
momentum of a two-particle state. 

Irreducible representations of the Poincaré group are 
characterized by eigenvalues of the invariant (Casimir) 
operators (see e.g. Schweber [21])  

P p p                (49)  

and 

1
, with .

2
W w w w M p  

         (50) 
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Here p  and M 

p

 are the operators of four- 
momentum and four-dimensional angular momentum, 
respectively. 

To define a basis of the state space of an irreducible 
representation, we have to select a complete commuting 
set of operators. Such a set consists of the momentum 
operators   and one of the components of w , say 

pw
p

, the component of the angular momentum operator in 
the direction of  . The states of this basis can then be 
labeled by the quantum numbers of p  and pw . pw  
is the generator of rotations with p  as the rotational 
axis. To give a two-particle state the property of an 
eigenstate of pw

 p
p k

, it is required that this state be a linear 
combination of all (pure) product states that can be 
reached from a given product state by such a rotation. 
This necessarily gives a two-particle base state an en- 
tangled structure. (Therefore, the separable states (13), 
although used to generate irreducible two-particle states, 
do not form a basis of an irreducible two-particle state 
space.) 

Entanglement correlates the individual particle states 
within the two-particle state. Obviously, it is this corre- 
lation that is observed as electromagnetic interaction. 

8. Vector Potential 

In Feynman’s formulation of the perturbation algorithm, 
the electromagnetic field operators have a surprisingly 
marginal role. In fact, Feynman deliberately eliminated 
these operators from the algorithm, to formulate it “as a 
description of a direct interaction at a distance (albeit de- 
layed in time) between charges” [7]. This underlines the 
auxiliary role of the vector potential within QED. 

In setting up the perturbation algorithm, the Dirac equa- 
tion of the free electron is modified by adding a “quan- 
tized vector potential” to the momentum, in the sense of 
a “minimal coupling to the electromagnetic field”. Wi- 
thin the perturbation algorithm, the vector potential then 
obviously has the sole task of generating entangled states 
from incoming states. After having accomplished this, it 
is eliminated. 

Based on this simple functionality, the reverse engi- 
neering approach must understand the quantized vector 
potential as a sophisticated mathematical tool with the 
following properties: 

a) It modifies the Dirac equation by a “bookkeeping” 
operator that stands for the “potential” that the state 

 may be changed, to become again a solution of 
the Dirac equation, but with the momentum  . 

b) This change becomes active when and only when 
the operator  encounters its counterpart  a k  †a k . 

The intended(!) result is that within the perturbation 
algorithm, two (incoming) single-particle states are map- 
ped onto an entangled two-particle state with the same 

total momentum as the incoming states. In this way a 
quantum mechanical transition from an incoming separ- 
able product state to a state of the corresponding irredu- 
cible two-particle representation is described. 

The fact that a k
p

p

 enters as a “perturbation” to the 
momentum  in the Dirac equation, rather than, e.g., to 
the  -term, explains why the S matrix contains  - 
matrices, something which, in a projection operator, is 
somewhat unexpected. The strict pursuit of this per- 
turbation ansatz, necessarily places the  -matrices in 
the S matrix. The details can be found in any good text- 
book on QED (see e.g. Schweber [22]). 

9. Virtual Particles, Vacuum Fluctuations, 
and All That 

Feynman coined the term “virtual quantum” in his 1949/ 
1950 papers. Later it was replaced by “virtual particle”. It 
corresponds to the c-number that is left when the creation 
and annihilation operators of the same particle type are 
permuted. In Feynman graphs, these c-numbers are re- 
presented by internal lines connecting two vertices. In the 
momentum representation, these c-numbers are essen- 
tially   functions that ensure momentum conservation 
between two vertices. 

In evaluating S matrix elements, Feynman used the 
commutation relations to shift the creation and annihi- 
lation operators through the expression of the matrix ele- 
ment, until they hit the vacuum state and thereby anni- 
hilate themselves. In higher orders of the perturbation se- 
ries, this leads to more and more “virtual particles”. 

The notion of “virtual particle” has triggered specu- 
lations about the “physical” nature of virtual particles. It 
has been tried to give virtual particles some reality by 
considering them as particles that have “left their mass 
shell”. It has even been argued that, because of Heisen- 
berg’s uncertainty principle, virtual particles may be- 
come “real” for short periods of time. (Ignoring the fact 
that this principle refers to particles, not to   func- 
tions.) Together with the conviction that QED is the 
prototype of a quantum field theory, such ideas, although 
unsubstantiated, have strongly influenced the way we 
still think about QED and particle physics in general. 
Thereby they have unfortunately clouded our view of the 
comparatively simple mathematics of the perturbation 
algorithm for more than six decades. 

The foregoing analysis is fully in line with Feynman’s 
original notion of a virtual quantum, and it is evident that 
in a simple and transparent product state space there is no 
room for speculations about   functions becoming par- 
ticles, or “physical particles” being “dressed” by clouds 
of particle/antiparticle pairs “created from the vacuum”. 

