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ABSTRACT 

We will introduce a new connection between some transformations and some aspects of differential geometry of some 
curves in Minkowski space. The concept of folding, retractions and contraction on some curves in Minkowski space 
will be characterized by using some aspects of differential geometry. Types of the deformation retracts of some curves 
in Minkowski 3-space are obtained. The relations between the foldings and the deformation retracts of some curves are 
deduced. The connections between some transformations and time like, space like, light like of some curves in Min-
kowski 3-space are also presented. 
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1. Introduction and Definitions   at t  is I
 d

d
t

u

u


  .  

As is well known, the theory of deformation retract is 
always one of the interesting topics in Euclidian and 
Non-Euclidian space and it has been investigated from 
the various viewpoints by many branches of topology 
and differential geometry El-Ahmady [1-3]. 

Minkowski space is originally from the relativity in 
physics. In fact, a time like curve corresponds to the path 
of an observer moving at less than the speed of light, a 
light like curve corresponds to moving at the speed of 
light and a space like curve moving faster than light 
El-Ahmady [4,5]. 

The Minkowski 3-space  is the Euclidean 3-space 
 provided with the standard flat metric given by 

3

3
1E

3
1E

2 2
1 2

map u of I. The velocity of 

A curve   is said to be regular if  s  does not 
vanish for all t I . nL   is space like if its velocity 
vectors  t  are space like for all  , similarly for 
timelike and null. If 

t I
  is a null curve, we can repar- 

ametrize it such that    , 0t t    and   0t   
El-Ahmady [5]. 

Most folding problems are attractive from a pure 
mathematical standpoint, for the beauty of the problems 
themselves. The folding problems have close connections 
to important industrial applications. Linkage folding has 
applications in robotics and hydraulic tube bending. Pa-
per folding has application in sheet-metal bending, pack-
aging, and air-bag folding El-Ahmady [6]. Following the 
great Soviet geometer El-Ahmady [5], also, used folding 
to solve difficult problems related to shell structures in 
civil engineering and aero space design, namely buckling 
instability El-Ahmady [7]. Isometric folding between two 
Riemannian manifold may be characterized as maps that 
send piecewise geodesic segments to a piecewise geo-
desic segments of the same length [8,9]. For a topologi-
cal folding the maps do not preserves lengths El-Ahmady 
[8-10] i.e. A map : M N  , where M and N are 
C-Riemannian manifolds of dimension m, n respec-
tively is said to be an isometric folding of M into N, iff 

2g dx dx dx    , where (x1, x2, x3) is a rectangular 
coordinate system of . Since g is an indefinite metric, 
recall that a vector 1  can have one of three Lor-
entzian causal characters, it can be space like if 

3
1E

v 3E
 ,g v v   

0 or , time like if  and light like if 
 and . Similarly, an arbitrary curve 

0v 
 , 0v  v 



( ,g v )v 0
g v 0

s  3
1E  in  can locally be space like, time like or 

light like, if all of its velocity vectors  s  are respec-
tively, space like, time like or light like respectively. A 
curve in Lorentzian space Ln is a smooth map , : nI L 


 

where I is the open interval in the real line . The in-
terval has a coordinate system consisting of the identity  
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for any piecewise geodesic path : J M  , the induced 
path : J N   is a piecewise geodesic and of the 
same length as  . If  does not preserve length, then 

 is a topological folding El-Ahmady [10-12]. 


A

X



:

A subset A of a topological space X is called a retract 
of X if there exists a continuous map  such 
that , , where A is closed and X is open. 
El-Ahmady [7-12] and Gregory [13]. This can be restated 
as follows. If  is the inclusion map, then 

 is a map such that A  Miles [14] and 
Martin [15]. If, in addition 

:r X

ri id

A
 r a a a 

:i A
Ar X

xri  id , we call r a deforma-
tion retract and A a deformation retract of X Jeffrey [16] 
and John [17].  

2. Main Result 

Let  s  be a curve in the space-time , parameter-
ized by arc length function 

3
1E

s  Lopez [18] and Formiga 
[19]. Then for the unit speed curve  s

2

0 0

0 0

k T

N N

B

 
   

  
  

      

 with non-null 
frame vectors the following Frenet equations are given 
in 

1

3

0
 

  k

T

B

 
 
 
 



 

 

         (1) 

We write following subcases. 
1) If s

1 i

 is space-like curve in , then T is a 
space-like vector. Thus, we distinguish according to N. 

