
Communications and Network, 2013, 5, 148-156
http://dx.doi.org/10.4236/cn.2013.52016 Published Online May 2013 (http://www.scirp.org/journal/cn)

Comparative Analysis of TCP-Protocol Operation
Algorithms in Self-Similar Traffic

Abed Saif Alghawli
College of Science and Humanities, Salman Bin Abdulaziz University, Aflaj, KSA

Email: alghauly@yahoo.com

Received March 7, 2013; revised April 7, 2013; accepted May 7, 2013

Copyright © 2013 Abed Saif Alghawli. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

This paper presents simulation modelling of network under the conditions of self-similar traffic and bottleneck occur-
rence. The comparative analysis of different TCPs (NewReno, Reno, Tahoe and etc.) has been conducted along with the
testing of various algorithms of these protocols activity. The use of TCP Vegas has been proved to be the most effec-
tive.

Keywords: Self-Similar Traffic; NewReno; Tahoe; Parallel TCP and Piggybacking

1. Introduction

TCP is the dominant protocol of the Internet. It delivers
data in the form of byte streams, establishes the connec-
tion and is used in applications that require guaranteed
delivery of messages. TCP applies batch totals to verify
their integrity and releases application processes from
timeouts and retransmissions to ensure reliability.

Numerous investigations of the Internet processes
showed that the statistical characteristics of traffic pos-
sess the ability of time-scale invariance (self-similarity).
Such an effect is caused by the specific character of file
distributions along servers, their sizes, as well as by a
typical behavior of users. It was found that data streams,
which initially do not exhibit self-similarity properties,
after being processed at the host server and at active net-
work elements, start showing pronounced signs of self-
similarity. This fact may cause fast buffer overloads even
with low use factor. If no action is taken to limit the in-
coming traffic, then the queues on the most loaded lines
will grow indefinitely and eventually exceed the size of
the buffers at the corresponding nodes. This leads to the
fact that the packages reentering to the nodes with full
buffers will be reset and are to be retransmitted, and that
in turn results in wasting network resources [1-4].

Traffic regulation in TCP assumes the existence of two
independent processes: delivery control operated by the
recipient using the Window parameter and congestion
control operated by the sender by using the CWND—
congestion window and the slow-start procedure (SSTH-
RETH slow start threshold). The first process monitors

filling in the recipient’s input buffer and the second one
registers the channel congestion, the losses related and
reduces the traffic level. The congestion window CWND
and the SSTHRETH slow start procedure provides rec-
onciling the full loading of the virtual connection and the
current channel opportunities and minimizing the packet
losses in case of overloading.

Some amendments and additions are constantly re-
corded in TCP in order to solve the problems appearing
in the course of the protocol or to improve its perform-
ances for systems with focused specialization.

The purpose of this paper is to conduct a comparative
analysis of TCP protocol types and algorithms of their
work and to identify strengths and weaknesses of each al-
gorithm in different operation scenarios in the network.

2. TCP Protocols

Let us consider the main types of TCP protocols: Tahoe,
Reno, NewReno, SACK and Vegas [4-8].

TCP-Tahoe algorithm is the oldest and the most widely
used one. The implementation of this algorithm has ad-
ded many new algorithms and improvements to its earlier
implementations. The new algorithms include: Slow Start,
Congestion Avoidance, and Fast Retransmission. The im-
provements involve the modification of time reporting of
the packets passing over the communication channel to
the destination and back to set the timeout retransmission.
The meaning of the congestion avoidance algorithm is to
keep the value of CWND within possible maximum val-
ues. In fact this optimization is carried out with the help

Copyright © 2013 SciRes. CN

A. S. ALGHAWLI 149

of packet losses. If there are no packet losses, then the
value of CWND reaches Window per default, as having
been specified in the configuration of TCP driver.

For the connections with large windows the TCP Time-
stamps algorithm is applied. The timestamps allow accu-
rate measurement of the round trip time RTT for the fur-
ther correction of a value of the retransmission timer.

The paper is particularly focused on the algorithm of
Rapid retransmission because it is modified in subse-
quent versions of TCP. When operated at the algorithm
of Rapid retransmission after receiving a small number
of duplicate confirmations for one TCP (ACK) packet,
the data source concludes that the packet was lost and re-
transmits the packet and all packets sent after it with zero
wait state for the retransmission timer, which leads to the
reduction of the through-put capacity and to the increase
of the already high channel loading level.

