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ABSTRACT

In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to
solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The
analytical results of examples are calculated in terms of convergent series with easily computed components [2].
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1. Introduction

A new integral transform is derived from the classical
Fourier integral. A new integral transform [3] was intro-
duced by Artion Kashuri and Associate Professor Akli
Fundo to facilitate the process of solving ordinary and
partial differential equations in the time domain. Some
integral transform method such as Laplace, Fourier, Su-
mudu and Elzaki transforms methods, are used to solve
general nonlinear non-homogenous partial differential
equation with initial conditions and use fullness of these
integral transform lies in their ability to transform dif-
ferential equations into algebraic equations which allows
simple and systematic solution procedures. Non-linear
phenomena, that appear in many areas of scientific fields
such as solid state physics, plasma physics, fluid me-
chanics, population models and chemical Kinetics, can be
modeled by nonlinear differential equations. The impor-
tance of obtaining the exact or approximate solutions of
nonlinear partial differential equations in physics and
mathematics is still a significant problem that needs new
methods to discover exact or approximate solutions. Also
a new integral transform and some of its fundamental
properties are used to solve general nonlinear non-homo-

genous partial differential equation with initial conditions.

A new integral transform is defined for functions of ex-
ponential order. We consider functions in the set F de-
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fined by:
il

F ={f(t)] 3M k,k, >0, such that | (t)| < Me"’,
@)
if te (—1)i x[0,0)

For a given function in the set F, the constant M
must be finite number k;,k, may be finite or infinite.

A new integral transform denoted by the operator
K(-) is defined by the integral equation:

©

K[f(t)](V)=A(V>=%£eVZf(t)dt' e
t>0,-k <v<Kk,

A new integral transform was applied to partial diffe-
rential equations, ordinary differential equations, system
of ordinary and partial differential equations and integral
equations. A new integral transform is a powerful tool
for solving some differential equations. In this paper, we
combined a new integral transform and homotopy per-
turbation method (HPM) to solve nonlinear partial
differential equations. The purpose of this study is to
show the applicability and the efficiency of this mixture
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method. For any function f(t), we assume that a inte-
gral Equation (2) exist.

Definition 1.1. [4] Given a function A(v), if there is
afunction f(t) thatis continuous on [0,00) and satis-

fies, K[ f(t)](v)=A(v) then we say that f(t) is
the inverse new integral transform of A(v) and employ
the notation, f(t)=K™[A(v)].

Theorem 1.2. [Linearity of the inverse new integral
transform] Assume that K[ A (v)],K™[ A (v)] exist

and are continuous on [0,:0) and a,b are constant co-
efficients. Then,

K™*[(aA +bA, )(v)]
=aK [ A (v)]+bK*[ A (V)]

Proof. It is easy to verify that the right-hand side of
first equation is a continuous function on [0,oo) whose
a new integral transform is aA (v)+bA, (v).

Suppose that, K[ A (v)]=f,(t) and
K*[A,(v)]=f,(t). Then, K[f,(t)](v)=A(v) and

K[ f,(t)](v)=A,(v) and we know that K is linear
integral transform. So,

K[af, (t)+bf,(1)]

=aK [ f,(t)]+bK[ f,(t)]=aA (v)+bA,(v)
Hence,

K™[(aA +bA)(v)] ©

= af, (t)+bf, (t) =aK [ A (v) |+ bK*[ A, (V)]

So we have proof the theorem. |

Theorem 1.3. [Fundamental properties of a new in-
tegral transform of partial derivatives] Let A(X,v)
be a new integral transform of f (x,t). Then,

@K (X't)}: AlY) _F(x0)

ot v? v

®)

(4)

() K 0% f (th)}: A()i,v)_ f ()(3,0)_181‘ (x,0)
| ot % % v ot
OK o"f (x,t) :A(x,v) n-1 %7 9“f (x,0)
I atn v2n _OVZ(n k)-1 6tk

