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Abstract 
 
In this paper, we propose a method for extraction of signals correlated with noise in which they are buried. The 
proposed extraction method uses no a-priori information on the buried signal and works independently of the 
nature of noise, correlated or not with the signal, colored or white, Gaussian or not, and locations of its spectral 
extent. Extraction of buried correlated signals is achieved without averaging in the time or frequency domain. 
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1. Introduction 
 
Extraction of buried signals remains to date an important 
challenge for investigation purposes in different areas of 
science as underwater acoustics, wave propagation, 
transmission, astronomical observations, earth observa-
tion, data mining, etc (see, for example, [1-4] and a 
number of references in [5,6]). Signals taken in ex-
tremely poor conditions or corrupted by various natures 
of noise in different systems are encountered in practice. 
This noise addition correlated or not with the desired 
signal degrades significantly the quality of information. 
In some situations, the signal is totally buried by various 
sources of noise. 

The effect of noise can be reduced but at the expense 
of the bandwidth and/or resolution which is, in most 
cases, undesired. Over-sampling and multi-sampling 
techniques and their properties are well known by a long 
time and are applied in several applications where detail 
preservation under largely unpredictable noise statistics 
is mandatory (seismics, evoked potentials and so on). 
Such methods in some practical settings (images with 
linear patterns, for example) can remove noise without 
significantly impacting the desired signal. Multi-channel 
and multi-dimensional signals have a lot of features to be 
exploited. 

It is crucial to notice that, in fact, these features are not 
suited to buried signals. Moreover, no a-priori informa-
tion on the buried signal and the nature of noise with 
which it is correlated, is known. Notice also that by bur-
ied signals, we mean signals defined for low or extreme 

low signal-to-noise ratio and the terms  extraction of 
signals buried in noise, mean extraction of  clean spec-
tra of buried signals in noise. 

We proposed in [5,6] two non-parametric and  
equivalent extraction methods of buried signals assumed 
uncorrelated with noise. These equivalent methods are 
called respectively “modified frequency extent denoising 
(MFED)” and “constant frequency extent denoising 
(CFED)”. Here, the frequency extent is the interval 
[0, ]ef  where ef  is the sampling frequency of the bur-
ied continuous-time signal to be extracted. The first pro-
cedure (MFED) is based on modifying the sampling fre-
quency and the second one (CFED) is suited to a collec-
tion of available sample noisy processes. 

On the other hand, extraction of buried signals corre-
lated with noise is of questionable interest (see, for ex-
ample, [7-11] in different areas of science). In this work, 
we extend results of the aforementioned extraction 
method, CFED, to the presence of noise correlated with 
buried signals, maybe non-Gaussian, which is a fact and 
an issue. Notice that CFED extraction method is chosen 
for its implementation simplicity. Advantages of pro-
posed extraction of buried signals are: 

1) no a-priori information on the buried signal is used, 
2) extraction works without averaging or smoothing in 

the time or frequency domain, 
3) extraction is achieved independently of the nature 

of noise, colored or white, Gaussian or not, correlated or 
not with the signal, and locations of its spectral extent 
and, 

4) straightforward extraction of signals buried in cor-
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related noise (noise whose samples are correlated). 
Performances of the extraction method via examples 

of buried signals correlated with white and/or colored 
noise are given. Comparative results with other methods 
[3,4] are included. 
 
2. Fundamentals 
 
In this section, we recall some definitions and principal 
results reported in [5,6]. 
 
2.1. Definitions 
 
2.1.1. Signal Representation 
Consider a band-limited signal  buried in zero- 
mean wide sense stationary noise  observed by 
means of , defined by, 

)(ts
b )(t

)(tz

.)()(=)( tbtstz                 (1) 

We denote by P(f) the band-limited spectrum of s(t), 
i.e., 

min max( ) = 0, | | ,P f f f f            (2) 

where minf  and maxf  are bounds of the spectral sup-
port of . )( fP

A finite observation of  in the interval of length 
T, chosen so that max , available at the output of a 
low-pass filter of cut-off frequency 

)(tz
1Tf 

maxf  yields, 

( ) ( ), [0, ]
( ) =

0, otherwise,
T T

T

b t s t t T
z t

 



       (3) 

where  and  represent respectively the ad-
ditive noise (white or colored) and the signal observed in 
the time interval of length T. 