Getting the duplicate ACK is not a reliable sign of a
packet loss. Duplicate ACKs arise even when changing
the route exchange. For this reason the signal of loss is
considered as the getting of three ACK packets in suc-
cession.

When the buffer is overfilled, an arbitrary number of
segments will be lost. In such a case several scenarios
may take place. The basic version—slow start launches
within classical TCP-Tahoe algorithm when a segment
loss and resulting timeout (RTO) at the sender’s side
since the sender will not receive the acknowledgment
ACK for the lost segment. Slow start involves the instal-
lation of the congestion window equal to 1and the slow
start threshold equal to half the value of CWND at which
the timeout took place. The CWND reduces to one be-
cause the sender does not have any information about the
status of the network. Then, after each i-th confirmation
CWNDi+1 = CWNDi + 1. This formula works until
CWND is equal to ssthresh. Then the increase of CWND
becomes linear. The point of this algorithm is to keep the
value of CWND within maximum possible values. In fact
this optimization is carried out with the help of packet
losses. If there are no packet losses, the value of CWND
reaches the value of the window by default as having
been defined in the configuration of the TCP driver.

TCP Reno keeps the extensions included in Tahoe but
it changes the operation of Fast retransmit by adding Fast
Recovery. This new algorithm prevents the channel from
being in an empty state after Fast retransmission and is
not switched to Slow start phase to fill the channel after a
single packet loss. Fast Recovery assumes that each re-
ceived duplicate ACK is one package escaped from the
channel. Thus, during Fast Recovery a TCP sender is
able to calculate the amount of data sent.

The TCP sender enters into Fast Recovery after re-
ceiving the initial threshold of duplicate ACK. This thre-
shold is usually set to be equal to three. Once the thresh-

old of the duplicate ACK is received, the sender retrans-
mits one packet and reduces its congestion window by
half. Instead of Slow start, as in Tahoe TCP, Reno sender
uses an additional parish of duplicate ACK to synchro-
nize the subsequent outgoing packets.

In TCP-Reno normally the window size varies cycli-
cally. The window size increases until the segment loss.
TCP-Reno involves two phases of window re-sizing: a
phase of slow start and congestion avoidance.

Developers named fast recovery algorithm—NewReno,
as it differs greatly from the basic Reno algorithm. The
proposed algorithm has certain advantages in comparison
with the canonical Reno in different scenarios. However,
there is one scenario when canonical Reno exceeds New-
Reno—when reordering the flow of packets.

NewReno algorithm uses the variable Recover (re-
store), whose initial value is equal to the original packet
sequence number, and the algorithms of fast retransmis-
sion and fast recovery. When the option of the selective
acknowledgment SACK is available, the sender knows
which packages must be resent again at the phase of fast
recovery.

The main implementation stages of the algorithm are:
1) Three duplicate ACKs: start of Fast Retransmit or

without fast retransmit (the entry to the phase of fast re-
transmit and fast recovery is not applicable).

2) Entering fast retransmit phase: the congestion win-
dow is enlarged voluntarily in several segments (three)
that have left the network and are buffered by the recipi-
ent.

3) Fast recovery: the congestion window is enlarged
voluntarily in order to account the segment that has left
the network.

4) Fast recovery, continuation: the segment is trans-
mitted if it is allowed with the new CWND and window
values announced by the recipient.

5) When ACK arrives with acknowledging the receipt
of new data, then this ACK can be the confirmation re-
lated to the retransmission at the stage 2 or later retrans-
mission.

6) Retransmission timeouts (RTO): after RTO the
highest sequence number of the transmitted segment is
recorded into the variable recover and the quit from the
fast recovery stage is performed if it is possible.

7) Partial acknowledgement. The re-send of more than
one packet and the resetting of the timer of the retrans-
mission after the retransmission can be the optional re-
sponse for a partial acknowledgment. In case of multiple
packet losses the re-send of two packets when receiving
the partial acknowledgement provides faster system re-
covery. Such an approach requires less time than N RTT
in case of N packages loss. However, at the absence of
the SACK option, the slow start provides sufficiently
rapid system recovery without sending extra packets.