[of (x,t)]  d
(d)K_ > }_d—x A(x.v)]
o*f (x.t)

(€K

(f),{M}_ O T A(Y)]

x| dx"

Proof. We assume that f(x,t) is piecewise con-
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tinuous and it is of exponential order. To obtain a new
integral transform of partial derivatives we use integra-
tion by parts as follows:

(@

K[@f(x,t)}

ot
) -t a -t
_ lMevzdt:nmleevzdt
oV ot as® oV ot

1 -t a 12 -t
:I- —f ,t Vz -y f lt Vzdt
L R = (I
~ A(x,v) f(x0)
-— .

of (x,t
(b) Let substitute, gt( ): g(x,t) then by part (a)

we have:
o*f (xt ag(xt)] =1ag(x.t) >
(], e ot
_Klg(xt)] g(x0)
_AxY)  f(x0) 14f(x0)
v v? v ot

We can easily extend this result to the n™ partial de-
rivative by using mathematical induction to get (c).

(d)

K{af <x,t>Fgaf (x1) 2

OX oV OX
o (%1 =
=—| [=f(xt)evdt
6x[£v (xt)e J
Above we have used the Leibniz’s rule to find that:
of (x,t)| d
K{T}_d—X[A(x,v)]
(e)

o f(x,t)] =10%f(xt) =
NEaICI R HLAICUEN
OX oV OX
82 001 ;21
=——| |=f(x,t)evdt
ox? [{v (x1)
Above we have used the Leibniz’s rule to find that:

KFZ f (X’t)} =%[A(x,v)] :

ox?

We can easily extend this result to the n™ partial
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derivative by using mathematical induction to get (f)
So we have proof the theorem. O

2. Homotopy Perturbation Method (HPM)

The homotopy perturbation method is considered as spe-
cial case of homotopy analysis method. Let X and Y be
the topological spaces. If f(x) and g(x) are con-
tinuous maps of the space X into Y, it is said that f (x)
is homotopicto g (x) , If there is continuous map
G:Xx[0,1]—>Y suchthat, G(x,0)=f(x) and

G(x,1)=g(x) for each xe X . The map G is called
homotopy between f(x) and g(x). To explain the
homotopy perturbation method, we consider a general
equation of the type,

L(u)=0 (6)

where L is any differential operator. We define a con-
vex homotopy H (u, p) by,

H (u,p)=(1-p)G(u)+pL(u) (7)
where G(u) is a functional operator with known solu-
tion v, which can be obtained easily. It is clear that, for
H(u,p)=0 wehave H(u,0)=G(u),
H(u,1)=L(u). In topology this show that H (u,p)

continuously traces an implicitly defined curve from a
starting point H (v,,0) to a solution function

H(f(x).1).
The (HPM) uses the embedding parameter p as

an expanding parameter [1,5] and write the solution as a

power series:
u(xt)=u, (x,t)+ pu, (x,t)+ p’u, (x.t)
+ Uy (X, t) 4o+ phu, (X, 1)+

®)

If p—1 then (8) corresponds to (7) and becomes the
approximate solution of the form,

f(x)=limu(x,t)=>u(xt) 9)

p—1

s

I
o

The embedding parameter monotonically increases
from zero to unit, so pe[0,1] as the trivial problem
G(u) =0 is continuously deforms the original problem

L(u)=0. It is well known that the series (8) is conver-
gent for most of the cases and also the rate of conver-
gence is depending on L(u). We assume that (9) has a
unique solution. The comparisons of like powers of p
give solutions of various orders.