)(tbT )(tsT

By considering the instants =n e  where max  
is the sampling frequency, we can define the dis-
crete-time process  with . 

t n f 2ef f

)(nzN eTfN =
 
2.1.2. The Sample Power Spectral Density (SPSD)[5] 
Given 1)}(,(1),(0),{ Nzzz NNN  , we can form the 
estimate, 

2
1

( , , ) = D ( ( )) ,e Nf f T FT z n
T

         (4) 

where DFT  denotes Discrete Fourier Trans-
form of . The estimate  depends on 
the frequency, f, the sampling frequency, fe, and the 
length of the observation interval, T. 

))(( nzN

)n(zN ),,( Tff e

It is crucial to notice that (4) is not a power spectral 
density in the usual sense. Here (4) is defined as the 
“Sample” Power Spectral Density or the sample spec-
trum and in [5], we reported conditions under which (4) 
can be used literally without ensemble averaging or 
smoothing for extraction of buried signals independently 

of the nature of noise and locations of its spectral extent. 
 
2.2. CFED Extraction Method 
 
Here, we have a collection of   realizations of dura-
tion T of a noisy process so that the length of the total 
observation interval is T . These   realizations de-
noted  where )()( tz p

T 1, 0,= p  of the process are 
concatenated in order to form the process, 

.            (5) )(=)( )(
1

0=

pTtztz p
T

p
T 





 
2.2.1. Sample Spectrum of Noise 
We found that the sample spectrum of noise obtained by 
Fourier transformation of (5) is given by, 

,),),/(()(=),,(
1

0=

TfTpfTff ep
p

e 





 (6) 

where ),),/(( TfTpf e   are translated copies of the 
original sample spectrum of noise whose components are 
spaced with the mutual distance  on the frequency 
axis. 

T1/

It is crucial to notice that scaling multiplication factors 
)( p  in (6) are defined by [5], 

.1=)(
1

0=




p
p



              (7) 

Clearly, )( p  are reduction factors since 1<)(, pp . 
Here (7) is bounded by, 

1

=0

min( ( )) ( ) max( ( )),p p p
p



       


    (8) 

where min( ( ))p   and max( ( ))p   denote respec-
tively the minimum and the maximum values of )( p . 

Since )( p  are arbitrary reduction factors, we can 
for the sake of simplicity and without loss of generality, 
consider that, p ,  1/=)(p . Factors )( p  re-
duce indifferently translated copies of the original spec-
trum of noise independently of their nature (white or 
colored, Gaussian or not) and act indifferently at all fre-
quencies. 
 
2.2.2. Spectral Distribution 
As translated copies of the original spectrum of noise 

),),/(( TfTpf e   are shifted by )1/( T  with re-
spect to each other (see (6)), the resulted sample spec-
trum ),,( Tff e   will exhibit spectral lines separated 
by the mutual distance )1/( T . Hence original spectral 
lines of noise separated by the mutual distance  are 
now distributed in new 

T1/
  frequency locations created 

in each original frequency interval. 
On the other hand, the spectrum of the signal  )(tsT
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as given by the transformation of concatenated realiza-
tions (5), is specified by ),,( Tff e  . Since   zeros 
are distributed in   frequency locations created in each 
interval of length  (see [5]) then, T1/

, ff .)( ,,(=) TffT e,e             (9) 

 
2.2.3. Extraction Properties 
Extraction of the sample spectrum of the buried signal is 
obtained by decimation. This decimation by the factor 
  is applied in the frequency domain to the Fourier 
transformation of (5), i.e., 

,),,[ TD e,(=)] ffT D,( f fe         (10) 

where  represents the decimation by ][D   applied 
to . 

The signal-to-noise ratio   of the decimated spec-
trum written as a function of the signal-to-noise ratio of 
the original spectrum  is given by, 

 =                     (11) 

We have shown in [5] that increasing   (the number 
of collected sample processes) increases the signal-to- 
noise ratio   of the original noisy spectrum e . 
Moreover, the variance of extracted sample spectral es-
timates tends to zero as 

),Tf ,( f

  increases, i.e., 

.)],,([
1

=)]([
2

TffVarVar eD 
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=

, ff e
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   (12) 

 
3. Buried Correlated Processes 
 
In [5,6], we assumed that the signal and additive noise, 
independently of its nature, are uncorrelated. In this sec-
tion, we introduce correlation between the signal and 
noise in which it is buried by setting, 

,)())()(( thtnts TT         (13) 

where  represents the transfer function of a filtering 
system whose input is the stationary process 

)(th
)(tns TT )(t   

and its output is the )(tT . Here the symbol  denotes 
the convolution. 



