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Abstract 
 
As one of the commonly used queries in modern databases, skyline query has received extensive attention 
from database research community. The uncertainty of the data in wireless sensor networks makes the cor-
responding skyline uncertain and not unique. This paper investigates the Pr-Skyline problem, i.e., how to 
compute the skyline with the highest existence probability in a computational and energy-efficient way. We 
formulate the problem and prove that it is NP-Complete and cannot be approximated in a given expression. 
However, the proposed algorithm SKY-SEARCH with pruning techniques can guarantee the computational 
efficiency given relatively large input size, while the filter-based distributed optimization strategy signifi-
cantly reduces the transmission cost and the required storage space of the sensor nodes. Extensive experi-
ments verify the efficiency and scalability of SKY-SEARCH and the distributed optimizing strategy. 
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1. Introduction 
 
As the development of computer science and wireless 
communication technologies, wireless sensor networks 
(WSNs) become important data sources and have been 
widely used in many applications [1-3]. In the database 
view, a WSN can be regarded as a distributed database, and 
efficient query processing methods for various types of 
queries in WSN become a hot topic in research community 
[4-6]. 

Skyline query is one of the most common-used queries 
for modern database management systems (DBMS) in 
many applications such as sensor data monitoring and 
business planning, and it receives extensive concerns from 
database research community [7-9]. Recently, efficient 
skyline query processing and skyline maintenance in 
WSNs have been studied in [2,6]. In a WSN, a record r 
from each sensor can be regarded as a D-dimensional vec-
tor. If the value of vector u is no less than the value of vec-
tor v in each dimension, and u ≠ v, we say that u dominates 
v. Traditional skyline query (deterministic skyline query) 
returns the skyline of a data set, i.e., the set of vectors that 

cannot be dominated by any other vectors. Once the data 
set is given for skyline query, the domination relationship 
and the skyline are both determinate. 

However, the data obtained by a WSN are often uncer-
tain and probabilistic due to various reasons [3,11,12]. Ac-
cording to the possible world model [13-15], the skyline 
over uncertain data is not determinate, and any possible 
skyline has an existence probability. In such a case, people 
may ask that “what are the skylines of the data with exis-
tence probabilities greater than a given constant p?” or 
“what is the skyline with the largest existence probability?” 
In this paper, we study the problem related to these ques-
tions. For brevity, we denote the problem of computing the 
maximum existence probability of the skylines as the 
Pr-Skyline problem. 

Although previous works study skyline query processing 
over uncertain data [8,9,16], the problems that they focus 
on are different from the Pr-Skyline problem. In [8], the 
algorithms aim to find out the reverse skylines that are de-
termined by the query point. [9,16] are concerned about the 
probability for a record to be included in a specific skyline, 
but not the existence probability of the skyline. Hence, 
existing approaches cannot be used for solving the Pr-Sky-
line problem to the best of our knowledge. Furthermore, 
because the sensors often have limited energy, computing 
ability and storage space [1,4,5], efficient Pr-Skyline query 
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in WSN requires saving communication cost, computation 
cost and storage cost of the sensors as much as possible 
[15]. 

In this paper, we give the formal definition of the Pr- 
Skyline problem, and show its domination graph represen-
tation. We prove that it is NP-Complete, and it cannot be 
approximated in polynomial time within a log 1c N   factor 
(N is the number of records) for any 0  0.5  
and 0c  , unless P = NP. However, the proposed algo-
rithm SKY-SEARCH with multiple pruning strategies 
shows its high efficiency on average even when the input 
data size is relatively large. Furthermore, we propose dis-
tributed optimization strategies based on filters to reduce 
communication cost and storage cost of the sensors. Exten-
sive simulations show that the SKY-SEARCH algorithm 
and distributed optimization strategies have high efficiency 
and good scalability under variant existence probability 
distributions. 

The rest of the paper is organized as follows. Section 2 
briefly reviews related works, and Section 3 gives the defi-
nition of the Pr-Skyline problem and the cost model, fol-
lowed by the theoretical results of the hardness of the 
problem in Section 4. We propose the SKY-SEARCH al-
gorithm in Section 5, and provide the distributed optimiza-
tion strategy in Section 6. Section 7 shows the simulation 
results, and Section 8 concludes the paper and suggests 
possible future works. 

