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ABSTRACT 

Reconstruction property in Banach spaces introduced and studied by Casazza and Christensen in [1]. In this paper we 
introduce reconstruction property in Banach spaces which satisfy -property. A characterization of reconstruction 
property in Banach spaces which satisfy -property in terms of frames in Banach spaces is obtained. Banach frames 
associated with reconstruction property are discussed. 
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1. Introduction 

Let  be an infinite dimensional separable complex 
Hilbert space with inner product , . A system  kf  

 called a frame (Hilbert) for  if there exists 
positive constants A and B such that 
  

2

1
k

k

A f f f




 2 2
, , .B f f   

The positive constants A  and  are called lower 
and upper bounds of the frame 

B
 kf , respectively. They 

are not unique. 
The operator  given by  2:  

  2,k kf c 

 

T

   1k kk
T c c




   is called the synthesis  

operator or pre-frame operator. Adjoint of T is given by  
2:T    ,  , kf f

T T 

:T   

T f  and is called the analy-  

sis operator. Composing  and  we obtain the 
frame operator  given by  S T

  1k
S f f




  , ,k kf f f 


 f 

. The frame operator S is a  

positive continuous invertible linear operator from  
onto . Every vector  can be written as: 


1

Reconstruction
k



1 1 , .

formula

k kf SS f




   S f f f 



 

The series in the right hand side converge uncondi- 
tionally and is called reconstruction formula for . The 
representation of f in reconstruction formula need not be 
unique. Thus, frames are redundant systems in a Hilbert 

space which yield one natural representation for every 
vector in the concern Hilbert space, but which may have 
infinitely many different representations for a given 
vector. 

Duffin and Schaeffer in [2] while working in non- 
harmonic Fourier series developed an abstract framework 
for the idea of time-frequency atomic decomposition by 
Gabor [3] and defined frames for Hilbert spaces. Due to 
some reason the theory of frames was not continued until 
1986 when the fundamental work of Daubechies, Gross- 
mann and Meyer published in [4]. Gröchenig in [5] 
generalized Hilbert frames to Banach spaces. Before the 
concept of Banach frames was formalized, it appeared in 
the foundational work of Feichtinger and Gröchenig [6,7] 
related to atomic decompositions. Atomic decomposi- 
tions appeared in the field of applied mathematics pro- 
viding many applications [8,9]. An atomic decomposi- 
tion allow a representation of every vector of the space 
via a series expansion in terms of a fixed sequence of 
vectors which we call atoms. On the other hand Banach 
frame for a Banach space ensure reconstruction via a 
bounded linear operator or synthesis operator. Frames 
play an important role in the theory of nonuniform 
sampling [10], wavelet theory [11,12], signal processing 
[2,10], and many more. For a nice introduction of frames 
and their technical details one may refer to [13]. 

During the development of frames and expansions 
systems in Banach spaces Casazza and Christensen intro- 
duced reconstruction property for Banach spaces in [1]. 
Reconstruction property is an important tool in several 
areas of mathematics and engineering. In fact, it is related 
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  k df f  f  

 0 00 A B   

, for each . to bounded approximation property. Casazza and Chri- 
stensen in [1] study perturbation theory related to re- 
construction property. They develop more general per- 
turbation theory that does not force equivalence of the 
sequences. 

In this paper we introduce and study reconstruction 
property in Banach spaces which satisfy -property. A 
characterization of -reconstruction property in terms 
of frames in Banach spaces is obtained. Banach frames 
associated with reconstruction property are discussed. 

J

J




 

2. Preliminaries 

Throughout this paper   will denotes an infinite 
dimensional Banach space over a field  (which can 
be  or ),  be the conjugate space, and for a 
sequence , 

 
 kf kf  denotes closure of  span kf  

in norm topology of . The map  denotes 
the canonical mapping from  into . 