Copyright © 2013 SciRes. CN

A. S. ALGHAWLI 150

8) Specifies that TCP sender responds to the partial
ACKs with the reduction of the congestion window to an
amount corresponding to the volume of valid data. Thus,
only one packet sent earlier is transmitted in response to
each partial confirmation, but new packages can be sent
as well, depending on the amount of the delivery con-
firmed partially.

9) Exclusion of multiple fast retransmissions.
TCP Vegas protocol implementation fits well in net-

works where it is necessary to determine the available
bandwidth and adjust dynamically the optimal parame-
ters. Vegas algorithm evaluates the buffering that occurs
in the network and controls the rate of the flow corre-
spondingly. The algorithm is able to calculate and reduce
the flow rate before the packet loss occurs. It controls the
size of the window by monitoring provided by the RTT
sender (transmission time of the packets over the com-
munication channel to the destination and back) for pac-
kets having been sent earlier. If there is an increase of
RTT, the system recognizes that the network is close to
overload and reduces the width of the window. If RTT is
reduced, the sender will determine that the network has
overcome the congestion and will increase the size of the
window. Consequently, the window size in an ideal situ-
ation will tend to the desired value. This TCP modifica-
tion requires high resolution of the sender’s timer.

TCP SACK algorithm uses “Options” field of the TCP
frame header for additional information about the pack-
ages received by a recipient. If there was a loss, then
each segment of triple ACK, sent by the receiving station,
contains information about the frame caused the sending
of this segment. Thus, the sender after receiving the frame
has the data not only about the lost frame but also about
the frames that reached the recipient successfully. As a
result the unnecessary re-send of the segments success-
fully buffered at the recipient side is avoided.

The same as in the case with Reno, TCP SACK goes
into Fast recovery regime when receiving 3 duplicate
ACKs. During Fast recovery the sender supports Pipe
variable representing the number of packets in the net-
work. This variable increases whenever a new segment
has been sent and decreases if further confirmation has
been obtained. The transfer of a new packet in the net-
work is accepted if Pipe value is less than the congestion
window.

The sender also maintains the data structure that stores
the confirmations from the SACK option being under the
acknowledgment. If the sender gets the permitted transfer,
then he sends the next packet from the list of packages
considered to be lost. If there are no such packets, then a
new packet is transmitted. For connections with large
windows the timestamp algorithm is applied. The time-
stamps help to conduct accurate time measurement of
RTT access for further correction of values of the re-

transmission timer.
In case when the option of the selective acknowledge-

ment SACK is available, the sender is aware which pac-
kages must be re-sent to the phase of Fast Recovery. In
the absence of SACK option there is no sufficient infor-
mation on the packages which are to be re-sent. As re-
ceived three duplicate acknowledgments (DUPACK), the
sender considers the package to be lost and sends it again.
After that the sender may receive additional duplicate con-
firmation because the recipient provides the acknowl-
edgement of packages that are in transmit when the sen-
der switched to a mode of Fast Retransmit. In the case of
loss of several packets from one window the sender re-
ceives new data when the confirmation of the packets re-
sent is obtained. If one package was lost and there was no
change in the order of packages, then the package con-
firmation will mean the successful delivery of all previ-
ous packages before switching to Fast Retransmit. How-
ever, if several packages were lost then the confirmation
of the re-send packages acknowledge the delivery of
some but not all packets sent before switching to Fast
Retransmit mode.

3. Results of Simulation Modelling

To conduct the simulation in the network simulator Opnet,
a simulative network analog consisting of several senders,
recipients and the router between them was constructed
Figure 1. The bottleneck of the network analog was the
router and the output channel. In the course of numerical
study the TCP operational algorithms the buffer sizes of
the router and the recipient and the bandwidth at the rou-
ter output have been altered. The traffic in the network
under the examination presents a self-similar random pro-
cess with user-specific parameters. One of the parameters
is Hurst exponent, which characterizes the long-range
dependence of the process and lies in the range [0.5, 1].

The characteristics for the comparative analysis of the
network were: the number of lost data, the buffer capac-

Figure 1. Simulative network.