2. Related Work 

The problem of skyline computation in context databases 
is first introduced by Borzsonyi et al. [17]. The skyline 
queries over deterministic data can be divided into two 
categories: static skyline queries [7,10,17] and dynamic 
skyline queries [18,19]. For static skyline queries [17], 
each attribute value of a record is static. Hence the sky-
line is unique for a given database. For dynamic skyline 
queries [19], each attribute value is computed according 
to the query. Deng et al. study the multi-source skyline 
query problem, in which the value of a record is defined 
as the minimum length of the shortest paths to the multi-
ple query points [19]. Dellis et al. introduce the concept 
of reverse skyline, whose result skylines contain a given 
query point [18]. 

The probabilistic models of the uncertain data fall into 
two categories: one is the possible world model [13,14] 
[20], and the other is the probability function model [21], 
in which the existence of a record is represented by a 
probability density function. Till now, the research for 
query processing over uncertain data mainly focuses on 
nearest neighbor (NN) problem [21], K-nearest neighbor 
(K-NN) problem [22], join operation [23], ranking op-
eration [20], and top-K queries [24]. Recently, skyline 
query over uncertain data has received much attention [8] 

[9,16]. Lian et al. model two types of reverse skylines, 
and propose efficient pruning techniques to reduce the 
search space [8]. Pei et al. study the p-skyline problem 
and present two efficient algorithms [16]. Li et al. pro-
pose novel algorithms to maintain p-skylines in sliding 
windows of data streams [9]. 

Because the energy of a sensor node is limited, and a 
node often spends a considerable part of energy on 
communication [1,5], many distributed algorithms for 
query processing focus on reducing communication cost 
[6,10]. The distributed algorithm proposed by Liang et al. 
handles skyline query and skyline maintenance [10], 
however, it cannot apply to skyline queries over uncer-
tain data. 
 
3. Problem Statement and Cost Model 
 
In this section, we give preliminaries on skyline query, 
and then describe the Pr-Skyline query and the problem, 
followed by the network model and the cost model. 

 
3.1. Preliminaries 
 
Given D bounded and totally ordered domains 1A , 

2A , …, DA , define data space 1 2 ... DA A A      
and every D-dimensional vector is in the data space. 
For arbitrary two vectors ri and rj in  , denote ri = < 
ri[1], ri[2], ..., ri[D] >, and rj = < rj[1], rj[2], ..., rj[D] >. 
If ri[k] ≤ rj[k] for all 1 ≤ k ≤ D, and ri ≠ rj, then rj 
dominates ri ( j ir r ), otherwise rj does not dominate ri 
( j ir r ). 

Let set V = {r1, r2, …, rN} that consists of N vectors, 
the skyline of V is defined as SKY(V) = {r∈V| w∈V, 
w r }. In other words, SKY(V) is a subset of V, and 
each vector in SKY(V) cannot be dominated by any 
other vectors in V. For convenience, we use “vector” 
and “record” to represent a data item interchangeably. 
 
3.2. The Pr-Skyline Query 
 
An uncertain record in V consists of a vector ri and its 
existence probability Pr{ri} (0 < Pr{ri} ≤ 1). We also 
denote the uncertain record as ri. Clearly, the probability 
that ri does not exist is 1 – Pr{ri}. 

Note that an uncertain data set V has multiple skylines 
in this case, and we denote the set of skylines of V as 

( )V  = SKY1(V), SKY2(V), …, SKYt(V)}, in which the 
existence probability of each SKYi(V) is defined as 

SKY ( ) EXC ( )

Pr{SKY ( )} Pr{ } (1 Pr{ })
i i

i
r V r V

V r r
 

    (1) 

where EXCi(V) = {r|r∈V,  e∈SKYi(V), e r }. In 
other words, Pr{SKYi(V)} is the product of two factors: 
one is the product of Pr{r},  r∈SKYi(V), and the 
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other one is the product of (1 – Pr{r}),  r that cannot 
be dominated by any vector in SKYi(V). The problem 
studied in this paper is to find out the skyline SKY-
max∈ ( )V  with the maximum existence probability, and 
we regard the query for SKYmax as Pr-Skyline query. 