3
1E

Case 1: If N is space-like vector, then B is time-like 
vector, then i  3    read 1 1   , 2 3 1  

, 1 

. And 
T, N and B are mutually orthogonal vectors satisfying 
equations, , .  g T T

N
, ,N N  1  g B Bg 

Case 2:  is time-like vector, then  1 3i i    
read 1 2 3 1    

 g T T



. 
And T, N and B are mutually orthogonal vectors satis-

fying equations  

, ,B g B   1, ,g N N 1 . 

2) If s  is time-like curve in , then T is time- 
like vector. Then 

3
1E

 1 i 3 i  read 1 2 31, 1      . 
And T, N and B are mutually orthogonal vectors satisfy-
ing equations,  

     , ,g B 1, ,g T T 1g N N


B   . 

3) If s

B

N

T 
 
 
  







 is light-like curve in  then the fol-
lowing Frenet equations are given in 

3
1 ,E

0

0

0 1

T

N

B

  
     
    

0 1




0







          (2) 

Also, if s  be a curve in the space-time , pa-
rameterized by arc length function 

4
1E

s . Then for the unit 
speed curve  s  with non-null frame vectors the fol-

lowing Frenet equations are given in 

1 2

1 3 4

52

1

2

0 0 0

0 0

0 0

0 0 0

T k

N

T

k N

B

B

B

B

  
   

 

     
     
     
     
     

   






        (3) 

Due to character of  s , we write following sub-
cases. 

1) If  s  is space-like curve in , then T is a 
space-like vector. Thus, we distinguish according to N. 

4
1E

Case 1: If N is space-like vector, then  can have 
two causal characters. 

1B

Case 1.1:  is space-like vector, then 1B  1 5i i  
 

read, 1 3 2 4 51, 1          . And 1  and 
 are mutually orthogonal vectors satisfying equations 

, ,T N B

2B

       1 1 2 2, , , 1, ,g T T g N N g B B g B B 1      

Case 1.2:  is time-like vector, then 1B  1 5i i    
read 1 2 3 4 51, 1          . And 1  and 

 are mutually orthogonal vectors satisfying equations 
, ,T N B

2B

       2 2 1 1, , , 1, ,g T T g N N g B B g B B 1      

Case 2: N is time-like vector, then  1 5i i    read 

1 2 3 4 5 1, 1          . And 1  and  
are mutually orthogonal vectors satisfying equations 

, ,T N B 2B

       1 1 2 2, , , 1, ,g T T g B B g B B g N N 1     . 

2) If  s  is time-like curve in , then T is time- 
like vector. Then 

4
1E

 1 5i i    read 1 2 4 1     , 

3 5 1    . And 1  and  are mutually or-
thogonal vectors satisfying equations 

, ,T N B 2B

       1 1 2 2, , , 1, ,g N N g B B g B B g T T 1      

Hence, we can formulate the following theorems. 
Theorem 1. Under the retraction, a spacelike curve 

and a timelike curve   r s  in the space-time  
parameterized by arc length function s, where  

3
1E

  dim 0r s   and with non-vanishing curvature, lies 
in ahyperplane if and only if the torsion vanishes identi-
cally. 

Proof. Suppose the curve   r s  lies in a hyper-
plane. Let us assume that we can bring   r s  to lie 
in the  0 1, ,0x x -hyperplane. Then the parametric equa- 

tions of   r s  are of the form  

      0 1, ,ax s x s x s 0 . Let  0 1 2, ,e e e  denote the vec-  

tors of the canonical coordinate basis. Thus, in these co-
ordinates,  

  0 1

0 1

d d d

d d d

x s x x
T e e

s s s



    

and 

 2 2 0 2 1

0 12 2 2

dd d

d d d d

x sT x
e e

d x

s s s s



   . 
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From (1) we have 
d

d

T
KN

s
 . Since  then  

has no components in the 

0k  N

2x -direction, i.e.  

    0 1, ,N y s y s 0 . 

Thus, 
0 1

0

d d d

dd d

y y
e

N
1es s s

  hence from the equation
 

1 2

d
 

d
k

s
B

N
T    we conclude that  2 0z s  , where  

      0 1 2, ,B z s z s z s .  However,  cannot be   2z s

zero. Otherwise the set of vectors  , ,T N B  would not 
be linearly independent. Then   must vanish. 

