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ABSTRACT 

This paper presents simulation modelling of network under the conditions of self-similar traffic and bottleneck occur- 
rence. The comparative analysis of different TCPs (NewReno, Reno, Tahoe and etc.) has been conducted along with the 
testing of various algorithms of these protocols activity. The use of TCP Vegas has been proved to be the most effec- 
tive. 
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1. Introduction 

TCP is the dominant protocol of the Internet. It delivers 
data in the form of byte streams, establishes the connec- 
tion and is used in applications that require guaranteed 
delivery of messages. TCP applies batch totals to verify 
their integrity and releases application processes from 
timeouts and retransmissions to ensure reliability. 

Numerous investigations of the Internet processes 
showed that the statistical characteristics of traffic pos- 
sess the ability of time-scale invariance (self-similarity). 
Such an effect is caused by the specific character of file 
distributions along servers, their sizes, as well as by a 
typical behavior of users. It was found that data streams, 
which initially do not exhibit self-similarity properties, 
after being processed at the host server and at active net- 
work elements, start showing pronounced signs of self- 
similarity. This fact may cause fast buffer overloads even 
with low use factor. If no action is taken to limit the in- 
coming traffic, then the queues on the most loaded lines 
will grow indefinitely and eventually exceed the size of 
the buffers at the corresponding nodes. This leads to the 
fact that the packages reentering to the nodes with full 
buffers will be reset and are to be retransmitted, and that 
in turn results in wasting network resources [1-4]. 

Traffic regulation in TCP assumes the existence of two 
independent processes: delivery control operated by the 
recipient using the Window parameter and congestion 
control operated by the sender by using the CWND— 
congestion window and the slow-start procedure (SSTH- 
RETH slow start threshold). The first process monitors 

filling in the recipient’s input buffer and the second one 
registers the channel congestion, the losses related and 
reduces the traffic level. The congestion window CWND 
and the SSTHRETH slow start procedure provides rec- 
onciling the full loading of the virtual connection and the 
current channel opportunities and minimizing the packet 
losses in case of overloading. 

Some amendments and additions are constantly re- 
corded in TCP in order to solve the problems appearing 
in the course of the protocol or to improve its perform- 
ances for systems with focused specialization. 

The purpose of this paper is to conduct a comparative 
analysis of TCP protocol types and algorithms of their 
work and to identify strengths and weaknesses of each al- 
gorithm in different operation scenarios in the network. 

2. TCP Protocols 

Let us consider the main types of TCP protocols: Tahoe, 
Reno, NewReno, SACK and Vegas [4-8]. 

TCP-Tahoe algorithm is the oldest and the most widely 
used one. The implementation of this algorithm has ad- 
ded many new algorithms and improvements to its earlier 
implementations. The new algorithms include: Slow Start, 
Congestion Avoidance, and Fast Retransmission. The im- 
provements involve the modification of time reporting of 
the packets passing over the communication channel to 
the destination and back to set the timeout retransmission. 
The meaning of the congestion avoidance algorithm is to 
keep the value of CWND within possible maximum val- 
ues. In fact this optimization is carried out with the help 
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of packet losses. If there are no packet losses, then the 
value of CWND reaches Window per default, as having 
been specified in the configuration of TCP driver. 

For the connections with large windows the TCP Time- 
stamps algorithm is applied. The timestamps allow accu- 
rate measurement of the round trip time RTT for the fur- 
ther correction of a value of the retransmission timer. 

The paper is particularly focused on the algorithm of 
Rapid retransmission because it is modified in subse- 
quent versions of TCP. When operated at the algorithm 
of Rapid retransmission after receiving a small number 
of duplicate confirmations for one TCP (ACK) packet, 
the data source concludes that the packet was lost and re- 
transmits the packet and all packets sent after it with zero 
wait state for the retransmission timer, which leads to the 
reduction of the through-put capacity and to the increase 
of the already high channel loading level. 

Getting the duplicate ACK is not a reliable sign of a 
packet loss. Duplicate ACKs arise even when changing 
the route exchange. For this reason the signal of loss is 
considered as the getting of three ACK packets in suc- 
cession. 

