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ABSTRACT 

Various investigators such as Khan ([1-4]), Khan and Ram [5], Chandra [6,7], Leindler [8], Mishra et al. [9], Mishra 
[10], Mittal et al. [11], Mittal, Rhoades and Mishra [12], Mittal and Mishra [13], Rhoades et al. [14] have determined 
the degree of approximation of 2π-periodic signals (functions) belonging to various classes Lip   ,Lip r

Lip   ,r t

, 

 and W L  of functions through trigonometric Fourier approximation (TFA) using different 

summability matrices with monotone rows. Recently, Mittal et al. [15], Mishra and Mishra [16], Mishra [17] have ob-
tained the degree of approximation of signals belonging to 

  ,t r

 ,Lip r -class by general summability matrix, which gen-

eralizes the results of Leindler [8] and some of the results of Chandra [7] by dropping monotonicity on the elements of 
the matrix rows (that is, weakening the conditions on the filter, we improve the quality of digital filter). In this paper, a 

theorem concerning the degree of approximation of the conjugate of a signal (function) f belonging to    ,Lip t r

 ,E q

  ,Lip t r  ,E q

 

class by  summability of conjugate series of its Fourier series has been established which in turn generalizes the 

results of Chandra [7] and Shukla [18]. 
 
Keywords: Signals; Conjugate Fourier Series; Trigonometric Fourier Approximation; Degree of Approximation; 

-Class;  Summability 

1. Introduction 

The theory of approximation is a very extensive field and 
the study of the theory of trigonometric approximation is 
of great mathematical interest and of great practical im- 
portance. Broadly speaking, Signals are treated as func- 
tions of one variable and images are represented by func- 
tions of two variables. The study of these concepts is  

directly related to the emerging area of information tech- 
nology. Khan [1-4] and Mittal, Rhoades and Mishra [12] 
have initiated the studies of error estimates En(f) through 
trigonometric Fourier approximation (TFA) using dif- 
ferent summability matrices. Chandra [7] has studied the 
degree of approximation of a signal (function) belonging 
to Lip α-class by (E,q) means, q > 0. 

Generalizing the result of Chandra [7], very interesting 
result has been proved by Shukla [18] for the signals 
(functions) of 

*The authors declare that they have no competing interests. All the 
authors contributed equally to this work and they read and approved the 
final manuscript. 

 ,Lip r -class through trigonometric 
Fourier approximation by applying (E,q) (q > 0) summa- 
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 bility matrix. f

Let  be a given infinite series with sequence  
0 nn
u




of its partial sums ns . 

The  transform is defined as the  partial  ,E q thn

 ,E q .q
nE


sum of  summability and we denote it by   

If 

   q n k
k

nE q s s
k

  n 
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u



  ,E q

 

0

1

1

n

n n
kq 




  as ,  (1.1) 

then the series  is said to be  summable  

to a definite number “s” [19]. 
A signal (function) f x Lip  if 

      for 0f x t f x O t   1, 0t  

for 0 2πx  

  (1.2) 

and  [1], if  ( ) , ,f x Lip r

     
1

d ,

r

O t




  ,t
  ,

2π

0

0 1, 1, 0.

r
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r t

 
 


   

         (1.3) 

Given a positive increasing function  
 f x Lip t r , if 

      d ,

r12π

0

1, 0.

r
f x t f x x

r t

 
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 O t
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     (1.4) 

We observe that 

      ,

for 0 1, 1, 0.

t tLip t r Lip r

r t

  

L :



 

   
 (1.5) 

The -norm of a signal  f R R  is defined by  

  sup : .f f x x R

 

rL

 

The -norm of a signal is defined by 

 
1

d , 1
r

x x r   

:

2π

0

1

2π

r

r
f f 

  .    (1.6) 

The degree of approximation of a function f R R
n

 
by trigonometric polynomial n  of order “ ” under sup 
norm 

t


 is defined by Zygmund [20]. 

    sup :n nt f t x f x x R


     

and  nE rf of a function f L is given by 

     minn
n

E f f ;n r
x t f x

 ;nt f x



      (1.7) 

in terms of n, where  is a trigonometric poly- 
nomials of order “n”.  

This method of approximation is called Trigonometric 
Fourier Approximation (TFA) [12]. 

Let f x 2π be a -periodic signal (function) and 

Lebesgue integrable. The Fourier series of x

 

 is 
given by 

 0

1 0

( cos sin )
2 n n n

n n

a
x a nx b nx A x

 

 

    
thn  ;

f  (1.8) 

with  partial sum ns f x

   
1 1

cos sinn n n
n n

b nx a nx B x
 

 

  
qE

 called trigonometric 
polynomial of degree (order) n of the first (n + 1) terms 
of the Fourier series of f. 

The conjugate series of Fourier series (1.8) is given by 

.    (1.9) 

We note that n  is also trigonometric polynomial of 
degree (or order) “n”. 

We use the following notations throughout this paper 

        ,x t t f x t f x t     

 

 

0

1 1
( ) cos

22π 1 sin
2
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n k
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n k
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G t q k t

t kq





       
  

 . 