Copyright © 2013 SciRes. CN

A. S. ALGHAWLI

C CN

151

ity of the router, the channel utilization and the network
performance.

Study of CWND changes. The objects involved in the
connections are found to be synchronized to some extent.
This is due to the fact that at any conflict, associated with
the increase in the width of the window when the buffer
is full, all incoming cells belonging to packages are re-
jected.

opyright © 2013 SciRes.

On the assumption of instant readiness of the sender to
transfer and that the time spread of cells does not exceed
the time of packets forwarding in the input channel, all
the connections will send the cells during the transmis-
sion time of packets involved into the collision. Con-
sequently, all the connections lose packets and reduce the
width of the window by half within RTT.

The simulation modeling testified that for TCP-Vegas
protocol for one missing segment the CWND reduction
is absent (line 1 in Figure 2). When there is one missing
segment for TCP-Tahoe protocol (line 2) and TCP Reno
(line 3), then the CWND reduction occurs well before
and thus the channel resources are not used efficiently.

Figure 3 shows the number of sent and received seg-
ments and the corresponding change in the window size.

The presented dependency is typical for all TCP proto-
cols. From the graph it is seen that the number of sent
segments increases linearly, in accordance with the size
gain of the window. However, the amount of missed data
at the window size reduction is well in excess of toler-
able losses determined by Qos (Quality of Service).

In the case of NewReno algorithm the number of lost
data and channel utilization decreases in comparison with
Reno algorithm.

This is due to the fast retransmission and fast recovery
options. However, at the option of selective acknowl-
edgment (SACK) if operating at Reno the number of lost
data is only slightly more than for NewReno. From the
graph shown in Figure 4 it is obvious that TCP-SACK
protocol resizes CWND less. The loading of the buffer
will be more uniform and the use of channel resources
will also be superior to using Reno algorithm.

In the case of NewReno algorithm the number of lost
data and channel utilization decreases in comparison with
Reno algorithm. This is due to the fast retransmission
and fast recovery options. However, at the option of se-
lective acknowledgment (SACK) if operating at Reno the
number of lost data is only slightly more than for Ne-

Figure 2. CWND changing: line 1—Tahoe when one segment loss; line 2—Tahoe when one segment loss; line 3—ТСР Reno
when one segment loss.

Figure 3. CWND changing (above) and the number of transmitted (line 1) and received segments (line 2) with time (below).

A. S. ALGHAWLI 152

Figure 4. CWND changing for ТСР Reno (line 1) and ТСР SACK (line 2) when one segment loss.

wReno. From the graph shown in Figure 4 it is obvious
that TCP-SACK protocol resizes CWND less. The load-
ing of the buffer will be more uniform and the use of
channel resources will also be superior to using Reno al-
gorithm.

In TCP-Tahoe the use of TCP group acknowledgments
motivates the reduction in the window width to one after
a loss to avoid the burst of packets caused by their re-
transmission. This in turn leads to an exponential win-
dow size gain at the slow start required for networks with
a large product of the band by the delay. On the other
hand, this exponential increase causes serious fluctua-
tions in traffic, which, if the buffer size is less than one
third of the product of the band by the delay, cause the
buffer overflow and the second slow start decreasing the
carrying capacity. TCP-Reno is trying to prevent this fact
by reducing the window size twice when the loss is de-
tected. Though under ideal conditions this does provide
improved bandwidth, but in its present form TCP-Reno is
too vulnerable to the interface effects and multiple packet
losses to become a substitute for TCP-Tahoe. The main
problem with TCP-Reno is the fact that there may be
multiple constraints for the window associated with one
episode of overload, and that multiple losses can result in
timeout (which in practice leads to a significant decrease
in carrying capacity when low-resolution timer is being
used).

TCP-Vegas protocol tries to implement a number of
improvements such as more sophisticated processing and
evaluation of RTT. But for RTT fluctuations in Internet
there are a lot of other reasons besides buffer flow. In
order to improve the current version of TCP significantly
it is necessary to avoid drastic cuts in the window size
both in TCP-Tahoe and in TCP-Reno, except when there
is a continuous overload (which causes massive packet
losses). It is proposed to use TCP-Tahoe (in conjunction
with network layer management to optimize the perfor-
mance characteristics) in the case of isolated losses since
this option is by far stabler than TCP-Reno.