Suppose that 0  . Since 2

d
 

ds
N

B   , then B is a  

constant vector. Let us conveniently choose our coordi-
nate system in such a way that . Now, since T is 
orthogonal to B we must have , which means 
that 

2e B
B T  0

  r s  lies in the hyperplane  2 const


x s .  
Corollary 1. Under the folding,   :f s s 


, a 

spacelike curve and a timelike curve  f s  in the 
space-time  parametrized by arc length function s, 
with non-vanishing curvature, lies in a hyperplane if and 
only if the torsion vanishes identically. 

3
1E

Theorem 2. Under the retraction, if the curve is a 
lightlike curve   r s

0

 in the space-time  param-
eterized by arc length function s, where  

 then the curve is not lies in a hyper-
plane. 

3
1E

  dim r s 

Proof. Suppose the curve   r s  lies in a hyper-
plane. Let us assume that we can bring   r s  to lie 
in the  0 1, ,0x x


-hyperplane. Then the parametric equa-

tions of  r s
 0 1x s

 are of the form  

    , ,x s s 0 . Let  denote the vec-  x  , ,e e e0 1 2

tors of the canonical coordinate basis. Thus, in these co-
ordinates,  

  0 1

0 1

d d d

d d d

x s x x
T e e

s s s



    

and 

 2 2 0 2 1

0 12 2

d d

d d d d

d x sT x
e e

2

d x

s s s s



   . 

From (2) we have  
d

d

T
N

s
 . Then  has no com-

ponents in the 

N

2x -direction, i.e.     0 1, ,0s y s .N y  

Thus, 
0 1

0

d d d

d d d

N y y
e 1es s s

  , hence from the equation 

d

d

N
T B

s
  , we conclude  2z s 0

2

, where  

      0 1 2, ,B z s z s z s   z s. But  cannot be zero 
because the set of vectors  , , BT N  would not be line-
arly independent, then the curve is not lies in a hyper-

plane. 
Corollary 2. Under the folding,    :f s s 


 if 

the curve is a lightlike curve  f s  in the space- 
time  parameterized by arc length function s, then 
the curve is not lies in a hyperplane. 

3
1E

Theorem 3. Under the retraction, a spacelike curve 
and a timelike curve   r s  in the space-time  
parameterized by arc length function s, where  

4
1E

  dim 0r s   and with non-vanishing curvature, lies 
in ahyperplane if and only if the second torsion vanishes 
identically. 

Proof. Let us start with the necessary condition. Sup-
pose the curve   r s  lies in a hyperplane. Let us 
assume that we can bring   r s  to lie in the  
 0 1 2, ,x x x -hyperplane. Then the parametric equations  

of   r s are of the form  

        0 1 2, , ,x s x s x s x s  0 . Let  0 1 2 3, , ,e e e e  de-
note the vectors of the canonical coordinate basis. Thus, 
in these coordinates, 

  0 1 2

0 1

d d d d

d d d d

x s x x x
T e e 2e

s s s s



     

and 

 2 2 0 2 1 2 2

0 12 2 2 2

dd d d

d d d d d

x sT x x
e e 2

d x
e

s s s s s



    . 

From (3) we have  
d

d

T
N

s
 . Since  then N has 

no components in the 

0k 

3x -direction, i.e.  

      0 1 2, , , 0N y s y s y s .  

Thus, 
0 1 2

0 1

d d d d

d d d d

N y y y
e e 2e

s s s s
   , hence from the 

equation 1 2

d

d

N
kT B1s

     and we conclude that  

 3 0z s  , where         0 1 2 3, , ,B z s z s z s z s1 . If 
0  , then   also must vanish, for in this case 1  is 

chosen to be constant. If 

B
0  , then 3 0z s  , hence 

      2 ,0 .s z s0 1s z1B z , ,  Also,  
0 1dz 2dz1

0 1 2d d d d
e e e

d dB z

s s s
  

s
 and the third Serret-Frenet 

equation 1
23 4

d

d

B
N B

s
      we are led to conclude  

that  3 0s  , where  

        0 1 2 3
2 , , ,B s s s    s . 

However,  3 s  cannot be zero. Otherwise the set 
of vectors  1 2  would not be linearly inde-
pendent. Then 

, , BT N , B
  must vanish. 