 π : 




f


 Definition 2.1 ([5]) Let k
   and dS  

be given, where  is an associated Banach space of  
:  

  ,kf
 S

 d
  kf f  f 

 C D   

d
scalar valued sequences. A system   is  

called a Banach frame for  with respect to  if  

1) , for each .  d

2) There exist positive constants C and D  
0  such that 

   ,
d

D f 
 

S

each .f 

:  S

 C D

for each .

kC f f f

f




     (2.1) 

3)  is a bounded linear operator such that  

    , forkf f fS  

As in case of frames for a Hilbert space, positive 
constants C and D are called lower and upper frame 
bounds of the Banach frame  , respectively. The 
operator d  is called the reconstruction 
operator (or the pre-frame operator). The inequality 2.1 
is called the frame inequality. 

The Banach frame  is called  tight if   and 
normalized tight if . If there exists no  1C D

S   ,k m
k m

f reconstruction operator  such that m


S

 m

  ,kf 

 , : d

 

 is Banach frame for  , then   will be 

called an exact Banach frame. 
The notion of retro Banach frames introduced and 

studied in [14]. 
Definition 2.2 ([14]) A system   
 kf X  



 




 is called a retro Banach frame  

for  with respect to an associated sequence space 
 if d

1) 

2) There exist positive constants  
such that 

  0 0 , for each .
d

kA f f f B f f      


  

  : k
f f f  



 is a bounded linear operator  3) 
from  onto 

,
d . 

The positive constant 0 0A B
 :

 are called retro frame 
bounds of  and operator d X  




 is called 
retro pre-frame operator (or simply reconstruction 
operator) associated with . 

Lemma 2.3. Let  be a Banach space and  n
  f

   be a sequence such that *: 0,nf f f 


  

 for all 0n  

 
. Then,  is linearly isometric to 

the Banach space   :nf f f  

 

, where the 

norm is given by   ,nf f f f  






 kf
 



.  

Casazza and Christensen in [1] introduced reconstruc- 
tion property in Banach spaces. 

Definition 2.4 ([1]) Let  be a separable Banach  

space. We say that a sequence  has the re-  

construction property for  with respect to kf 

 
1

, for all .k k
k

f f f f f






  

    ,k kf f 



 

, 
if 

 

In short, we will also say  has recon-  

struction property for . More precisely, we say  

  ,k kf f  

 kf
  

 is a reconstruction system for . that 

Remark 2.5 An interesting example for a reconstruc-  

tion property is given in [1]: Let  and  kf
   

is unitarily equivalent to the unit vector basis of  .  2

 k
  has a reconstruction property with respect  Then, f

to its own pre-dual (that is, expansions with respect to 
the orthonormal basis). Further examples on reconstruc- 
tion property are discussed in Example 3.4. 

  Definition 2.6 A reconstruction system  ,k kf f 



kf

 
for  is said to be 

      . 1) pre-shrinking if 

2) shrinking if    ,k kf f  is a reconstruction system  




. for 
Regarding existence of Banach spaces which have 

reconstruction system, Casazza and Christensen proved 
the following result. 

Proposition 2.7 ([1]) There exists a Banach space  
with the following properties: 
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1) There is a sequence  kf  such that each f 

 1
.k kk

  

has a expansion f f f f
 




    , .k kh h

 

   

2)  does not have the reconstruction property with  

respect to any pair  

The notion of reconstruction property is related to  

Bounded Approximation Property (BAP). If   ,k kf f 




J

  *
kf
 

kf 

  ,k kf f  I

  

has reconstruction property for  , then  has the 
bounded approximation property. So,  is isomorphic 
to a complemented subspace of a Banach space with a 
basis. It is also used to study geometry of Banach spaces. 
For more results and basics on reconstruction property 
and bounded approximation property one may refer to 
[15] and references therein. 

3. -Reconstruction Property 

Definition 3.1 Suppose  has the recon-  

struction property for   with respect to   .  

Then, we say that   satisfy property  if  
1
inf 0k

k
f

 
  and there exists a functional 

f k

  k

  

such that , for all . In this case we say    1k
 

that  ,kf f 



 is a I -reconstruction system for  

. 
Remark 3.2 If 

1
inf 0k

k
f

 




 and there exists a func-  

tional  such that    1kf
 k, for all 

 k

,  

then we say that  ,kf f   is a I -reconstruction  

system (or weak -reconstruction system for ).  I 
I


ke 

 kf
 

Remark 3.3 A -reconstruction system is actually a 
dual system of a -Schauder frame [16] in the context 
of reconstruction property. 