Let us assume that we have   sample processes. By 
concatenating these realizations, we form the process of 
duration T , 

.)(
1

0=

pTtT
p







 =)(tT             (14) 

We propose hereafter to find the sample spectrum of 
(14). 
 
3.1. Expression of the CFED Sample Spectrum 
 
Let  be the Fourier transform of the impulse 
response of the filter . By using (14), the sample 

spectrum 

),,( TffH e

)(th

),,( Tff e   yielded by (4) is composed of 
respectively the filtered sample spectrum of noise and 
the filtered sample spectrum of the signal defined by, 

,),,(|),,(( 2 TffTff ee  =|),, HTff e 

=|),, HTff e 

 

and, 
,),,(|),,(( 2 TffPTff ee   

and the cross-products of their amplitude spectra. This 
means that the sample power spectrum ),,( Tff e   as 
defined by (4) is given by, 
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where  and  are amplitude 
spectra of  and . Here  denote 
the complex conjugate of 

S ),,(* Tff e 
)()( thtbT  *x

x . 
 
3.2. Decimated CFED Sample Spectrum 
 
The decimated N-point sample spectrum applied to 

)T,,( ff e  , as depicted by (15), yields, 
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where D  is the  -decimation applied to  . 
Here, it is crucial to notice that our aim is to find the 

optimal form under which expression of the CFED sam-
ple spectrum is written only as a function of the sample 
spectrum of the signal and noise independently of any 
correlation between the signal and noise and without 
averaging in the time or frequency domain. 

Since the sample spectra of the signal and noise are 
given by, 

[ ( , ,

[ ( , ,

D f

D f





)] = ( , , )

1
)] = ( , , ),
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then (16) becomes, 
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Now, let us write the cross-products as a function of 
their Fourier coefficients. Let k  be the Fourier coeffi-
cient of the amplitude spectrum e  of the sig-
nal and let k

),,( TffS
  be the Fourier coefficient of the ampli-

tude noise spectrum ),, Tff e( . As, 
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Since k  and  are respectively Fourier coeffi-
cients of  and 

kc
)T,, ff e( ),,( Tff e , (19) becomes, 
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By using (20) and noting that, 
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k
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the sample spectrum, as given by (18), yields therefore 
explicitly, 

1
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3.2.1. The Optimal Reduction Factor 
In the following, we derive the expression of optimal 
reduction factor representing the optimal number   of 
concatenated sample processes under which contribution 
of cross-products in (18) are made negligible. This 
means that extracted spectrum consists, under this condi-
tion, only of the spectra of the signal and noise. 

Coefficients of the last right-hand side of (22) can be 
put under the form, 

*

* * = 1 k k
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 
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Let  and note that, *)/(/= kkkkk  

,||1|1| kk                  (24) 

where k  rewritten as a function of k  and k  
yields, 
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By setting , (25) becomes, *=/ kkkc 
*
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            (26) 

Now, let us find the condition that defines the minimum 
value of   under which (26) is smaller than unity, i.e., 

2 k

k

c


1.                 (27) 

We propose to find   as a function of the sig-
nal-to-noise ratio of the   collection of processes. The 

signal-to-noise ratio defined by , where s  
and  are respectively the mean power of the signal 
and the variance of noise, can be written under the form, 
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where k  and  are arbitrary chosen coefficients and, kc
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where  and  represent respectively the number of 
spectral components of the signal and noise. 

S N

It is easy to see that  is bounded by, I

, min{ / } },s k kk S I         (30) 

where min{ / }s k   and max{ / }s k   denote respec-
tively the minimum and the maximum values of the set 
formed by ks  / , for  and 1, S0,1,=s k . 

Since k  is an arbitrary chosen coefficient and ac-
cording to (30), we can consider that, 

.=, SIk                  (31) 

Similarly, . The signal-to-noise ratio, as de-
picted by (28), becomes, 

NIc =

= .k

k

S

c N


                 (32) 

Now, the expression (27) is satisfied if, 

4
.

S

N



                 (33) 

For a useful interpretation of (33), let us express the 
optimal reduction factor   only as a function of  , 
the signal-to-noise ratio. By setting min = 4 / (S N )  , 
one finds that since  two conditions have to be 
considered: 

1</NS
1/4 NS  and . This gives, 1/NS4

min

min

1
4 / 1, 1 <

1
4 / 1, .