When the buffer is overfilled, an arbitrary number of 
segments will be lost. In such a case several scenarios 
may take place. The basic version—slow start launches 
within classical TCP-Tahoe algorithm when a segment 
loss and resulting timeout (RTO) at the sender’s side 
since the sender will not receive the acknowledgment 
ACK for the lost segment. Slow start involves the instal- 
lation of the congestion window equal to 1and the slow 
start threshold equal to half the value of CWND at which 
the timeout took place. The CWND reduces to one be- 
cause the sender does not have any information about the 
status of the network. Then, after each i-th confirmation 
CWNDi+1 = CWNDi + 1. This formula works until 
CWND is equal to ssthresh. Then the increase of CWND 
becomes linear. The point of this algorithm is to keep the 
value of CWND within maximum possible values. In fact 
this optimization is carried out with the help of packet 
losses. If there are no packet losses, the value of CWND 
reaches the value of the window by default as having 
been defined in the configuration of the TCP driver. 

TCP Reno keeps the extensions included in Tahoe but 
it changes the operation of Fast retransmit by adding Fast 
Recovery. This new algorithm prevents the channel from 
being in an empty state after Fast retransmission and is 
not switched to Slow start phase to fill the channel after a 
single packet loss. Fast Recovery assumes that each re- 
ceived duplicate ACK is one package escaped from the 
channel. Thus, during Fast Recovery a TCP sender is 
able to calculate the amount of data sent. 

The TCP sender enters into Fast Recovery after re- 
ceiving the initial threshold of duplicate ACK. This thre- 
shold is usually set to be equal to three. Once the thresh- 

old of the duplicate ACK is received, the sender retrans- 
mits one packet and reduces its congestion window by 
half. Instead of Slow start, as in Tahoe TCP, Reno sender 
uses an additional parish of duplicate ACK to synchro- 
nize the subsequent outgoing packets. 

In TCP-Reno normally the window size varies cycli- 
cally. The window size increases until the segment loss. 
TCP-Reno involves two phases of window re-sizing: a 
phase of slow start and congestion avoidance. 

Developers named fast recovery algorithm—NewReno, 
as it differs greatly from the basic Reno algorithm. The 
proposed algorithm has certain advantages in comparison 
with the canonical Reno in different scenarios. However, 
there is one scenario when canonical Reno exceeds New- 
Reno—when reordering the flow of packets. 

NewReno algorithm uses the variable Recover (re- 
store), whose initial value is equal to the original packet 
sequence number, and the algorithms of fast retransmis- 
sion and fast recovery. When the option of the selective 
acknowledgment SACK is available, the sender knows 
which packages must be resent again at the phase of fast 
recovery. 

The main implementation stages of the algorithm are: 
1) Three duplicate ACKs: start of Fast Retransmit or 

without fast retransmit (the entry to the phase of fast re- 
transmit and fast recovery is not applicable). 

2) Entering fast retransmit phase: the congestion win- 
dow is enlarged voluntarily in several segments (three) 
that have left the network and are buffered by the recipi- 
ent. 

3) Fast recovery: the congestion window is enlarged 
voluntarily in order to account the segment that has left 
the network. 

4) Fast recovery, continuation: the segment is trans- 
mitted if it is allowed with the new CWND and window 
values announced by the recipient. 

5) When ACK arrives with acknowledging the receipt 
of new data, then this ACK can be the confirmation re- 
lated to the retransmission at the stage 2 or later retrans- 
mission. 

6) Retransmission timeouts (RTO): after RTO the 
highest sequence number of the transmitted segment is 
recorded into the variable recover and the quit from the 
fast recovery stage is performed if it is possible. 

7) Partial acknowledgement. The re-send of more than 
one packet and the resetting of the timer of the retrans- 
mission after the retransmission can be the optional re- 
sponse for a partial acknowledgment. In case of multiple 
packet losses the re-send of two packets when receiving 
the partial acknowledgement provides faster system re- 
covery. Such an approach requires less time than N RTT 
in case of N packages loss. However, at the absence of 
the SACK option, the slow start provides sufficiently 
rapid system recovery without sending extra packets. 
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8) Specifies that TCP sender responds to the partial 
ACKs with the reduction of the congestion window to an 
amount corresponding to the volume of valid data. Thus, 
only one packet sent earlier is transmitted in response to 
each partial confirmation, but new packages can be sent 
as well, depending on the amount of the delivery con- 
firmed partially. 