3.3. The Cost Model 

A WSN consists of n stationary sensor nodes s1, s2, ..., sn, 
and each sensor node has N/n D-dimensional uncertain 
records. The sensor nodes are randomly deployed in a 
square area with side length L. We assume that the net-
work is connected, and the sink locating in the bot-
tom-left corner has infinite energy. Additionally, suppose 
the network is capable of in-network execution, and data 
are transmitted from a sensor node to sink via the path on 
a spanning tree of the network. 

The energy cost in the query processing procedure 
consists of the communication cost and the computation 
cost of the sensor nodes. Because the communication 
cost for transmitting one bit by radio is typically no less 
than the computation cost for executing 1,000 CPU in-
structions [1], we can consider the communication cost 
as the energy cost when the time complexity of the algo-
rithm running on each sensor node is relatively low, i.e., 
linear to the data size. 

According to [25], the energy cost for transmitting a 
data packet can be estimated as Ep = E1 + xE2, where E1 
is the fixed part of the energy, E2 is the energy consump-
tion per byte, and x is the number of bytes transmitted. 
Since a data packet accommodates   bytes where   is a 
constant, and most data packets are filled up with   
bytes for energy saving in skyline query processing, the 
communication cost can be estimated by counting the 
number of delivered data packets. 

The communication cost for delivering a packet from 
sensor node si to sj can be estimated as hijEp, where hij is 
the number of hops from si to sj. Suppose the distance 
between the two sensors is dij, hij is linear to dij as the 
equation hij =  dij shows, in which the coefficient   
is a constant relying on routing mechanisms, e.g., to 
choose direct or hop-by-hop transmission in the commu-
nication range [6]. Therefore, the energy cost for deliv-
ering a data packet from si to sj with distance dij can be 
estimated as 

ij ij pE d E                 (2) 
 
4. Hardness of the Pr-Skyline Problem 
 
This section proves that the Pr-Skyline problem is NP- 
Complete, and it cannot be approximated in polynomial 
time within a log 1c N   factor where N is the number of 
records for any constants 0 0.5  and 0c  , unless P 
= NP. Before the proofs, we first introduce the domina-

tion graph representation of the problem. 
 
4.1. Domination Graph Representation 
 
A domination graph G induced by the data set V has N 
vertices, and each record in V corresponds to a vertex in  
G. ,u v V  , if u v , there is a directed path from u 
to v in G, and u can reach v. Otherwise there is no di-
rected path from u to v, and we say that u cannot reach v. 
Because the domination relation is transitive, i.e., i kr r  

if i jr r and j kr r , the Pr-Skyline problem is equivalent 

to the problem to find out a subset SKY(V) of the verti-
ces in G with the condition that , SKY( )u v V  , u can-

not reach v, such that Pr{SKY(V)} is maximized. 
Note that data set V may induce more than one domi-

nation graphs. We call the domination graph with the 
minimum number of edges as the minimum domination 
graph of V, denoted as GM(V). It is easy to see that GM(V) 
is a directed acyclic graph (DAG), and there is no directed 
path with length > 1 from u to v for each edge uv in 
GM(V). In the following parts of the paper, we focus on 
the equivalent problem on GM(V). Figure 1 shows a data  

500 500 0.7r1

600 400 0.4r2

700 300 0.6r3

450 350 0.2r4

550 250 0.9r5

400 325 0.6r6

525 200 0.5r7

50 310 0.8r8

100 100 0.7r9

510 50 0.8r10

 
(a) 

 
(b) 

Figure 1. Sample uncertain data with the induced minimum 
domination graph. (a) The data set V is composed of ten 2- 
dimensional records with existence probabilities. (b) GM(V), 
in which each vertex indicates one record, and each directed 
edge indicates a dominating relation. 
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set with 10 records and its minimum domination graph. 
 
4.2. NP-Completeness 
 
Now we prove that the decision format of the Pr-Sky-
line problem is NP-Complete, i.e., given data set V = 
{r1, r2, ..., rN} and threshold T, to determine whether 
there is a skyline SKY(V) of V, such that Pr{SKY(V)} 
≥ T. 