Study of TCP in the case of overload. Simulation
modelling of the network when using Reno algorithm
with Fast recovery option showed that this algorithm is
optimal only in the case of a single packet losses, i.e.

when Reno sender transmits no more than one packet
during the passage of one package through a communi-
cation channel to the destination and back. When there is
a loss of a single packet, the algorithm Reno is substan-
tially better as compared to Tahoe TCP but Reno de-
grades the network performance significantly if there was
a loss of several packets within a single window Window.
When operated at Tahoe which does not use the option of
fast recovery the number of lost data is approximately the
same as in NewReno algorithm but the traffic load is far
less.

The results of the TCP-Reno study show that every
connection usually loses about two packets in each epi-
sode of overloading. The losses occur when the buffer is
full and one connection increases the window size per
unit. When cells of this new package arrive into the
buffer, they usually cause loss of cells belonging to two
packets (the end of the package that came from another
connection and the beginning of the following one).
Therefore, on the average the loss of three packages is
expected for one episode of overload.

The study of queueing and the use of network re-
sources. The problem of optimal use of network re-
sources for algorithms of fast recovery and fast retrans-
mission in TCP-Reno algorithm associated with multiple
fast retransmissions are relatively smaller than compared
to the same problems that arise in the case of TCP-Tahoe
algorithm, which does not use fast recovery. However, if
no additional mechanisms associated with the use of Re-
cover variable are applied then the unnecessary retrans-
mission can occur when using TCP-Reno.

The paper represents comparative analysis of queueing
in the buffer for different algorithms of TCP as the num-
ber of input data flows increases (Table 1). This is of
particular importance, for example, for networks with
multiple VPN channels and multi-port routers.

The RTT time rise is unpreventable with respect to the
queue length growth. The packet losses start when
achieving the lower threshold of the queue. Whenever
the upper limit is exceeded, the incoming packages with
lower priority are dropped out (see Figure 5). If only the
packet dropping did not start until the buffer congestion,
a linear increase of RTT would be expected. The amount

Copyright © 2013 SciRes. CN

A. S. ALGHAWLI 153

Table 1. The value of the mean length of a queue (mb) at
different number of data flows.

 1 2 3 4 5 6 7

Tahoe 9900 11,700 11,900 15,000 15,300 15,600 16,000

Reno 9800 11,500 11,500 14,700 15,800 16,000 16,100

NewReno 9100 9500 9700 10,600 12,000 13,800 15,200

Sack 5300 5600 6900 7200 8600 8800 9100

Vegas 5200 5600 7000 7000 7700 8500 8900

Figure 5. The number of received packets depending on
packet delays.

of packet losses would increase almost spasmodically
when achieving the limit value of the queue.

One of the most important indicators of the network
quality is the channel utilization index. Table 2 shows
the values of this parameter while the evolution of the
window size with the course of time.

In TCP-Vegas the ACK confirmation is combined with
data packet (called piggybacking) instead of an inde-
pendent transmission as in other algorithms. This saves
fifty percent of time as contrasted with the normal per-
formance of TCP ACK acknowledgement and does not
waste extra time. Consequently, TCP-Vegas can transmit
more data (Table 3).

The study of TCP in WAN. In order to guarantee the
performance in highly loaded WAN (wide-area network),
each TCP connection needs to have a reserved buffer and
free transmission range along the whole network path.
Usually the resource allocation is carried out in the inter-
connection step and makes the routers and switches form
independent queues for each connection. Since the re-
source administration on the principle “the best possible”
can be very expensive, the more acceptable alternative
may be the resource reservation for every traffic class.
The transfer rate varying with time available for every
connection is defined on the network layer and is admin-
istered by the sender, so that different TCP connections
are to be isolated from each other even if they use the
same buffers together.

Table 2. Channel utilization index while the evolution of the
window size with the course of time (ms).