Mixture of a New Integral Transform and
(HPM)

Consider a general nonlinear non-homogenous partial
differential equation with initial conditions of the form:
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Du(x,t)+Ru(xt)+Nu(xt)=g(xt) (10)

u(x,0)=h(x), u(x0)=f(x)
where D is linear differential operator of order two, R
is linear differential operator of less order than D, N
is the general nonlinear differential operator and g(x,t)
is the source term. Taking a new integral transform on
both sides of equation (10) we get:

K[ Du(xt)]+K[Ru(xt)]
+K[Nu(xt)]=K[g(xt)]

Using the differentiation property of a new integral
transform by theorem (1.3) and above initial conditions,
we have:

Klu(xt)]=v'K[g(xt)]+vh(x)

+V2 f (X) = VK[ Ru(x,t)+Nu(x,t)]

(11)

(12)

Applying the inverse new integral transform on both

sides of Equation (12) we find:
1) =G (x,t
) fx ! (13)
—K* (V'K [Ru(xt)+Nu(x,t)])

where G(x,t) represents the term arising from the
source term and the prescribed initial conditions. Now,
we apply the homotopy perturbation method.

u(x,t):ip”un(x,t) (14)
n=0
and the nonlinear term can be decomposed as,
N[u(xt)]=3 p"H, (u) (15)
n=0

where H (u) are the so-called He’s polynomials [1]

that represents the nonlinear terms and are given by the
formula:

Hn(uoiul""'un)

1o {N[i piui(x,t)ﬂ : ,n=012,- (16)

_map" i=0

Substituting Equations (14) and (15) in Equation (13)
we get:

épnu”(x*tFG(x,t)
_D{Kl (V“K[Ri p"u, (x,t)+§) o'H. (“)D} (17)

n=0
This is the coupling of a new integral transform and
the homotopy perturbation method [5]. Comparing the
coefficients of like powers of p, the following approxi-
mations are obtained:
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P’ Uy (x,t) =G(x,t)

K’l(v K[ g(xt)]+vh(x)+v*f(x ))
P iuy (x,t) = =K (V'K [Ru, (x,t)+ Hy (1) )
p* iU, (X,t) =~ (v K[ Ru, (x,t)+H, (u )})
(x,t)+H, (u)])

p° s (x,t) ==K (V'K [ Ry,

p" U, (%) ==K (VK [Ru, (xt)+H,, (u)])
P 1Up s (%,8) ==K (V'K [ Ru, (x,t)+H, (u)])
Then the solution is :

u(x,t) =us (x,t)+u (x,t)+u, (xt)

Uy (X, )+ U (X, t)+-- (18)

It is worth mentioning that the method is capable of
reducing the volume of the computational work as com-
pared to the classical methods while still maintaining the
high accuracy of the numerical result and no requirement
to complicated calculations. The size reduction amounts
to an improvement of the performance of the approach.

3. Applications

Application of the mixture of a new integral transform
and homotopy perturbation method (HPM) for solving
nonlinear partial differential equations. In this section we
apply the homotopy perturbation method and a new inte-
gral transform method in order to get the solution proce-
dure of this.

The following examples illustrate the use of this new
mixture method in solving certain initial value problems
described by nonlinear partial differential equations.

Example 3.1.

Consider the following non-homogenous nonlinear
partial differential equation with initial conditions:

Ug (X, t)+u(xt)u, (x,t)=¢ (19)
u(x,0)=h(x)=1 u,(x,0)=f(x)=1 (20)

By applying a new integral transform of Equation (19)
subject to the initial conditions (20) we have:

u, (xt)] (1)

Klu(xt)]= l—Vv2 -v'K[u(xt)

The inverse new integral transform implies that,
u(x,t =K‘1( v j
—K‘l(v“K[u(x,t)uX(x,t)])

Now applying the homotopy perturbation method in
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Equation (22) we get:

2P, (xt)
n=0

-afeferSrm])

where H, (u) are He’s polynomials that represents the
nonlinear terms. Then,

plu(xt)u, (xt)]=0
p[(uo(x,t)+ pu, (x,t)+ pzuz(X,t)+...)
(uox (X,t)+ puy, (x,t)+ pzuzx(x,t)+--.)] -0

where,

(23)