Theorem 1. The Pr-Skyline problem is NP-Com-
plete. 

Proof: First, we can find out a skyline of V, and 
compare its existence probability with T. Obviously, 
the procedure can finish in polynomial time with re-
spect to N, which means that a solution to this problem 
can be verified in polynomial time, and the Pr-Skyline 
problem is in NP. 

Then we construct a polynomial-time reduction 
from the Minimum Set Cover (MSC) problem to the 
Pr-Skyline problem. The MSC problem can be de-
scribed as: given set S, its m subsets, and integer K (K 
≤ m), determine whether there are K of the given m 
subsets, such that each item in S appears at least once 
in the K subsets. For arbitrary instance of the MSC 
problem, denote the n elements in S as e1, e2, …, en, 
and denote the m subsets as S1, S2, …, Sm, we construct 
an instance of the Pr-Skyline problem as follows. The 
domination graph G has 1( log 1)m n m       verti-
ces, in which m vertices refer to the m subsets of S, 
and each 1log 1m       vertices of the rest vertices 
refers to an element in S. If j ie S , we add a directed 
edge from the vertex of Si to that of ej. Finally, let the 
existence probability of each vertex be a constant 

0.5  , and let (1 )K m KT     . An example is il-
lustrated in Figure 2. Because the size of graph G is 
polynomial with respect to m n , the construction only 
requires polynomial time. 

If there are K subsets that cover all the elements in S 
for the MSC problem, then these K vertices are se-
lected as the skyline of graph G. Because the K verti- 
 

  

       
 

Figure 2. Construct an instance of Pr-Skyline from an in-
stance of MSC. Each ei refers to    1log 1m   vertices. 

ces dominate all the vertices in ei (1 ≤ i ≤ n), and do 
not dominate the rest m – K vertices, the existence prob-
ability of the skyline is (1 )K m K T    . Hence this 
skyline is a result to the Pr-Skyline problem. 

Conversely, if there is a skyline SKY(V) such that 
Pr{SKY(V)} ≥ T, then all the vertices in ei (1 ≤ i ≤ n) 
are dominated by the vertices in SKY(V). To see this, 
suppose that a vertex in some ei cannot be dominated 
by the vertices in SKY(V), it is clear that all the verti-
ces in ei cannot be dominated by the vertices in 
SKY(V). Let A = ei∩SKY(V) and B = ei\SKY(V), we 
have Pr{SKY(V)} ≤ Pr{ } (1 Pr{ })

t A t B

t t
 

  = 

(1 )
t A t B

 
 

  . Since 0.5  , Pr{SKY(V)} ≤ 

1log 1(1 ) m       < m .  

But Pr{SKY(V)} ≥ T = (1 )K m K   ≥ m , a contradic-

tion. Therefore, all the vertices in ei (1 ≤ i ≤ n) are 
dominated by the vertices in SKY(V). Suppose there 
are x vertices of the subsets in the skyline, because 

Pr{SKY(V)} = (1 )x m x   ≥ T = (1 )K m K    and, 

0.5  , we have x ≤ K. Hence there must be K ≥ x 
subsets covering all the elements in S. 

Because the MSC problem is NP-Complete [26], the 
Pr-Skyline problem is NP-Complete.  

4.3. Property 

Lemma 1 (Raz and Safra [27]). 0c  , the MSC 
problem cannot be approximated within a logc N  factor 
in polynomial time unless P = NP, in which N is the size 
of the set to be covered. 

Theorem 2. 0 0.5   , 0c  , the Pr-Skyline 
problem cannot be approximated within a log 1c N   fac-
tor in polynomial time unless P = NP, in which N is the 
number of data items. 

Proof: Denote the qualities associated with an optimal 
solution and an approximate solution for the MSC prob-
lem as OPT(MSC) and APP(MSC), respectively, and 
denote those for the Pr-Skyline problem as OPT(P-SKY) 
and APP(P-SKY), respectively. According to Lemma 2, 
APP(MSC) ≥ clogN OPT(MSC). Hence, approximation 
algorithms for the instances of Pr-Skyline problem that 
can be reduced from the MSC problem have the follow-
ing ratio bound. 