Example 3.4 Let  and    be a se-  0c
quence of canonical unit vectors. Define  by  

     1 1 2 1

1 1
, ,

2 2 k kf f f f f f   
    1, kf  



.  

Then, *
kf  has a reconstruction property with respect  

to , where  kf 2 1 1, , .k k 1 1f e f  e f e 

 k

 Hence  

  ,kf f  I 

    ,k k

 is a -reconstruction system for  [See 

Proposition 3.5]. Note that the reconstruction system 

f f 

 g 
 1 f 

 is shrinking. 

Now define  by  k

 1 1, ,k kg f  
  g f k  . Then,  kg   

has a reconstruction property with respect to , 
where 

 kg 
1 10, .k kg g e  

 

 By Proposition 3.5,  

  ,k kg J 

 

g  is not a -reconstruction system for .  

  ,k kg  is gNote that I -reconstruction system  

which is shrinking. Thus, a shrinking reconstruction 
system for  need not be a -reconstruction system.  I

I


   

We now give a characterization of a -reconstruction 
system for  as claimed in section 1, in terms of fra- 
mes. 

 ,k kf
  be a reconstruction  Proposition 3.5 Let f

system for   with 
1
inf 0k

k
f

 
     ,k k. Then, f f 

I

0

  

satisfy property  if and only if there is no retro pre- 

frame operator   such that  is retro    1 0,k kf f 
 


Banach frame for k

f  
This is an immediate consequence of the following 

lemma. 

. 

   ,k kLemma 3.6 Let f f 

  

 be a pre-shrinking 

reconstruction system for . Then,   ,k kf
  is a  f

I

ˆ
-reconstruction system if and only if there exists no  

  1
ˆ,k kf f 

retro pre-frame operator   such that  



 

is retro Banach frame for . 
Proof. Forward part is obvious. Indeed, by using lower  

 retro frame inequality of 1
ˆ,k kf f 

   and existence 

of  1 0,k kf f 


   ,k for all   such that   
0.

  

we obtain 

ˆ

 This is a contradiction. 
For reverse part, let if possible, there is no recon-  

struction operator   such that  is a    1
ˆ,k kf f 

 
retro Banach frame for 

E
. Then, Hahn Banach The- 

orem force to admit a non zero functional   such  

 1 0k kf f  
  k, for all . That is,  that 

   1k k   kf. Put f f  
 k, for all    

k

, for all  

  0kf   .k for all  0,. If     then 
 

 But  

  ,k kf
 0f  is pre-shrinking, therefore  

0

, a con-  

 tradiction. Thus   . Put . Then,   is  


  

  1kf
such that   .k

 
 for all  Thus, 

  ,k kf
f  is a I 

 

-reconstruction system.  

Remark 3.7 Note that Lemma 3.6 is no longer true if 

  ,k kf
  is not pre-shrinking. f

Application: Let 2 ,L a b . Consider a boundary 
value problem(BVP) with a set of n boundary conditions: 

   , 0,f f fBVP:    

           1

1

n n

n 

 

           is a  where 

 , ,n k
j C a b   and linear differential operator with 
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  0f 

 1 1 0.k k
j k b   

 denotes the set of n boundary conditions: 

   , ,1

n

j j kk
f a 


     

It is given in [17] (at page 66) that for a large class of 
boundary conditions (which are known as regular boun- 
dary conditions), the BVP admits a system   n 

  
 

and n   consisting of eigenfunction associated 
with given BVP such that 

  2π
cosn n 


1

;
n

A O
b a n

       
 

  2π 1
sin ,n n

n
B O

b a n

           
0,1,2,3, .n    

It is well known that the corresponding to  

  2π
cosnf b a

2π
sin

n n

b a

  
   

    


 there exists a  nf
  

  such that     ,n nf f 

.

 is a reconstruction system for 

2 ,L a b  Now  

 
2

2

1
A O

n
   
 

2π
cosn n

nt

b a
 


 and  

 
2

2

1
.B O

n
   
 

nf
  

 n

2π
sinn n

nt

b a
 


 