9) Exclusion of multiple fast retransmissions. 
TCP Vegas protocol implementation fits well in net- 

works where it is necessary to determine the available 
bandwidth and adjust dynamically the optimal parame- 
ters. Vegas algorithm evaluates the buffering that occurs 
in the network and controls the rate of the flow corre- 
spondingly. The algorithm is able to calculate and reduce 
the flow rate before the packet loss occurs. It controls the 
size of the window by monitoring provided by the RTT 
sender (transmission time of the packets over the com- 
munication channel to the destination and back) for pac- 
kets having been sent earlier. If there is an increase of 
RTT, the system recognizes that the network is close to 
overload and reduces the width of the window. If RTT is 
reduced, the sender will determine that the network has 
overcome the congestion and will increase the size of the 
window. Consequently, the window size in an ideal situ- 
ation will tend to the desired value. This TCP modifica- 
tion requires high resolution of the sender’s timer. 

TCP SACK algorithm uses “Options” field of the TCP 
frame header for additional information about the pack- 
ages received by a recipient. If there was a loss, then 
each segment of triple ACK, sent by the receiving station, 
contains information about the frame caused the sending 
of this segment. Thus, the sender after receiving the frame 
has the data not only about the lost frame but also about 
the frames that reached the recipient successfully. As a 
result the unnecessary re-send of the segments success- 
fully buffered at the recipient side is avoided. 

The same as in the case with Reno, TCP SACK goes 
into Fast recovery regime when receiving 3 duplicate 
ACKs. During Fast recovery the sender supports Pipe 
variable representing the number of packets in the net- 
work. This variable increases whenever a new segment 
has been sent and decreases if further confirmation has 
been obtained. The transfer of a new packet in the net- 
work is accepted if Pipe value is less than the congestion 
window. 

The sender also maintains the data structure that stores 
the confirmations from the SACK option being under the 
acknowledgment. If the sender gets the permitted transfer, 
then he sends the next packet from the list of packages 
considered to be lost. If there are no such packets, then a 
new packet is transmitted. For connections with large 
windows the timestamp algorithm is applied. The time- 
stamps help to conduct accurate time measurement of 
RTT access for further correction of values of the re- 

transmission timer. 
In case when the option of the selective acknowledge- 

ment SACK is available, the sender is aware which pac- 
kages must be re-sent to the phase of Fast Recovery. In 
the absence of SACK option there is no sufficient infor- 
mation on the packages which are to be re-sent. As re- 
ceived three duplicate acknowledgments (DUPACK), the 
sender considers the package to be lost and sends it again. 
After that the sender may receive additional duplicate con- 
firmation because the recipient provides the acknowl- 
edgement of packages that are in transmit when the sen- 
der switched to a mode of Fast Retransmit. In the case of 
loss of several packets from one window the sender re- 
ceives new data when the confirmation of the packets re- 
sent is obtained. If one package was lost and there was no 
change in the order of packages, then the package con- 
firmation will mean the successful delivery of all previ- 
ous packages before switching to Fast Retransmit. How- 
ever, if several packages were lost then the confirmation 
of the re-send packages acknowledge the delivery of 
some but not all packets sent before switching to Fast 
Retransmit mode. 

3. Results of Simulation Modelling  

To conduct the simulation in the network simulator Opnet, 
a simulative network analog consisting of several senders, 
recipients and the router between them was constructed 
Figure 1. The bottleneck of the network analog was the 
router and the output channel. In the course of numerical 
study the TCP operational algorithms the buffer sizes of 
the router and the recipient and the bandwidth at the rou- 
ter output have been altered. The traffic in the network 
under the examination presents a self-similar random pro- 
cess with user-specific parameters. One of the parameters 
is Hurst exponent, which characterizes the long-range 
dependence of the process and lies in the range [0.5, 1]. 

The characteristics for the comparative analysis of the 
network were: the number of lost data, the buffer capac- 

 

 

Figure 1. Simulative network. 
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ity of the router, the channel utilization and the network 
performance. 

Study of CWND changes. The objects involved in the 
connections are found to be synchronized to some extent. 
This is due to the fact that at any conflict, associated with 
the increase in the width of the window when the buffer 
is full, all incoming cells belonging to packages are re- 
jected. 
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On the assumption of instant readiness of the sender to 
transfer and that the time spread of cells does not exceed 
the time of packets forwarding in the input channel, all 
the connections will send the cells during the transmis- 
sion time of packets involved into the collision. Con- 
sequently, all the connections lose packets and reduce the 
width of the window by half within RTT. 