Suppose that  0  . Since 2
5

d

d

B
B1s

  , then   2B

is a constant vector. Let us conveniently choose our co-
ordinate system in such a way that . Now, since 3e B 2
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Theorem 4. Given differentiable functions   0K s   
and   ,s s I   such that s is the arc length, there exists 
a regular parameterized spacelike curve under the folding 
with the spacelike vector N,   f s , in the space-time 

. Also, 3
1E  K s  is the curvature and  s  is the tor-

sion of   f s . Moreover, any other spacelike curve 
 s  with the spacelike vector N  satisfying the same 

conditions and     

T  is orthogonal to  we must have 22B 0B T  , 
which means that   r  s  lies in the hyperplane 

 3 constx s  .  
Corollary 3. Under the contraction, a spacelike curve 

and a timelike curve   C 



s  in the space-time  
parameterized by arc length function s, where  

 and with non-vanishing curvature, is 
lies in a hyperplane if the first and second torsions van-
ishes identically. 

4
1E

 C s  0dim

Corollary 4. Under the folding, a spacelike curve and 
a timelike curve  f s  in the space-time  pa-
rameterized by arc length function s, with non-vanishing 
curvature, lies in a hyperplane if and only if the second 
torsion vanishes identically. 

4
1E

Corollary 5. Under the folding,    :f s s


 , a 
spacelike curve and a timelike curve  f s  in the 
space-time  parameterized by arclength function s, 
with non-vanishing curvature, is lies in a hyperplane if 
the first and second torsions vanishes identically. 

4
1E

0 0s s   at f 0s I  then  
    f s s    f s and the Frenet trihedrons of  

and  s  is identically. 
  Proof. Now, assume that two curves  f f s   

and  s   satisfy the conditions    k s k s  and 
   s s  , s I . Let T0, N0, B0 and 0T , 0N , 0B  be 

the Frenet trihedrons of   f s  and  s  at 0s I , 
respectively. Since     00f s  s  then 0T T , 

0N N  and 0B B , where , , T s  N s  B s  and 
 T s ,  N s ,  B s  are the Frenet trihedrons of 

  f s  and  s s I   , respectively. We now ob- 
serve, by using the Frenet equations at (1), that 
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for all s I . Thus, the above expression is constant, and, 
since it is zero for 0s s , it is identically zero. It follows 
that    T s T s ,    N s N s ,    B s B s  for all 
s I .  

Since    d d

d d
T s T s

s s

 
   , we obtain  d

0
ds

   .  

Thus    s s a   , where a is a constant vector. 
Since    0 0s s  , we have ; hence, 0a  s   
 s  for all s I .  
Corollary 6. Given differentiable functions   0k s   

and  s , s I  such that s is the arc length, there ex-
ists a regular parameterized spacelike curve under the 
contraction with the spacelike vector , N   C s , in 
the space-time . Also, 3

1E  k s  is the curvature and 
 s  is the torsion of   C s . Moreover, any other 

spacelike curve  s  with the spacelike vector N  
satisfying the same conditions and     0 0C s s   
at 0s I  then     C s s   and the Frenet tri-
hedrons of   C s  and  s  is identically. 

Theorem 5. Given differentiable functions  k s 0 , 
 s  and   ,s s I   such that s is the arc length, 

there exists a regular parameterized spacelike curve un-
der the folding with the spacelike vectors  and 1 , N B

  f s  in the space-time . Also, 4
1E  k s

 
is the cur- 

vature,  s  is the first torsion, and  s  is the sec-
ond torsion of   f s . Moreover, any other spacelike 
curve  s  with the spacelike vectors N  and 1B  
satisfying the same conditions and     0 0 ,s sf    
where 0s I  then     f s s   and the Frenet- 
Serret formulas of   f s  and  s  is identically. 

    Proof. Now assume that two curves f f s   
and  s     K s K s satisfy the conditions , 
     s s   

 
and  s s  , s I . Let 0T , 0 , 

01 , 
02  

and 
N

B 0T 0NB , , 
01 , B

02B  be the Frenet-Serret 
formulas of   f s  and  s  at 0s I , respec-  

    tively. Since 0 0f s  s  then 0 0T T , 0 0N N , 

0 01B1B  , and 
02B B

02 . And T s , ,   N s  1B s ,  

 2B s  and  T s ,  N s ,  1B s ,  2B s  are the Fre-
net-Serret formulas of   f s  and  s  Is  , 
respectively. We now observe, by using the Frenet equa-
tions at (3), that 
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for all s I . Thus, the above expression is constant and, 
since it is zero for 0s s , it is identically zero. It follows 
that 

       
       1 1 2 2

, ,

,

T s T s N s N s
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 

 
 

for all s I . Since    d d

d
T s

ds s
T s

 
  . We ob-

tain      0
d

ds
s s   . Thus    s s a   , where  

a  is a constant vector. Since    0 0s s  , we have 
; hence, 0a    s s   for all s I .  