(24)

u(xt)=u, (x,t)+ pu, (x,t)+ p’u, (x.t)
+ Py (X, )+ pluy (X, 1)+
The first few components of H, (u) are given by:
Ho(u):uo(x't)uw(x’t)
H, (1) = (), (.8) 45 (X, ), (1)
H, (u) = (X,t)uy, (X,t) (25)
+ul(x’t)ulx(x’t)+u2(X’t)UOX(X’t)

Comparing the coefficients of the same powers of p,
we get:

P’ Uy (X,t) =G(x.t)
= K‘l(v“K [g(x,t)]+vh(
Ho (u) =0

x)+v3f(x))=e‘,

ph Uy (X t) ==K (V'K [Ho (u) ]) = 0,H, (u) =0

p? :uz(x,t):—K‘l(v“K[Hl(u)]):O, H, (u)
p® :u3(x,t)=—K‘1(v4K[H2(u)]) =0,H,(u)

Il
o o

Then the solution is:

u(x,t)=uy (X,t)+u (X t)+u,(xt)

HUy (X, 1)+ U (X 1)+

u(xt)=e (26)
Example 3.2.
Consider the following non-homogenous nonlinear
partial differential equation with initial conditions:

U (X, t)+u(xt)u, (x,t)=—sint (27)
u(x,0)=h(x)=0, u (x,0)=f(x)=1 (28)
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By applying a new integral transform of Equation (27)
subject to the initial conditions (28) we have:

V3
Klu(xt)|=
[u(x0)] 1+v* (29)
V'K u(xt)u, (xt)]
The inverse new integral transform implies that,
3
u(xt)=K™ v .
1+v (30)

K (VK [u(x )y, (x)])

Now applying the homotopy perturbation method in
Equation (30) we get:

3 p'u, (x.1)

n=0

gl

where H, (u) are He’s polynomials that represents the
nonlinear terms. Then,

p[u(xt)u, (x.1)] =0
p[(uo(X,t)+ pu, (x,t)+ pzuz(x,t)+...)
(uOx (X,t)+ puy, (x,t)+ quzx(X,t)+~--)] -0
where,

u(x,t)=uy (x,t)+ pu, (x,t)+ p’u, (x,t)
+PUy (X, t) oo+ plu, (X, )+

(32)

The first few components of H, (u) are given by:
Ho(u):uo(x't)uw(x’t)

Comparing the coefficients of the same powers of p,
we get:

P’ iUy (x1)=G(x1)
= K‘l(v4K[g(x,t)]+vh(x)+v3f (x))
=sint,H,(u)=0

p* :ul(x,t):—K‘l(v“K[Ho(u)]) =0,H, (u)=

p :uz(x,t)z—K‘l(v“K[Hl(u)])=O, H, (u)

p° s (1) ==K * (V'K H, (u)]) = 0,Hy (u) =

1l
o o ©
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Then the solution is:
u(x,t)=uy (x,t)+u (x,t)+u, (xt)
Uy (X, )+ U (X, )+
u(x,t)=sint (34)

Example 3.3.
Consider the following homogenous nonlinear partial
differential equation with initial condition:

U (xt)—u(x,t)u, (xt)=0 (35)
u(x,0)=h(x)=x (36)

By applying a new integral transform of Equation (35)
subject to the initial condition (36) we have:

Klu(xt)]=xv+v?K[u(xt)u, (xt)] (37)
The inverse new integral transform implies that,
u(xt)=K*(xv)
+ K (VK [u(xt)u, (xt)])

Now applying the homotopy perturbation method in
Equation (38) we get:

S p'u, (x.)

= X+ p{K‘l[sz{i p"H, (u)D}

where H, (u) are He’s polynomials that represents the
nonlinear terms. Then,

plu(x.t)u, (xt)]=0
p[(uo (x,t)+ pu, (x,t)+ p’u, (x,t)+--.)