The simulation modeling testified that for TCP-Vegas 
protocol for one missing segment the CWND reduction 
is absent (line 1 in Figure 2). When there is one missing 
segment for TCP-Tahoe protocol (line 2) and TCP Reno 
(line 3), then the CWND reduction occurs well before 
and thus the channel resources are not used efficiently. 

Figure 3 shows the number of sent and received seg- 
ments and the corresponding change in the window size. 

The presented dependency is typical for all TCP proto- 
cols. From the graph it is seen that the number of sent 
segments increases linearly, in accordance with the size 
gain of the window. However, the amount of missed data 
at the window size reduction is well in excess of toler- 
able losses determined by Qos (Quality of Service). 

In the case of NewReno algorithm the number of lost 
data and channel utilization decreases in comparison with 
Reno algorithm. 

This is due to the fast retransmission and fast recovery 
options. However, at the option of selective acknowl- 
edgment (SACK) if operating at Reno the number of lost 
data is only slightly more than for NewReno. From the 
graph shown in Figure 4 it is obvious that TCP-SACK 
protocol resizes CWND less. The loading of the buffer 
will be more uniform and the use of channel resources 
will also be superior to using Reno algorithm. 

In the case of NewReno algorithm the number of lost 
data and channel utilization decreases in comparison with 
Reno algorithm. This is due to the fast retransmission 
and fast recovery options. However, at the option of se- 
lective acknowledgment (SACK) if operating at Reno the 
number of lost data is only slightly more than for Ne-  

 

 

Figure 2. CWND changing: line 1—Tahoe when one segment loss; line 2—Tahoe when one segment loss; line 3—ТСР Reno 
when one segment loss. 
 

 

Figure 3. CWND changing (above) and the number of transmitted (line 1) and received segments (line 2) with time (below). 
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Figure 4. CWND changing for ТСР Reno (line 1) and ТСР SACK (line 2) when one segment loss. 
 
wReno. From the graph shown in Figure 4 it is obvious 
that TCP-SACK protocol resizes CWND less. The load- 
ing of the buffer will be more uniform and the use of 
channel resources will also be superior to using Reno al- 
gorithm. 

In TCP-Tahoe the use of TCP group acknowledgments 
motivates the reduction in the window width to one after 
a loss to avoid the burst of packets caused by their re- 
transmission. This in turn leads to an exponential win- 
dow size gain at the slow start required for networks with 
a large product of the band by the delay. On the other 
hand, this exponential increase causes serious fluctua- 
tions in traffic, which, if the buffer size is less than one 
third of the product of the band by the delay, cause the 
buffer overflow and the second slow start decreasing the 
carrying capacity. TCP-Reno is trying to prevent this fact 
by reducing the window size twice when the loss is de- 
tected. Though under ideal conditions this does provide 
improved bandwidth, but in its present form TCP-Reno is 
too vulnerable to the interface effects and multiple packet 
losses to become a substitute for TCP-Tahoe. The main 
problem with TCP-Reno is the fact that there may be 
multiple constraints for the window associated with one 
episode of overload, and that multiple losses can result in 
timeout (which in practice leads to a significant decrease 
in carrying capacity when low-resolution timer is being 
used). 

TCP-Vegas protocol tries to implement a number of 
improvements such as more sophisticated processing and 
evaluation of RTT. But for RTT fluctuations in Internet 
there are a lot of other reasons besides buffer flow. In 
order to improve the current version of TCP significantly 
it is necessary to avoid drastic cuts in the window size 
both in TCP-Tahoe and in TCP-Reno, except when there 
is a continuous overload (which causes massive packet 
losses). It is proposed to use TCP-Tahoe (in conjunction 
with network layer management to optimize the perfor- 
mance characteristics) in the case of isolated losses since 
this option is by far stabler than TCP-Reno. 

Study of TCP in the case of overload. Simulation 
modelling of the network when using Reno algorithm 
with Fast recovery option showed that this algorithm is 
optimal only in the case of a single packet losses, i.e. 

when Reno sender transmits no more than one packet 
during the passage of one package through a communi- 
cation channel to the destination and back. When there is 
a loss of a single packet, the algorithm Reno is substan- 
tially better as compared to Tahoe TCP but Reno de- 
grades the network performance significantly if there was 
a loss of several packets within a single window Window. 
When operated at Tahoe which does not use the option of 
fast recovery the number of lost data is approximately the 
same as in NewReno algorithm but the traffic load is far 
less. 