Therefore, by using Paley and Wiener theorem in [18, 
p. 208], there exists a sequence    such that 

f 

   n n 
 admits a reconstruction system with respect to  

. This reconstruction system is not of type 

I

 1 ˆ,n nf f 
 



  ˆ,f f  

. Therefore, by using Lemma 3.6, there exists a retro 

pre-frame operator  such that    is retro  ̂
Banach frame for . Recall that if we write a function 

in terms of reconstruction system, then computation of all 
the coefficients is required. If calculation of coefficients 
which appear in the series expansion of a given recon- 
struction system are complicated, then we reconstruct the 
function by pre-frame operator of . 1n n

The following proposition provides a sufficient con- 
dition for a reconstruction system to satisfy property 

I

 
.  

Proposition 3.8 Let   ,k kf f 

0

 be a reconstruction 
system for . If there exists a vector  f  in  such 
that k  for all , then 


     ,k k 0 1f f  k f f   is a 

I -reconstruction system. 
Proof. Let  be the canonical embedding 

of  into . Then 
:  

    0f 

k

 

k
 is such that  

  1f  k , for all . Thus,    ,kf f   is a I





S   1 ,k kf f 
 0S


I

I I

 

-  

reconstruction system for . 
Remark 3.9 The condition in Proposition 3.8 is not 

necessary. However, if  is reflexive, then the con- 
dition given in Proposition 3.8 turns out to be necessary. 

Moreover, this is equivalent to the condition: There exists 
no pre-frame operator 0  such that  
is a Banach frame for . 

To conclude the section we show that a given - 
reconstruction system in Banach spaces produce another 

-reconstruction system: Consider a -reconstruction  

  ,k kf


 

 for  . fsystem 

 1
: convergesi i ii

f 


    .  Let 

Then   is a Banach space with norm given by 

 
1 0

sup .
k

i i i
k i

f 
  

 


:

 

      ,kf f f f by   .  Define 

Then   is an isomorphism of  into .    
:      1i i ii

 defined by fAlso  

   is  

also a bounded linear operator from   onto . 
Ker  . Then Put   is a closed subspace of    

such that    0 .x   i Moreover, if     is  

any element such that 
1 i ii

f f


  , then 

    if f  

     
1 1 1

0.i i i i i i i
i i i

f f f f f f f 
  



  

 and  

     

 

 

  i if f    is such that  Therefore, 

      .i i i if f f f     

  .Hence     
Let V be projection on   onto .   

       1
,i k i i ii

V f f  


Then,  . Therefore,  

for each k

 

 

,
1

,

,

where 1 and 0 .

k k i k i
i

i k

V e f f

i k i k










     
  

  



, we have 

 

   k kV e f  . for all k  So,  That is: 

  1
k kV e  k  kef  for all , where  is sequ-  

ence of canonical unit vectors in  . Hence  

     1 ,k kV e f  

I

   

 is a reconstruction system for   

which satisfy property . 
This is summarized in the following proposition.  

 ,k kProposition 3.10 Let f f 



 be a I -recon-  

struction system for . Then, there exists  

     1
kV e  such that     1 ,k kV e f 

I  

   is a  

-reconstruction system for , where  and V are 
same as in above discussion. 
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4. Associated Banach Frames 

Definition 4.1 Suppose that k f 

 kf 
: d  S

  ,k
 S 

d ,S

  

 has the reconstruction 
property for  with respect to . Then, there 
exists a reconstruction operator  such that 

 is a Banach frame for  with respect to  



f

some . We say that  is an associated    k
f

Banach frame of  ,k kf f
    ,

 . 
Consider a reconstruction system k kf f 




 

 for a 
Banach space  . We can write each element of  
(we can reconstruct ) by mean of an infinite series 
formed by kf  over scalars   kf f . For a non zero 
functional  (say), in general, there is  h

 no  kh   such that  kf h   has the recons- 
truction property for   with respect to  kh . 

 no reconstruction operator 0S  such that 

    0,kf h S 

 h 
 

 is a Banach frame for . 