 100 200 300 400 500 600 700

Tahoe 1 0.8 0.72 0.72 0.65 0.6 0.56

Reno 1 0.82 0.75 0.78 0.62 0.54 0.4

NewReno 1 0.87 0.79 0.85 0.74 0.68 0.6

Sack 1 0.93 0.88 0.99 0.82 0.87 0.99

Vegas 1 0.94 0.88 1 0.85 0.9 0.98

Table 3. The number of received packets depending on
packet delays.

Packet delays, ms Algorithm
TCP 10 20 30 40 50

Tahoe 6869 6479 6215 5973 5673

Reno 6869 6479 6215 5973 5673

NewReno 6869 6479 6215 5973 5673

Sack 6869 6479 6215 5973 5673

Vegas 7200 6812 6400 6091 5934

Since the bias against connections with high RTT la-

tency is associated with the mechanism of a window ad-
aptation, it, theoretically, can be overcome by modifying
the mechanism of bandwidth monitoring during the con-
gestion avoidance phase, for example, by increasing the
size of the window so that the rate of bandwidth growth
for all connections to be one and the same. However, it is
impossible to choose universal time scale for the window
adjustment to be functional for networks with different
bandwidths and topology. For example, sounding an ad-
ditional band with rate of 1 Mb/s may be too fast for the
network with a channel of 1 Mb/s but too slow for a
GBIT network. In such a way to set this scheme to work
it would be extremely significant to provide some ex-
changes between the network and the transport layer.
Secondly, such a scheme would still be subjected to
strong influence of certain TCP shortcomings such as the
degradation of the performance in the presence of acci-
dental losses and excessive delays associated with the at-
tempts to use an additional band under the conditions of
complete utilization of the channel. In summary, this mo-
dification cannot be considered as the representation of
the best approach to the problem of optimality.

Figure 6 shows the number of sent useful data for
whose computation it is necessary to subtract the number
of re-sent data from the total number of sent data.

4. Future Evolution of TCP Protocol Future
Evolution of TCP Protocol

Over the last years several new modifications of TCP

Copyright © 2013 SciRes. CN

A. S. ALGHAWLI 154

Figure 6. The number of sent useful data as a function of
time.

protocol have been proposed: Binary Increase Control
TCP (BIC-TCP), CUBIC TCP, Westwood TCP (TCPW),
Parallel TCP Reno (P-TCP), Scalable TCP (S-TCP), Fast
TCP, HighSpeed TCP (HS-TCP), HighSpeed TCP Low
Priority (HSTCP-LP), Hamilton TCP (H-TCP), Yet An-
other Highspeed TCP (YeAH-TCP), Africa TCP, Com-
pound TCP, etc. These protocols seek to resolve difficul-
ties arising when working with modern fast (1.10 Gb/s)
and long (RTT > 200 msek) channels. Almost all of them
are based on certain older versions of TCP and differ by
various means of congestion avoidance (exactly by dif-
ferent methods of determining the existence of packet
losses that namely mean the origination of congestion).
Different versions use different formulas to calculate
CWND [9-14].

The description and analysis of the key features of the
protocol modifications mentioned above are to follow.

At present TCP Reno with multiple parallel streams
P-TCP (Parallel TCP) is the most commonly used for
achieving high productivity. However, it can be super-
aggressive and “unfair” to other versions of TCP proto-
col; the optimal number of parallel streams can vary sig-
nificantly depending on the changes (for example, packet
routes) or the use of networking opportunities.

To be effective in conditions of high-performance, the
prime modern advanced protocols when using a single
TCP-stream should provide characteristics similar to P-
TCP (parallel Reno TCP) and, in addition, they need to
have a better “justice” (in relation to other TCP versions)
than P-TCP.

S-TCP (Scalable TCP) changes traditional algorithm
of congestion control for TCP: exponential increase is
used instead of additive increase and multiplicative de-
crease factor b is set to be equal to 0.125 to diminish the
loss of productivity after the overload.

Fast TCP protocol is the only protocol based on Ve-
gas TCP instead of TCP Reno. It uses queue delay and
packet loss for detecting the overload [11,12]. This fact
reduces large-scale packet losses due to the step-by-step
algorithm in the transmitter resulting in rapid conver-

gence to optimal parameters.
HighSpeed TCP (HS-TCP) is a modification of the

congestion control mechanism in TCP; it improves TCP
performance in high-speed networks with high latency.
This modification behaves like TCP Reno for small
CWND values but the more “aggressive” reaction func-
tion is used above selected CWND value. When CWND
value is big (more than 38 packets, which is equal to the
loss coefficient 1 out of 1000) this TCP version uses a
table to indicate the extent of increasing the congestion
window when ACK is received. In such a case less net-
work bandwidth is used than 1/2 of CWND when packet
loss.