Theorem 6. Given differentiable functions   0k s  , 
 s  and   ,s s I 



 such that s is the arc length, 
there exists a regular parameterized spacelike curve un-
der the deformation retract with the spacelike vectors  
and 1 , 

N
B  D s , in the space-time . Also, 4

1E  k s  
is the curvature,  s  is the first torsion, and  s  is 
the second torsion of   D s . Moreover, any other 
spacelike curve  s  with the spacelike vectors N  
and 1B  satisfying the same conditions and  

    0 0D s s   where 0s I  then     D s s   
and the Frenet-Serret formulas of   D s  and  s  
is identically. 

Theorem 7. Let   f s  be a simple closed hyper-
plane curve under the folding in  with length , and 
let A be the area of the region bounded by 

3
1E l

  f s . 
Then  

2 4π 0l A                  (4) 

and equality holds if and only if
 

  f s  is a circle.  
Proof. Let E and  be two parallel lines which do 

not meet the closed curve 
E

  f s


 and moves them 
together until they first meet  .f s


 We thus obtain 

two parallel tangent lines to  f s , L and L , so 
that the curve is entirely contained in the strip bounded 

by L and L . Consider a circle  which is tangent to 
both L and 

1S
L  and does not meet   f s . Let O be 

the center of  and take a coordinate system with ori-
gin at O and the 

1S
x  axis perpendicular to L and L . 

Parameterize   f s  by arc length, since   f s  
simple closed a hyperplane curve, then  

       ,0 ,s xf  s y s , so that it is positively ori-
ented and the tangency points of L and are L 0s   and 

1s s , respectively. We can assume that the equation of 
 is 1S              , , 0 1y s s  ,s y

L
,0 , s 0,s x s x , 

where 2r is the distance between L and . Denoting by 
A  the area bounded by , we have  1S

2d , π
l l

dA xy s A r yx s   
0 0

    

thus 

   

      

 

2

0 0

2 2

0

2 2

0

 d

l l

l

l

2π

2 2
 d

d dA r  xy yx s xy

x y x s

x y s lr

  

 

 

 
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 





 



yx

y

  s

     (5) 

We now notice the fact that the geometric mean of two 
positive numbers is smaller than or equal to their arith-
metic mean, and equality holds if and only if they are 
equal. It follows that 

 2 1
π π

2 2
2 1

A r A r lr            (6) 

Therefore, 2 2 2 2π then 4π 0.A r l r l A4     
Now, assume that equality holds in Equation (4). Then 

equality must hold everywhere in Equations (5) and (6). 
From the equality in Equation (6) it follows that 2πA r . 
Thus, 2πrl   and  does not depend on the choice of r

Copyright © 2013 SciRes.                                                                                  AM 
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the direction of L . Furthermore, equ
implies that 

ality in Equation (5) 
       2 22 2  2

yx x y x y    xy , or 
 2

0xx yy   ; that is, 

x y

y x
 
 

 

   

2 2

2 2

   
. thus,

x y
r x ry

x y
   

 

r




 

Since  does not depend on the choice of the direc-
tion of L , we can interchange x  and  in the last 
relation and obtain . Thus, 

y
y rx 
  2 2 2 2 2   2 x y r x  y r   and   f s  is a cir-

cle. 
Theorem 8. Let   D s  be a simple closed a hy-

perplane curve under the deformation retract in  with 
length , and let 

3
1E

l A  be the area of the region bounded 
by . Then  , and equality holds if 
and only if 

 sD   2 4πl  0A 
  r  s


 is a circle. 

Corollary 7. Let  C s  be a simple closed a hy-
perplane curve under the contraction in  with length 

, and let 

3
1E

l A  be the area of the region bounded by 
  C s . Then , and equality holds if and 

only if 

2 4π 0l A 
  C s  is a circle. 