2. Known Results 

Chandra [7] has studied the degree of approximation to a 
function  0 1f Lip    , , 0E q q 

2π
Lip

 by    of Fou- 
rier series (1.8) by proving the following theorem. He 
proved: 

Theorem 2.1 The degree of approximation of a peri- 
odic function f(x) with period  and belonging to the 
class   by Euler’s mean of its Fourier series is 
given by 

     2max q
nf x T x O n          (2.1) 

 where qT x thnn  is the  Euler mean of order q > 0 of 
the sequence  ns  of partial sums of the Fourier series 
(1.8) of the function f at a point x in  π,π . 

Shukla [18] improved Theorem 2.1 by extending to a 
function  ,f Lip r ,E q

 ,

 by   matrix means of the 
conjugate series (1.9) of its Fourier series (1.8). He 
proved: 

Theorem 2.2 Let f Lip r , 0 1  1r 
2π

,  be a 
-periodic and Lebesgue integrable function of “t” in 

the interval  π,π

   

. If  

 
1

1

0

d
rt

r
u u u O t  

 
 


   

         (2.2) 

and 

 
1π

1

1

d ,

r
r

u u u O t      
 

 
     (2.3) 

 2 1s where   is an arbitrary number such that  
1r  1 1 1r s  

, 
s being conjugate to  with , then the 
degree of approximation of the conjugate to a function 
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 , f Lip r  0q , by  means, , of the conju- 
gate series (1.9) of its Fourier series (1.8) will be given 
by 

,E q

   
1

2 2x ,rf x x O n


      
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q
nE
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      (2.4) 

where  is nth  mean of the sequence 

n

x
s x  of partial sums of the conjugate series (1.9) of the 
Fourier series (1.8) of the function f at every point x in 
 π, π  at which 
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π

0

1

2π
cos d

2

t
f x   t t
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f L t  ,E q

  ,Lip t r
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        (2.5) 

exists. 

3. Main Result 

The purpose of the present paper is to extend Theorems 
2.1 and 2.2 on the degree of approximation of signal 

 conjugate to a 2π-periodic signal  ,

 ip 

  ,f x

,r  class by  summability means  

with a proper set of conditions. More precisely, we 
prove: 

Theorem 3.1 
If conjugate to a 2π-periodic signal (function) f  

belonging to -class, then its degree of ap-  

proximation by   means of conjugate series of 
Fourier series (1.9) is given by 
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1
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  (3.1) 

provided positive increasing ξ(t) satisfies the following 
conditions 
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and 

 t t  is non-increasing in “t”,     (3.4) 

where   is an arbitrary number such that  
 1 1   0 1r s s , , 1 , condition (3.2) 

and (3.3) hold uniformly in x and  is the nth 

1 1  r  
q

nE  ,E q  
means of the series (1.9) and the conjugate function 
 f x  is defined for almost every x by 
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Note 3.2 Using condition (3.4), we get  

 
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Note 3.3 Also, if 
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1 1n n
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0 π,t

, then our main  

Theorem (3.1) reduces to Theorem 2.2, and thus general- 
izes the theorem of Shukla [18]. 

Note 3.4 The transform (E, q) plays an important role 
in signal theory and the theory of Machines in Mechani- 
cal Engineering. 

4. Lemma 

For the proof of our theorem, we need the following 
lemma. 

Lemma 4.1 [18]: For  
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Now, we consider 
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Applying Hölder’s inequality, using the fact that  

    ,x t Lip t r    , ,f Lip t r  condi-  due to 

tion (3.2) and Lemma 4.1, we have 
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in view of increasing nature of  1y y 1 1 1,r s ,  
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, Second Mean Value  

Theorem for integrals and Note 3.2. 
Collecting (5.1) - (5.3), we get 
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Now, using the -norm of a function, we get  
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This completes the proof of Theorem 3.1. 

6. Corollaries 

The following corollaries can be derived form Theorem 
3.1. 

  ,t tCorollary 6.1: If   0 1    then the class  

   ,Lip t r 1r   ,Lip r ,  ,  reduces to the class 

1 1r    and the degree of approximation of a func-
tion  f x 2π, conjugate to a -periodic function f be-
longing to the  ,Lip r
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For if not the right hand side of the above equation will 
be O(1), therefore, we have 
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This completes the proof of Corollary 6.1. 
Corollary 6.2 If  t t   for 0 1 
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 and  

 in Theorem 3.1, then f Lip
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Thus, we have 
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This completes the proof of Corollary 6.2. 

7. An Example 

Consider an infinite series 
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The nth partial sums s  of series (7.1) at 0x   is 
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 does not exist. Therefore the series (7.1)  

is non-convergent. 
Now, we have the (E,q) transform of (7.1) is given by 
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Here,  does not exist. Hence the series (7.1) is  

not summable, while the series (7.1) is product summa-
ble. 

8. Conclusion 

Several results concerning to the degree of approxima- 
tion of periodic signals (functions) belonging to the 
Lipschitz class by matrix (E,q) operator have been re- 
viewed. Further, a proper set of conditions have been 
discussed to rectify the errors. Some interesting applica- 
tion of the operator (E,q) used in this paper pointed out in 
Note 3.4. An example has been discussed also. 
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