The “vacuum state” used in the Fock space formalism 
is a symbolic state that only in connection with creation 
operators acting on it has a counterpart in physical reality. 
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By reverse engineering, we have found that the “phy- 
sical” state space is nothing other than a two-particle sub- 
space of the Fock space. Therefore, in QED there is no 
“physical” vacuum other then the (symbolic) vacuum of 
the Fock space. 

A last remark concerns “vacuum fluctuations”. There 
are “vacuum graphs”, which have internal lines, but no 
external (incoming or outgoing) lines. Attempts have 
been made to understand these graphs as manifestations 
of quantum mechanically caused “vacuum fluctuations”. 
The mathematical contents of these graphs (in the mo- 
mentum representation) are essentially a product of   
functions, whose arguments are momenta. Therefore, 
they provide us, if at all, with the insight that, even when 
no particles are present, the principle of momentum con- 
servation is observed. 

Regarding the wide-spread opinion that the Casimir ef- 
fect “proves” the existence of vacuum fluctuations, the 
reader is referred to Jaffe’s article [23]. 

10. Higher Orders 

Our analysis of QED has so far been based on the first 
order of the perturbation series. Higher orders are ob- 
tained by iterating the first order operator. Therefore, they 
are mathematically completely determined by the proper- 
ties of the lowest order. 

The iteration process is inherent to every perturbation 
approach. What is special about a system of fermions, is 
that the anticommutation relations allow interchanging 
the creation and annihilation operators. Feynman has ta- 
ken advantage of this property to set up practicable rules 
for evaluating S matrix elements. In higher orders, these 
rules lead to a large variety of topologically different 
Feynman graphs. Some of them have been interpreted as 
“virtual pair creation” or “vacuum polarization”. It is evi- 
dent from our analysis of the two-particle S matrix that 
intermediate states are nothing other than two-particle 
states, which do not give space for any additional pairs of 
particles “created from the vacuum”. So these interpreta- 
tions merely give certain topological properties of Feyn- 
man graphs catchy names. 

11. Discussion 

The reverse engineering approach has led us to more than 
just a description of the perturbation algorithm. The new 
insights into its mathematics, gained in this way, allows 
calculating the electromagnetic coupling constant  . 
The close agreement of the calculated with the empirical 
value provides evidence that the disclosed mathematical 
structure indeed reflects physical reality—more than cur- 
rent concepts of interacting fields do, which leave the 
values of coupling constants undetermined. It reveals that 
in the perturbation algorithm of quantum electrodyna- 

mics, the S matrix has the function of a projection 
operator onto intermediate irreducible two-particle states, 
with   acting as a normalization factor for these states. 

With this understanding of the mathematical structure 
of the S matrix, we can say: The S matrix describes a 
transition from a separable product state of two incoming 
electrons (preparation) to an intermediate irreducible 
two-particle state (propagation) and then back to a se- 
parable product state of two outgoing electrons (analy- 
sis). 

The formation of irreducible intermediate states can be 
understood as the manifestation of a general rule of re- 
lativistic quantum mechanics: An isolated quantum me- 
chanical system is described by an irreducible represen- 
tation of the Poincaré group. Therefore, the physical ef- 
fects described by the S matrix can be fully explained by 
elementary principles of relativistic quantum mechanics. 

Whereas in the traditional interpretation of QED, the 
entanglement of two-particle states is caused by an ex- 
change of “virtual gauge particles”, it has been shown 
that entanglement is a natural property of the state space 
of an irreducible two-particle representation of the Poin- 
caré group. Since we have not touched the mathematical 
structure of QED, we have thereby traced back the gauge 
invariance structure of QED to basic rules of quantum 
mechanics and Poincaré invariance. However, now gauge 
invariance goes together with a certain value of the coup- 
ling constant, and we are lucky enough that this value 
matches the (low energy) value of the empirical fine- 
structure constant. 

Wyler’s work has been of crucial importance for the 
foregoing analysis, because it has guided the author to 
valuable mathematical tools that used to be outside the 
horizon of a theoretical physicist. Therefore, some of the 
objections that in the past were raised against Wyler’s 
mathematics should be commented on. A major objec- 
tion was that Wyler used certain bounded spaces with a 
radius equal to 1. It was argued (Robertson [13]), that 
“there is no known reason for setting ”, and it was 
suspected that a different radius would yield a different 
value for 

1r 

 . Another point of criticism was that Wyler 
could not clearly specify how the fourth-root factor en- 
tered his calculation. 

From the derivation of Wyler’s formula presented here, 
it should be clear that it does not depend on the radius of 
the Lie sphere. The reason is that by Equation (18) the 
weight factor 2  is defined as the quotient of two in- 
finitesimal volume elements on the surface of the two- 
particle mass hyperboloid. Whether we map these vol- 
ume elements to a Lie sphere with radius 1 or any other 
radius or do not map it at all, does not have any influence 
on this quotient. Speaking generally, the volumes in Wy- 
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