The objective of HSTCP-LP, which is based on TCP-
LP, is to use only the excess network bandwidth; how-
ever the other unused part of it can be applied by other
TCP-flows. By giving a higher priority to all TCP-flows
not using HSTCP-LP protocol, this version uses a simple
two-class priority mechanism without any support from
the network. HSTCP-LP has been implemented as the
combination of HS-TCP and TCP-LP.

The disadvantage of HSTCP and STCP modification is
their inappropriate band distribution for several flows
with different RTT. In these circumstances the synchro-
nization of losses for competing flows creates notable
problems.

The slow response of TCP in high-speed networks of
long length (fast long-distance networks) leads to the fact
that there remains large unused carrying capacity. BIC
TCP and CUBIC TCP—these are congestion control pro-
tocols designed to eliminate such a problem. BIC TCP is
implemented and used in Linux kernel version 2.6.8 and
higher. On default the model of protocol implementation
was replaced by CUBIC TCP in version 2.6.19.

When a packet loss, BIC TCP reduces its window to a
multiplicative factor. At first the reduction of the window
size is set to maximum and after the reduction the win-
dow size is set to minimum. Then BIC TCP performs a
binary search by using these two parameters, going to the
“middle” between the maximum (Wmax) and minimum
(Wmin). If there is no packet loss when updated window
size, then this window size becomes the new minimum.
If the packet loss occurs, then the window size becomes
the new maximum. This process proceeds until the win-
dow increment is not less than a certain small constant
Smin, and at this point, the window size is set to be equal
to the current maximum. In the search for a new value of
maximum, the window size increases at first slow to
discover new maximum close by and, after some time of
slow growth, if a new high is not detected (i.e. there are
packet losses), then it is assumed that a new maximum is
still further. Thus, the algorithm fails over a more rapid
increase by passing to additive increase where the win-
dow size expands with a large permanent incrementation.

Copyright © 2013 SciRes. CN

A. S. ALGHAWLI 155

Satisfactory performance characteristics of BIC TCP are
determined by slow increase around Wmax and linear
magnification when additive increase and searching the
maximum (Figure 7(a)).

CUBIC TCP is a protocol implementation of TCP
with congestion control algorithm optimized for high per-
formance networks with high latencies. CUBIC version
is less aggressive and more systematic than BIC TCP, in
which the window width value is a cubic function of time
after the last event of overload, where the point of inflec-
tion is attached to the window but not to the event as it
was in previous cases.

The CUBIC model uses a cubic function of window
growth, which is very similar to the corresponding func-
tion BIC-TCP. In CUBIC, when implementing the win-
dow growth function, the time passed since the last event
of overload is used. While most implementation models
of standard TCP use convex functions of growth after a
packet loss, the CUBIC applies both convex and concave
sections of the cubic growth function of the window. Fig-
ure 7 shows the evolution of the window in BIC (a) and
CUBIC (b).

5. Conclusions

In summary, in the course of the experiments conducted
and analysis of the results it was revealed that, when us-
ing TCP Vegas, the network quality of service is much
better and the number of packet losses is much smaller
than when operating at other TCP protocols. TCP Vegas
protocol:
 is more stable when packet losses and enable to detect

and retransmit a lost packet much faster than Tahoe;
 does not have to wait for 3 duplicate ACKs and con-

sequently it is able to accomplish the retransmission
of a lost packet faster than Reno and NewReno;

Figure 7. Window growth function for BIC-TCP and CU-
BIC.

 by modifying algorithms of congestion avoidance and
slow start it realizes fewer retransmissions, which re-
sult in more efficient network resource utilizations in
comparison with NewReno and Tahoe;

 it is enable to modify bandwidth measurements in-
stead of packet loss according to the estimates of
starting overload, which provides the best use of band-
width and less congestions than Tahoe and SACK;

 aligns its rate of sending packets to the recipient in
optimum bandwidth, causing stability as contrasted
with SACK.