APP(MSC) -APP(MSC)

OPT(MSC) -OPT(MSC)

log OPT(MSC) - log OPT(MSC)

OPT(MSC) -OPT(MSC)

( log 1)OPT(MSC)

APP(P-SKY) (1 )

OPT(P-SKY) (1 )

(1 )

(1 )

1

m

m

c N m c N

m

c N

 
 

 
 




 













    

 (3) 
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Let / (1 )    , 0 1   since 0 0.5  . Be- 
cause OPT(MSC) ≥1, APP(P-SKY) / OPT(P-SKY)   

log 1c N  . Therefore, there is no polynomial-time aproxi-
mation algorithm with ratio bound more than log 1c N   
unless P = NP.  

Theorem 2 suggests that polynomial-time algorithms 
for the Pr-Skyline problem can hardly obtain good ap-
proximation ratio bounds when the data set is large. As 
an alternation, this paper seeks for optimal solutions re-
lying on search and pruning strategies. 
 
5. The SKY-SEARCH Algorithm 
 
The proposed SKY-SEARCH algorithm performs a 
search in an optimized order on the solution space to 
obtain the optimal skyline. In the search, several pruning 
methods are adopted to accelerate the procedure. SKY- 
SEARCH performs computing on the sink, and all the 
data of the sensor nodes need to be sent to the sink. This 
section describes the algorithm and analyzes its energy 
efficiency. 
 
5.1. Algorithm Description 
 
To compute the skyline with the maximum existence 
probability for the given N records, a straightforward 
approach is to enumerate all the possible skylines and 
then find out the optimal one with the maximum prob-
ability. For each skyline which is a subset of the records, 
it requires O(N2) time to determine whether the skyline is 
valid, and O(N) time to compute its existence probability. 
Since there are 2N possible skylines, this straightforward 
algorithm takes O(N2 2N) running time. Nevertheless, the 
algorithm wastes lots of time in computing invalid sky-
lines. 

The SKY-SEARCH algorithm improves the search 
order to avoid computing the invalid skylines. The basic 
idea is to maintain an active set to guide the search, 
which consists of the candidates that are possibly in-
cluded in some skyline. At the initial state, the active set 
is initialized as the determined skyline regardless of the 
existence probabilities of the records. For example, the 
initial active set is {r1, r2, r3} in Figure 1(b). In each step 
of the search, each valid skyline with its existence prob-
ability is computed by enumerating the status of the can-
didates in the active set, i.e., selected as part of the sky-
line or not. The algorithm returns SKYmax with the maxi-
mum existence probability of all the valid skylines. Re-
cord r can be put into the active set if and only if its 
dominated number is 0, which is the number of records 
that can dominate r. If r is not selected in a skyline, the 
dominated numbers of the records that are dominated by 
r decrease by 1. 

Algorithm 1. The SKY-SEARCH Algorithm 
Input: N D-dimensional records r1,r2,…,rN 
Output: The skyline SKYmax and its existence probability Pr{SKYmax} 

1: initialize Pr{SKYmax} = 0.0, and set active = , temp = ; 
2: for i = 0 to N – 1 do 
3:  compute ri.d, the number of records that dominate ri; 
4:  if ri.d == 0 then 
5:   add ri into the active set; 
6: FindSkyline(1.0,0,the size of active); 
7: return SKYmax and Pr{SKYmax}; 
 
Procedure FindSkyline(the existence probability cp of the current  
skyline, the start position of current active set, the end position of  
current active set) 

8: if start ≥ end then  the termination condition: active =  

9:  if cp > Pr{SKYmax} then  update current skyline 
10:   Pr{SKYmax} = cp and SKYmax = temp; 
11:  return; 

12: if cp < Pr{SKYmax} then  stop the search 
13:  return; 
14: put active[start] into temp; 
15: FindSkyline(cp*active[start].p,start + 1,end); 
16: remove active[start] from temp; 
17: if cp*(1 – active[start].p) < Pr{SKYmax} then 
18:  return; 

19: add = 0;  initialize the number of records to be added into active 
20: for i = 0 to N – 1 do 