Any n vectors forming a basis for 1  will be written 

1 2 , i.e. the basis will be written 

nE
, , , ne e e  ie . Relative 

to a basis  ie , any vector   in  is uniquely ex-
pressible in the form  

1
nE

1 2
1 2

n
ne e e        

1

n i
ii

e 


   

The numbers i , where 1,2, ,i n  , are called the 
components of   relative to the basis  ie . If i  are 
the components of another vector   relative to the 
same basis 

1

n

i
i

ie 
E


  . Let the vectors 1 2   

form another basis of 1 . Since each vector i

, ,  
e

, ne e e
n

  is 
uniquely expressible as a linear combination of the vec-
tors  ie , we have 

1

i
i i

e  
  p

n

i ie                 (7) 

where  i
ip  is an  matrix, non-singular because 

the vectors i , are linearly independent. Similarly, the 
vector  is uniquely expressible in the form 

n n
e

ie 

1

n i
i i

e 


  pi ie

j
i jep

               (8) 

where  is a non-singular  matrix. Then   'i
ip n n

1 , 1

n ni i
i i i ii i j

e e 
   

  p p  

The linear independence of the basis vectors implies 
that i i i

i j j
 p p , where j

i  called the kroneckel delta, 
takes the value 1 if  and is otherwise zero. i  j

Theorem 9. The components of a vector   in  

where defined relative to the basis 

1
nE

 ie , and a change of 
basis will induce a change of components. 

Proof. The law of transformation for the components 
of the vector   will now be found when the basis is 
change from  ie  to  ie   according the Equation (7). 
If the vector   has components i  relative to the ba-
sis  ie , it is convenient to write i   for it’s compo-
nents relative to the new basis  i

1

n

I
 



1

ni i
i ii i

e e
p

e , related to the for-
mer by (7). Then 

1

n i
ii

e  
  i

ie

i
i

           (9) 

Equations (7), (9) give 

1 ,

n

i
  

   

From which, since the basis vectors  ie  are linearly 
independent, it follows that  

i i
i

i  
 p                  (10) 

Similarly, substitute in (9) for  from (8) to get  i

1
ie e

e

, 1

n ni i
i i ii i i

  
 


   p  

From which, since the basis vectors ie   are linearly 
independent  

i i
i

i   p                 (11) 

The Equation (11) expresses the new components in 
terms of the old component, while Equation (10) ex-
presses the old components in terms of the new compo-
nent. 

Theorem 10. Under the retraction, given differentiable 
functions   0k s  ,  s  and  s , there exists a 
retraction of regular parameterized timelike curve  s , 

  r s , such that  k s  is the curvature,  s  and 
 s  are, respectively, the first and second torsion of 
  r s . Any other curve  s  satisfying the same 

conditions, different from   .r  s  By a Poincaré trans- 
formation. 

Proof. Let us assume that two timelike curves 
  r s  and  s satisfy the conditions    k s k s , 

   s s   and    s s  , with s I , where  
is an open interval of , and 

I
  k s ,  s  and  s  

are, respectively, the curvature, first and second torsion 
of  s . Let     1, , ,A N B 2Bu T and  

    , , ,N B1 2Au T B , where  be the Ser-  1,2,3 , 4A

ret-Frenet tetrads at 0s I  of   r s  and  s , re-
spectively. Now, the two Serret-Frenet tetrads of   r s  
and  s  satisfy the equations 

1 1

22

0 0 0

0 0

0 0

T k

N k

B

B

T

N

B

B


 



   
   
   
   
   

  



 
 

0 0

0

 
 
 
 
 
 
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and  

1 1

22

0 0 0

0 0

0 0

0 0 0

T k

N k

B

B

T

N

B

B


 



    
    
        
    

       



 



 

This can be written in a more compact form as 

 
 

...d

d
BA

AB BA

u
a u

s
            (12) 

 
 

...d

d
BA

AB BA

u
a u

s
  

where , with  and 1,2,3,4B  ...B

ABA
a ...B

ABA
a  de-  

noting the elements of the Serret-Frenet matrix. Clearly, 
the two tetrads     Au s ,     Au s  are related by an 
equation of the type 

         ...B
ABA A

u s b B ss u          (13) 

with the elements of the matrix  s  satisfying the 
condition 

 ...
0

B A
AB BA

b s   

Since we are assuming that        0 0 .A Au s u s   
From (12) and (13) we obtain a system of first-order 

differential equations for the elements of  s  given by 

   

 

...

...

d

0

d

B
DBA AB

A AB BDB B

C M
C AC CM MA

D

b
u b a

s

a b u


 

 










u
   (14) 

By assumption, are differentiable func-
tions of the proper parameter s. From the theory of ordi-
nary differential equations, we know that if we are given 
a set of initial conditions  then the above 
system admits a unique solution  

... , , ,B C D G

A

...B

A  0ABb s

    ... ...B B
AB ABA A

b s b s   

defined in an open interval J I  containing
 0s . On 

the other hand, it is easily seen that  ... ,B
A

A
BA Bb s   is 

a solution of (14). Therefore, we conclude that  

       A Bu s u s . 
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