The results of the TCP-Reno study show that every 
connection usually loses about two packets in each epi- 
sode of overloading. The losses occur when the buffer is 
full and one connection increases the window size per 
unit. When cells of this new package arrive into the 
buffer, they usually cause loss of cells belonging to two 
packets (the end of the package that came from another 
connection and the beginning of the following one). 
Therefore, on the average the loss of three packages is 
expected for one episode of overload. 

The study of queueing and the use of network re- 
sources. The problem of optimal use of network re- 
sources for algorithms of fast recovery and fast retrans- 
mission in TCP-Reno algorithm associated with multiple 
fast retransmissions are relatively smaller than compared 
to the same problems that arise in the case of TCP-Tahoe 
algorithm, which does not use fast recovery. However, if 
no additional mechanisms associated with the use of Re- 
cover variable are applied then the unnecessary retrans- 
mission can occur when using TCP-Reno.  

The paper represents comparative analysis of queueing 
in the buffer for different algorithms of TCP as the num- 
ber of input data flows increases (Table 1). This is of 
particular importance, for example, for networks with 
multiple VPN channels and multi-port routers. 

The RTT time rise is unpreventable with respect to the 
queue length growth. The packet losses start when 
achieving the lower threshold of the queue. Whenever 
the upper limit is exceeded, the incoming packages with 
lower priority are dropped out (see Figure 5). If only the 
packet dropping did not start until the buffer congestion, 
a linear increase of RTT would be expected. The amount  
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Table 1. The value of the mean length of a queue (mb) at 
different number of data flows. 

 1 2 3 4 5 6 7 

Tahoe 9900 11,700 11,900 15,000 15,300 15,600 16,000

Reno 9800 11,500 11,500 14,700 15,800 16,000 16,100

NewReno 9100 9500 9700 10,600 12,000 13,800 15,200

Sack 5300 5600 6900 7200 8600 8800 9100

Vegas 5200 5600 7000 7000 7700 8500 8900

 

 

Figure 5. The number of received packets depending on 
packet delays. 
 
of packet losses would increase almost spasmodically 
when achieving the limit value of the queue. 

One of the most important indicators of the network 
quality is the channel utilization index. Table 2 shows 
the values of this parameter while the evolution of the 
window size with the course of time. 

In TCP-Vegas the ACK confirmation is combined with 
data packet (called piggybacking) instead of an inde- 
pendent transmission as in other algorithms. This saves 
fifty percent of time as contrasted with the normal per- 
formance of TCP ACK acknowledgement and does not 
waste extra time. Consequently, TCP-Vegas can transmit 
more data (Table 3). 

The study of TCP in WAN. In order to guarantee the 
performance in highly loaded WAN (wide-area network), 
each TCP connection needs to have a reserved buffer and 
free transmission range along the whole network path. 
Usually the resource allocation is carried out in the inter- 
connection step and makes the routers and switches form 
independent queues for each connection. Since the re- 
source administration on the principle “the best possible” 
can be very expensive, the more acceptable alternative 
may be the resource reservation for every traffic class. 
The transfer rate varying with time available for every 
connection is defined on the network layer and is admin- 
istered by the sender, so that different TCP connections 
are to be isolated from each other even if they use the 
same buffers together. 

Table 2. Channel utilization index while the evolution of the 
window size with the course of time (ms). 

 100 200 300 400 500 600 700 

Tahoe 1 0.8 0.72 0.72 0.65 0.6 0.56

Reno 1 0.82 0.75 0.78 0.62 0.54 0.4 

NewReno 1 0.87 0.79 0.85 0.74 0.68 0.6 

Sack 1 0.93 0.88 0.99 0.82 0.87 0.99

Vegas 1 0.94 0.88 1 0.85 0.9 0.98

 
Table 3. The number of received packets depending on 
packet delays. 