S N

S N


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 


 
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           (34) 

According to (33), since min  , we have, 

1
>


.                  (35) 

Here (35) depicts the optimal reduction factor   as a 
function of the signal-to-noise ratio  for which the 
condition (27) is fulfilled. 



 
3.2.2. Optimal Sample Spectrum 
According to (35), (23) yields, 
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By using (36), (22) becomes, 
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which yields, 
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


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This is an important result since expression of the ex-
tracted spectrum, as depicted by (38), can be obtained 
without the requirement based on ensemble averaging 
(see, for example, [2]) and independently of the correla-
tion between the signal and noise, Gaussian or not, white 
or colored, in which it is buried. Moreover, at the limit of 
large values of  , (38) becomes, 

max
1/

( , , ) = ( , , ).lim e ef f T f f T
 

 



      (39) 

The sample spectrum of noise, independently of its 
nature, vanishes. Extracted spectrum is identical to the 
filtered original deterministic spectrum of the signal. 
Results (39) and (38) achieve extraction of buried spectra 
of signals correlated with noise without any averaging or 
smoothing in the time or in the frequency domain. 
 
4. Method and Results 
 
4.1. Preliminary Notes 
 
The extraction method CFED, as recalled above, is based 
on the collection of different realizations of a noisy 
process. This extraction method is often chosen in prac-
tice for simplicity of its implementation. 

In one hand, it is crucial to notice that collection of 
different realizations of a process does not consist of 
multiple observations of the same deterministic signal in 
different noise realizations. Here a simple ensemble av-
erage would give the expected result. In order to see this, 
we consider, in the following,   different realizations 
of duration /T  “cut-out” from the only observed 
process of duration T . This example is motivated by the 
fact that in some real world applications, only one long 
realization of duration T  of a buried signal is available. 
Clearly, we show that transformation of a simple ensem-
ble average of these   realizations cut-out from the 
observed process does not extract the spectrum of the 
buried stationary signal (see Figure 1(c) and Figure 2(c) 
depicting spectra of the mean (ensemble average)). 

On the other hand, it is easy to see that transformation 
of the available whole process of duration T  followed 

by a decimation in the frequency domain by the factor 
  yields a sample spectrum defined by 1>  in ac-
cordance with (38) where  is signal-to-noise ratio 
(SNR) (see Figure 1(f) and Figure 2(f) depicting deci-
mated CFED sample spectra for white and colored noise). 
We show that the choice of 



  (the number of se-
quences cut-out from the only available long sequence of 
duration ) for decimation is a compromise between 
the desired extraction for which 

T
1/>  and the fre-

quency resolution T/ . Comparative results with some 
PSD estimation methods as the Welch and the Thom-
son's multitaper method [3,4] are discussed. 
 
4.2. Buried Correlated Signals with White Noise 
 
Let us consider the process defined by, 

,)n(N)(( nny N =) xN

(nxN

(2cos

w

)/ ef

           (40) 

where  is a uniformly distributed white noise of 
length  and  consists of two sinusoids 

)w

)ef

(nN

N
/0 fn

)
f(2 1ncos    with Hz and 

Hz. 
2=0f

8,1/ 4 ,1/

5=1f

yN

The sampling frequency is Hz and the obser-
vation interval is given by  s. The process 

 is now present at the input of an averaging filter 
defined by its impulse response . 
In the following we consider extraction of the buried 
signal correlated with noise by analyzing the signal 
yielded by the output of the filter 

35
99

) =[1/

)(nN

=e

=T

(h n

f

)(n
4 ,1/ 4]

 , i.e., 

,)(n) h(nN= y)(nN           (41) 

where  denotes the convolution. 
Note that any other choice of the impulse filtering 

function is possible. 
 
4.2.1. The Choice of  β
It is crucial to keep in mind that we have here a single 
realization of duration T . When “cutting-out”   
sub-processes from this available realization, we impose 
a resolution of T/  and extraction from noise is effec-
tive for 1>  where   is the signal-to-noise ratio in 
accordance with (38). This means that if we choose 

50=  for s, we have therefore a resolution 
given by 0.5 Hz and an extraction from noise for 

99=T

 0.025(> 16) dB. 
 