More precisely, two natural and important problem 
arise, namely, existence of  such that  k

kf h  

 

 has the reconstruction property for  with 
respect to  k  and other is the existence of a re- 
construction operator 0S  associated with k

h
f h  . 

Cassaza and Christensen in [1] study some stability of 
reconstruction property in Banach spaces in terms of 
closeness of certain sequence to a given reconstruction 
system. In the present section we focus on pre-frame 
operator associated with  kf h 


 . 

Motivation: Consider a signal space 0 . If  kf  is a 
frame (Hilbert) for 0 , then each element of 0  can 
be recovered by an infinite combinations of frame 
elements. That is, by the reconstruction formula. If a 
signal f is transmitted to a receiver, then there are some 
kind of disturbances in the received signal. To overcome 
these disturbances from the receiver, frames plays an 
important role. Actually, a signal in the space (after its 
transmission) is in the form of the frame coefficients  

 

 1, kf S f
0f  e, . An error  is always is expected 

with concern signal in the space. That is, actual signal in 

the space is of the form  1, kf S f e   e, where  is  

an error associated with f. An interesting discussion in 
this direction is given in [13]. We extend the said 
problem to Banach frames in general Banach spaces. 

The following proposition provides sufficient condi- 
tion for a reconstruction system to satisfy property I

k

 
in terms of non-existence of pre-frame operator asso- 
ciated with certain error. 

Proposition 4.2 Suppose that  f 




 has the recon-  

struction property for a signal space (Banach)  with 
respect to  kf . Let  (error) be in  for which 
there is no pre-frame operator  such that  

h 
S

 0kf h 

   ,k kf




0

 ,  S   is a Banach frame for , then  

 is a f I -reconstruction system for .  

 Proof. Let ,kf
 S

 

 be an associated Banach frame 

of   ,k kf


0S. If there exists no pre-frame operator   f

such that   0,kf h  S ,

0f 

 is a Banach frame for   

then, there is a non-zero vector  such that  

  0 0kf h f   k, for all . By frame inequality of  

  ,kf
 S  0 0h f 

 

, we conclude that . Put  

0
0

1
f

h f
 

 
     

 

. Then,  is such that  

    ,k kf f . Hence    is a   1f  k, for all  k

I -reconstruction system for . 
Remark 4.3 The condition in Proposition 4.2 is not 

necessary unless   correspond to a vector in . 
More precisely, we can find a certain error 


h 
0S

 
such that there exists no pre-frame operator  asso-  

 kf h  f 

   

 provided .  ciated with 

Remark 4.4 Let us continue with the outcomes in  

 ,k kf f   is found to be a  Proposition 4.2, where 

I 

0S   0,kf h  S

 h



-reconstruction system for  provided there is no  

pre-frame operator  such that  is a  

Banach frame for , where  is certain choice of 
error (functional). A natural problem arises, which is of 
determining a Banach space  for which the system  

 kf h 

    ,k kf f 

 

 admits a pre-frame operator. Answer to this  

problem is positive, provided  is pre-  

shrinking. The outline of construction of such a Banach 
space can be understood as follows: Put  

0
0

1
f

h f
   0f

0S

 (where  is same as in the proof of  

Proposition 4.2). Now, there is no pre-frame operator  

 associated with  k
f h , so there exists a non-  

zero vector g  such that   0kf h g  

k

, for all  

 . By using frame inequality of the associated  

 Banach frame ,kf
 S   0h g 

 

 we have . Put  

1
g

h g
 


. Then,   is a non-zero vector in  such   

  1kf   . Therefore,   , for all that k

  . Now  ,k kf f    is    0kf    for all k  

pre-shrinking, so we have   . Hence g p , 
where  p h g 

1S   1,kf h  S

. By using Lemma 2.3 there exists a  

pre-frame operator  such that  is a  
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Banach frame(normalized tight) for the Banach space 
 , where     

 : 0,f f

; 

    f f       

    ,k kf f 

0c

: f   

  ,kf
 S



. 