Packet delays, ms Algorithm 
TCP 10 20 30 40 50 

Tahoe 6869 6479 6215 5973 5673 

Reno 6869 6479 6215 5973 5673 

NewReno 6869 6479 6215 5973 5673 

Sack 6869 6479 6215 5973 5673 

Vegas 7200 6812 6400 6091 5934 

 
Since the bias against connections with high RTT la- 

tency is associated with the mechanism of a window ad- 
aptation, it, theoretically, can be overcome by modifying 
the mechanism of bandwidth monitoring during the con- 
gestion avoidance phase, for example, by increasing the 
size of the window so that the rate of bandwidth growth 
for all connections to be one and the same. However, it is 
impossible to choose universal time scale for the window 
adjustment to be functional for networks with different 
bandwidths and topology. For example, sounding an ad- 
ditional band with rate of 1 Mb/s may be too fast for the 
network with a channel of 1 Mb/s but too slow for a 
GBIT network. In such a way to set this scheme to work 
it would be extremely significant to provide some ex- 
changes between the network and the transport layer. 
Secondly, such a scheme would still be subjected to 
strong influence of certain TCP shortcomings such as the 
degradation of the performance in the presence of acci- 
dental losses and excessive delays associated with the at- 
tempts to use an additional band under the conditions of 
complete utilization of the channel. In summary, this mo- 
dification cannot be considered as the representation of 
the best approach to the problem of optimality. 

Figure 6 shows the number of sent useful data for 
whose computation it is necessary to subtract the number 
of re-sent data from the total number of sent data. 

4. Future Evolution of TCP Protocol Future  
Evolution of TCP Protocol 

Over the last years several new modifications of TCP  
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Figure 6. The number of sent useful data as a function of 
time. 
 
protocol have been proposed: Binary Increase Control 
TCP (BIC-TCP), CUBIC TCP, Westwood TCP (TCPW), 
Parallel TCP Reno (P-TCP), Scalable TCP (S-TCP), Fast 
TCP, HighSpeed TCP (HS-TCP), HighSpeed TCP Low 
Priority (HSTCP-LP), Hamilton TCP (H-TCP), Yet An- 
other Highspeed TCP (YeAH-TCP), Africa TCP, Com- 
pound TCP, etc. These protocols seek to resolve difficul- 
ties arising when working with modern fast (1.10 Gb/s) 
and long (RTT > 200 msek) channels. Almost all of them 
are based on certain older versions of TCP and differ by 
various means of congestion avoidance (exactly by dif- 
ferent methods of determining the existence of packet 
losses that namely mean the origination of congestion). 
Different versions use different formulas to calculate 
CWND [9-14]. 

The description and analysis of the key features of the 
protocol modifications mentioned above are to follow. 

At present TCP Reno with multiple parallel streams 
P-TCP (Parallel TCP) is the most commonly used for 
achieving high productivity. However, it can be super- 
aggressive and “unfair” to other versions of TCP proto- 
col; the optimal number of parallel streams can vary sig- 
nificantly depending on the changes (for example, packet 
routes) or the use of networking opportunities. 

To be effective in conditions of high-performance, the 
prime modern advanced protocols when using a single 
TCP-stream should provide characteristics similar to P- 
TCP (parallel Reno TCP) and, in addition, they need to 
have a better “justice” (in relation to other TCP versions) 
than P-TCP. 

S-TCP (Scalable TCP) changes traditional algorithm 
of congestion control for TCP: exponential increase is 
used instead of additive increase and multiplicative de- 
crease factor b is set to be equal to 0.125 to diminish the 
loss of productivity after the overload. 

Fast TCP protocol is the only protocol based on Ve- 
gas TCP instead of TCP Reno. It uses queue delay and 
packet loss for detecting the overload [11,12]. This fact 
reduces large-scale packet losses due to the step-by-step 
algorithm in the transmitter resulting in rapid conver- 

gence to optimal parameters. 
HighSpeed TCP (HS-TCP) is a modification of the 

congestion control mechanism in TCP; it improves TCP 
performance in high-speed networks with high latency. 
This modification behaves like TCP Reno for small 
CWND values but the more “aggressive” reaction func- 
tion is used above selected CWND value. When CWND 
value is big (more than 38 packets, which is equal to the 
loss coefficient 1 out of 1000) this TCP version uses a 
table to indicate the extent of increasing the congestion 
window when ACK is received. In such a case less net- 
work bandwidth is used than 1/2 of CWND when packet 
loss. 

The objective of HSTCP-LP, which is based on TCP- 
LP, is to use only the excess network bandwidth; how- 
ever the other unused part of it can be applied by other 
TCP-flows. By giving a higher priority to all TCP-flows 
not using HSTCP-LP protocol, this version uses a simple 
two-class priority mechanism without any support from 
the network. HSTCP-LP has been implemented as the 
combination of HS-TCP and TCP-LP. 