4.2.2. Spectrum of the Mean 
Let the signal-to-noise ratio be defined by )160.025(=   dB. 
We cut-out from )(nN , 50=  sample sequences 

 . In the Figure 1(a), one finds the 
sample spectrum of true signal . The spectrum of 
the mean (ensemble average) of these 

)}(),( (49)
/

(0)
/ nn N,{ N

)(n/xN 
  sample se-

quences is shown in Figure 1(c). It can be seen that our 
sinusoids remain buried. As mentioned above, a simple 
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ensemble average is not able to extracts buried sinusoids. 
 
4.2.3. CFED and Other PSD Estimation Methods 
Now, 50=  filtered sample processes are concate-
nated (under the form given by (14)) in order to reform 
our original filtered sequence )(nN  consisting of 

 points. We use for comparison the Welch 
method (see [12] or [13]) and the power spectral density 
using multitaper Thomson's method as described in [3] 
and the CFED denoising method proposed in this work. 
Results of the PSD Welch method are shown in Figure 
1(b). One can see that the used number of points is not 
sufficient for the PSD Welch method since depicted fre-
quency range is smaller than Hz. One finds only 
the frequency Hz. 

3465=N

5=1f
2=0f

The Thomson's multiple window method [3] uses a 
bank of bandpass filters or windows instead of rectangu-
lar ones as in the periodogram method. These filters 
compute several periodograms of the entire signal and 
then averaging the resulting periodograms to construct a 
spectral estimate. In order to minimize bias and variance 
in each window, theses windows are chosen orthogonal. 
Optimal windows that satisfy these requirements are 
Slepian sequences or discrete prolate spheroidal se-
quences [4]. In Figure 1(d), one finds the PSD yielded 

by the Thomson’s multiple window method. It can be 
seen from this plot that for the SNR = −16 dB and 

, no extraction of buried sinusoids (defined for 
Hz and Hz) is depicted. 

3465=N
2=0f 5=1f

In Figure 1(e) and Figure 1(f) results of CFED are 
represented in the frequency range [0,18] (Hz). Note 
that the spectrum is computed for the same number of 
points as in Figure 1(d) and Figure 1(e) ( ). In 
Figure 1(f), one finds the CFED decimated spectrum by 

3465=N

50= . One can see that the two frequencies of our si-
nusoids are indeed extracted from uniformly distributed 
white noise with an excellent signal-to-noise ratio. 
 
4.3. Buried Correlated Signals with Colored Noise 
 
Here we consider the output of the filter, 

,)())()((=)( nhncnxnz NNN         (42) 

where colored noise  is given by, )(ncN

,2)(0.21)(0.4)(0.23            

1)(0.452)(0.45=)(





nenene

ncncnc

NNN

NNN
 

(43) 

where  is a Gaussian white noise sequence.)(neN

 

 

Figure 1. Extraction of buried correlated signals with white noise (SNR =  dB). 16
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Figure 2. Extraction of buried correlated signals with colored noise (SNR = −17 dB). 

 
Figure 2 summarizes obtained results for SNR = 

0.017 (−17.7) dB. One finds in Figure 2(c) the spectrum 
of the mean (ensemble average). PSDs of the Welch, the 
Thomson’s multitaper method (MTM) and CFED are 
shown respectively in Figure 2(b), Figure 2(d), Figure 
2(e) and Figure 2(f). Clearly, buried sinusoids correlated 
with colored noise are indeed extracted with an excellent 
signal-to-noise ratio in Figure 2(e) and Figure 2(f) for 

50=  whereas in Figure 2(b), Figure 2(c) and Figure 
2(d), they remain buried. 

Results of Figures 1 and 2 show that CFED extraction 
method works for extraction of signals correlated with 
noise in which they are buried. This extraction, obtained 
without averaging, is independent of the nature of noise, 
white or colored, Gaussian or not. Extension of these 
results to extraction of signals in correlated noise inde-
pendently of its nature is straightforward. 
 
5. Conclusion 
 
In this work, we proposed theoretical results on extrac-
tion of signals correlated with noise in which they are 
buried. We have shown that extraction is achieved with-

out any averaging and using any a-priori information on 
the buried signal. Moreover, the proposed extraction 
method is independent of the nature of noise, correlated 
or not, correlated or not with the signal, colored or white, 
Gaussian or not, and locations of its spectral extent. 
Comparative results with other extraction methods are 
discussed and derived conclusions are in accordance with 
theoretical predictions. 
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