An application of Proposition 4.2 is given below: 

Example 4.5 Let  be a reconstruction  

system given in Example 3.4 for . Then, 

  : d kf fS   is a bounded linear  

operator such that  is a Banach frame (asso-  

ciated) for   with respect to d  and with bounds 
1A B  . Put 4  (this choice makes sense, 

because disturbances are not constant!). Then, 
h   f 

h  is an 
error in  for which there is no reconstruction ope-  
rator  such that   is a Banach frame  0S  ,kf h  0S

     ,k kf f for . Hence by Proposition 4.2,  is a  

I  
f   

-reconstruction system for .  

Definition 4.6 Fix . A pair    ,k kf f 

 kf


k k

, 

(where ) is said to be localized at 

, if 

  ,kf 

1k

 

f   kf f f f


  

    ,k kf f  f 

1,     ,k kf f 



 kf
   0,kf

 S

d
,df f   

0Ŝ

 , where  is a sequence   k

of scalars. 

If  is localized at every  with  

k   for all , then  turns out to be a  k

reconstruction system for . Consider a reconstruction  

system  for  and  be its    ,kf  

associated Banach frame with respect to . Let  

  0 k  . Then, in general, there is no  

pre-frame operator  associated with system  

    1
1

1
k k

k k

f f
f f

 
 



 


  

  0,kf
 S d

    ,k kf   

1

 
  . This problem is also known  

as stability of  with respect to . If  
 is not localized at certain vectors in ,  

then we can find such pre-frame operator associated with  

    1
1

1
k k

k k

f f
f f

 
 



 


  

 

1

 
  . This is what concluding  

proposition of this paper says.  

Proposition 4.7 Let   ,k kf f 

    
 be a reconstruction  

system for . Assume that  ,k kf  

f

 is not loca-  

lized at , where    0;f    k k
span f 

0Ŝ

 

 . 

Then, there exists a pre-frame operator , such that  

  1 0
1

1 1 ˆ,k k
k k

f f
f f 

 
 



         
S



 is a Banach frame  

for .  

 Proof. Let ,kf
 S

 

 be associated Banach frame of  

  ,k kf f 

0Ŝ

 

. Let, if possible, there is no reconstruction  

operator , such that  

  1 0
1

1 1 ˆ,k k
k k

f f
f f 

 
 



         
S

 0f

 

 is a Banach frame  

for . Then, there exists a non zero vector  such  

that 
 

 1 0
1

1 1
0,k k

k k

f f
f f 

 
 



 
   

 
f .k for all 

 

 

This gives 

 
 

 0 1 0
1

1 1
, .k k

k k

f f k
f f 

 
 



 f f 

  ,k

 

fBy using frame inequality of S

 

, we obtain, 

 
 

 0 1 0
1

0, .k
k

f
f f k

f





 

  f f 

 

 

  ,k kfSince f  

   
 

 is a reconstruction system for , 
we have 

 0 0 1 0
1 1 1

.k
k k k

k k

f
f f f f

f




 
 


 

  f f f

 

 

  ,k kf  
0f  is localized at , where  Thus, 

  0 
0f


0Ŝ

 

, a contradiction. Hence there exists a pre- 
frame operator , such that  

  1 0
1

1 1 ˆ,k k
k k

f f
f f 

 
 



         
S



I

I

 is a Banach frame  

for . 

5. Conclusion 

The notion of -reconstruction property is proposed in 
section 3 and its characterization in terms of frames in 
Banach spaces is given. More precisely, Proposition 3.5 
characterize -reconstruction property in terms of 
existence of pre-frame operator but in a contrapositive 
way. This situation is same as in electrodynamics, where 
there is a game of movement of electron but charge given  
to electron is negative! Moreover, the action of a func- 
tional from   on a given system from   decide 
the existence of pre-frame operator associated with 
certain system. This looks like dynamics of recon- 
struction property. By motivation from the theory of 
frames for Hilbert spaces which control the perturbed 
system associated with a signal in space(after its trans- 
mission), we extend the said situation to Banach spaces. 
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More precisely, Proposition 4.2 control the situation in 
abstract setting via non-existence of pre-frame operator. 
Finally, the notion of local reconstruction system is 
proposed and its utility in complicated stability of asso- 
ciated Banach frames is reflected in Proposition 4.7. 
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