The disadvantage of HSTCP and STCP modification is 
their inappropriate band distribution for several flows 
with different RTT. In these circumstances the synchro- 
nization of losses for competing flows creates notable 
problems. 

The slow response of TCP in high-speed networks of 
long length (fast long-distance networks) leads to the fact 
that there remains large unused carrying capacity. BIC 
TCP and CUBIC TCP—these are congestion control pro- 
tocols designed to eliminate such a problem. BIC TCP is 
implemented and used in Linux kernel version 2.6.8 and 
higher. On default the model of protocol implementation 
was replaced by CUBIC TCP in version 2.6.19. 

When a packet loss, BIC TCP reduces its window to a 
multiplicative factor. At first the reduction of the window 
size is set to maximum and after the reduction the win- 
dow size is set to minimum. Then BIC TCP performs a 
binary search by using these two parameters, going to the 
“middle” between the maximum (Wmax) and minimum 
(Wmin). If there is no packet loss when updated window 
size, then this window size becomes the new minimum. 
If the packet loss occurs, then the window size becomes 
the new maximum. This process proceeds until the win- 
dow increment is not less than a certain small constant 
Smin, and at this point, the window size is set to be equal 
to the current maximum. In the search for a new value of 
maximum, the window size increases at first slow to 
discover new maximum close by and, after some time of 
slow growth, if a new high is not detected (i.e. there are 
packet losses), then it is assumed that a new maximum is 
still further. Thus, the algorithm fails over a more rapid 
increase by passing to additive increase where the win- 
dow size expands with a large permanent incrementation. 
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Satisfactory performance characteristics of BIC TCP are 
determined by slow increase around Wmax and linear 
magnification when additive increase and searching the 
maximum (Figure 7(a)). 

CUBIC TCP is a protocol implementation of TCP 
with congestion control algorithm optimized for high per- 
formance networks with high latencies. CUBIC version 
is less aggressive and more systematic than BIC TCP, in 
which the window width value is a cubic function of time 
after the last event of overload, where the point of inflec- 
tion is attached to the window but not to the event as it 
was in previous cases. 

The CUBIC model uses a cubic function of window 
growth, which is very similar to the corresponding func- 
tion BIC-TCP. In CUBIC, when implementing the win- 
dow growth function, the time passed since the last event 
of overload is used. While most implementation models 
of standard TCP use convex functions of growth after a 
packet loss, the CUBIC applies both convex and concave 
sections of the cubic growth function of the window. Fig- 
ure 7 shows the evolution of the window in BIC (a) and 
CUBIC (b). 

5. Conclusions 

In summary, in the course of the experiments conducted 
and analysis of the results it was revealed that, when us- 
ing TCP Vegas, the network quality of service is much 
better and the number of packet losses is much smaller 
than when operating at other TCP protocols. TCP Vegas 
protocol: 
 is more stable when packet losses and enable to detect 

and retransmit a lost packet much faster than Tahoe; 
 does not have to wait for 3 duplicate ACKs and con- 

sequently it is able to accomplish the retransmission 
of a lost packet faster than Reno and NewReno; 

 

 

Figure 7. Window growth function for BIC-TCP and CU- 
BIC. 

 by modifying algorithms of congestion avoidance and 
slow start it realizes fewer retransmissions, which re- 
sult in more efficient network resource utilizations in 
comparison with NewReno and Tahoe; 

 it is enable to modify bandwidth measurements in- 
stead of packet loss according to the estimates of 
starting overload, which provides the best use of band- 
width and less congestions than Tahoe and SACK; 

 aligns its rate of sending packets to the recipient in 
optimum bandwidth, causing stability as contrasted 
with SACK. 

When considering the promising TCP modelsim two 
alternatives can be distinguished: BIC-TCP and CUBIC 
TCP. BIC-TCP model provides satisfactory scalability 
for high-speed networks, the equivalency for competing 
flows and stability with low oscillation of the window 
size. However, the growth function of BIC-TCP window 
may be too aggressive for TCP, in particular for small 
RTT values or for low-speed networks. Moreover, sev- 
eral phases of window control add unnecessary complex- 
ity to the protocol implementation and analysis of its 
characteristics. CUBIC TCP model lacks many of BIC 
TCP shortcomings but it also has some disadvantages 
and incompatibility with classical TCP protocols. That is 
why the study and improvement of TCP protocols is still 
an actual task. 
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