When considering the promising TCP modelsim two
alternatives can be distinguished: BIC-TCP and CUBIC
TCP. BIC-TCP model provides satisfactory scalability
for high-speed networks, the equivalency for competing
flows and stability with low oscillation of the window
size. However, the growth function of BIC-TCP window
may be too aggressive for TCP, in particular for small
RTT values or for low-speed networks. Moreover, sev-
eral phases of window control add unnecessary complex-
ity to the protocol implementation and analysis of its
characteristics. CUBIC TCP model lacks many of BIC
TCP shortcomings but it also has some disadvantages
and incompatibility with classical TCP protocols. That is
why the study and improvement of TCP protocols is still
an actual task.

REFERENCES
[1] W. Leland, M. Taqqu, W. Willinger and D. Wilson, “On

the Self-Similarnature of Ethernet Traffic//IEEE/ACM,”
Transactions of Networking, Vol. 2, No. 1, 1994, pp. 1-
15. doi:10.1109/90.282603

[2] W. Stollings, “High-Speed Networks and Internets. Per-
formance and Quality of Service,” W. Stollings, New Jer-
sey, 2002.

[3] B. Sonkoly, B. Simon, T. A. Trinh and S. Molnar, “A
Research Framework for Analyzing High Speed Trans-
port Protocols Based on Control-theory,” Network Pro-
tocols and Algorithms, Vol. 1, No. 2, 2009, pp. 1-26.

[4] SimonLeinen, “High-Speed TCP Variants,” 2011.
http://kb.pert.geant.net/twiki/bin/view/PERTKB/TcpHigh
SpeedVariants

[5] S. Floyd and V. Jacobson, “Random Early Detection Gate-
ways for Congestion Avoidance,” IEEE/ACM Transac-
tions on Networking, Vol. 1, No. 4, 1993, pp. 397-413.

[6] K. Fall and S. Floyd, “Simulation-Based Comparison of
Tahoe, Reno, and Sack Tcp,” Computer Communication
Review, Vol. 26, No. 3, 2002, pp. 5-21.
doi:10.1145/235160.235162

[7] W. Xia and W. Zhang, “End-to-End Solution of TCP Pro-
tocol in High Speed Network,” 3rd International Confer-
ence of Computer Research and Development (ICCRD),
11-13 March 2011, pp. 284-288.

[8] B. Qureshi, M. Othman, S. Sabraminiam and N. A. Wati,
“QTCP: An Optimized and Improved Congestion Control

Copyright © 2013 SciRes. CN

http://dx.doi.org/10.1109/90.282603
http://dx.doi.org/10.1145/235160.235162

A. S. ALGHAWLI

Copyright © 2013 SciRes. CN

156

Algorithm of High-Speed TCP Networks,” Sprinter-Ver-
lag, Berlin, Heidelberg, 2011, pp. 56-67.

[9] S. Ha, L. Le, I. Rhee and L. Xu, “Impact of Background
Traffic on Performance of High-Speed TCP Variant Pro-
tocols,” Computer Networks, Vol. 51, No. 7, 2007, pp.
1748-1762. doi:10.1016/j.comnet.2006.11.005

[10] H. Cai, D. Eun, S. Ha, I. Rhee and L. Xu, “Stochastic
Ordering for Internet Congestion Control and Its Applica-
tions,” IEEE INFOCOM, Anchorage, 6-12 May 2007.

[11] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier,
W. Gang, L. Eggert, S. Ha and I. Rhee, “Towards a Com-

mon TCP Evaluation Suite,” PFLDnet, Manchester, 2008.

[12] I. Rhee and L. S. Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variants,” PFLDnet, Lyon, 2005.

[13] S. Molnár, B. Sonkoly and T. A. Trinh, “A Comprehen-
sive TCP Fairness Analysis in High Speed Networks,”
Computer Communications, Vol. 32, No. 13-14, 2009, pp.
1460-1484.

[14] M. Welzl, M. Scharf and B. Briscoe, “RFC6077,” Open
Research Issues in Internet Congestion Control, February
2011.

http://dx.doi.org/10.1016/j.comnet.2006.11.005