(s, (X,1) + pu, (X,1)+ pPuy, (x,t)+---)] =0

(38)

(39)

(40)

where,

u(xt)=u, (x,t)+ pu, (x,t)+ p’u, (x.t)

+ Py (X, )+ pluy (X, 1)+
The first few components of H, (u) are given by:

Ho (u) = Uy (X,t)Ug, (X,t)

H, (u) =g (X,t)uy, (X,t)+uy (X t)ug, (X,t)

H, (U) =g (X, 1)Uy, (X, t)+uy (X t)uy, (xt)  (41)

+U, (X,1)Ugy (X,1)

Comparing the coefficients of the same powers of p,
we get:

APM



322 A. KASHURI

p° iU, (1) G(xt):K‘l(sz[g(x,t)}rvh(x)):
Ho(u)=x
prou (Xt =K‘1(VZK[HO(U)])=xt,H (u)=2xt

p* U, (x,t) = K™ (VK[ H, (u)])=xt*,H, (u)=3
p° iy (x,t) = K™ (VK[ H, (u)]) = xt°, Hy (u) = 4xt°

Then the solution is:
u(x,t) =uy (x,t)+u, (x,t)+u, (xt)
+Ug (X, 1)+ +u (X 1)+

u(xt)= x<1+t+t2 +)
(42)

Example 3.4.
Consider the following homogenous nonlinear partial
differential equation with initial condition:

u, (x,t) = (u, (x,t))2 +u(xt)u, (xt)  (43)
u(x,0)=h(x)=x? (44)

By applying a new integral transform of Equation (43)
subject to the initial condition (44) we have:

Klu(xt)]

45
- x2v+v2K[(uX (x,t))2 +u(xt)uy, (x,t)} ()
The inverse new integral transform implies that,
u(xt)= K’l(xzv)
(46)

k(K () + 00, (1)

Now applying the homotopy perturbation method in
Equation (46) we get:

eenlic {2 p“m(u)D}m

where H (u) are He’s polynomials that represents the
nonlinear terms. Then,

o[ (1, (x.)) +u(x)u, (x1) | =0

p(uOX (X,t)+ puy, (X.t)+ p°u,, (x,t)+~--)2
+p (U (%) + puy (X,t)+ U, (x,t)+-+) (48)
-(uOXX(x,t)+ PUy, (X, 1)+ pzum(x,t)+~--): 0
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where,
u(xt)=u, (x,t)+ pu, (x,t)+ p’u, (x,t)
+PoUy (X, )+ + plu, (X 1) +
The first few components of H, (u) are given by:
Ho (u)=ug, (X,t)+Uy (X, t)Up, (X,1) (49)
H, (u) = 2uq, (X,t)uy, (X,1)+Ug (X, 1)Uy, (X,1)
+Uy (X, ) Upy (X,1)

Comparing the coefficients of the same powers of p,
we get:

P’ U, (X,t)=G(x,t)

:K‘1<VZK[g(x,t)]+Vh(x
ph Uy (x,t) = K™ (V'K [ Hy (u)]
p* U, (x,t) = K™ (VK[ H, (u)]

) X%, Ho(u)=6x?

) 6x°t, H, (u)=T72x
)=

36x%t?

Then the solution is:

u(xt)=u

o (X t)+u (X, t)+u, (x,t)
HUy (X, 1)+ U, (X, 1)+

=X (1+6t+36t2+---)

2 (50)
=g

4. Conclusion

In this paper, we mixture a new integral transform and
homotopy perturbation method to solve nonlinear partial
differential equations. The solution of four nonlinear
partial differential equations with initial conditions is
presented by using this method and simple calculation of
He’s polynomials. It is worth mentioning that the method
is capable of reducing the volume of the computational
work as compared to the classical methods while still
maintaining the high accuracy of the numerical result and
no requirement to complicated calculations. The size
reduction amounts to an improvement of the performance
of the approach.
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