21:  if active[start] ri and active[start] ≠ ri then 
22:   ri.d– –; 
23:   if ri.d == 0 then 
24:    put ri into the active set; 
25:    add++; 
26: FindSkyline(cp*(1 – active[start].p),start + 1,end+add); 
27: for i = 0 to N – 1 do 

28:  if active[start] ri and active[start] ≠ ri then 
29:   ri.d++; 

 
The pseudo code of the algorithm is shown in Algo-

rithm 1, in which lines 1-5 initialize the dominated num-
bers, the active set, and the temporary skyline set \emph 
{temp}, line 6 calls FindSkyline to compute SKYmax. 
The FindSkyline procedure (1) computes current skyline 
and its probability if current active set is empty in lines 
8-11, (2) searches the branch when the first item of cur-
rent active set, active[start], is selected in the skyline in 
lines 14-16, and (3) searches the branch when ac-
tive[start] is not selected in lines 19-29. Lines 12-13 and 
lines 17-18 are two simple pruning techniques (see the 
next subsection for details). Run the algorithm on the 
example shown in Figure 1, and the result SKYmax = {r1, 
r3}, and Pr{SKYmax} = 0.112. 

The SKY-SEARCH algorithm requires O(N) storage 
space, and O(N 2N) time in the worst case (see Figure 2) 
because each step needs O(N) time to re-compute the 
active set, and there are as large as O(2N) different active 
sets. Fortunately, we find efficient pruning techniques to 
dramatically reduce the running time on average, as il-
lustrated in the next subsection. 

5.2. Pruning Techniques 

The following four pruning strategies can be used in the 
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SKY-SEARCH algorithm. 
Pruning strategy 1. Stop recursion if the existence 

probability cp of the partially determined skyline in the 
active set is less than current Pr{SKYmax}. This is be-
cause any skyline that contains the partially determined 
part has its existence probability no more than cp, and 
less than Pr{SKYmax}. 

The rest three pruning strategies are based on the fol-
lowing three theorems, respectively. 

Theorem 3. Denote I as the set of vertices that cannot 
be dominated by any other vertices in domination graph 
G, SKYmax  {r|r∈ I and Pr{r} > 0.5}. 

Proof: Let R={r|r∈ I and Pr{r} > 0.5}, according to 
Equation (1), 

SKY EXC

Pr{SKY } Pr{ } (1 Pr{ })
max max

max
r r

r r
 

   , 

in which EXCmax = {r|r∈V and e∈SKYmax, e  r}. 
Suppose  r, r∈R and rSKYmax. Let SKY’ = SKY-
max∪{r}, and EXC’ = {r|r∈V and  e∈SKY’, e  r}, 
EXCmax = EXC’∪W∪{r}, in which 
W = {e|e∈EXCmax\{r} and r e}. Because  r∈V, 0 < 
Pr{r} ≤ 1, we have 

SKY ' EXC'

SKY EXC

Pr{ } (1 Pr{ })
Pr{SKY '}

Pr{SKY } Pr{ } (1 Pr{ })

Pr{ }
1

(1 Pr{ }) (1 Pr{ })

max max

r r

max
r r

e W

r r

r r

r

r e

 

 








 
 

 
 



  (4) 

which means that there is a skyline SKY’ with 
Pr{SKY’} > Pr{SKYmax}, a contradiction. Hence, r∈SKYmax 
if r∈I and Pr{r} > 0.5.  

Pruning strategy 2. If record u is dominated by a re-
cord in R = {r|r∈I, Pr{r} > 0.5}, then u cannot be in 
SKYmax according to Theorem 3. 

Theorem 4. If the domination graph G is composed of 
k connected components G1, G2, ..., Gk, and there is no 
edge between any two connected components, then 

Pr{SKYmax} = 
1

Pr{SKY( )}
k

i
i

G

 . 

Proof: Because there is no domination relation be-
tween any two connected components, the set SKY = 

1

SKY( )
k

i
i

G

  is a skyline of G. Thus, Pr{SKYmax} ≥ 

1

Pr{SKY( )}
k

i
i

G

 . Conversely, SKYmax∩Gi must be a 

skyline of Gi for 1 ≤ i ≤ k, hence Pr{SKYmax} ≤ 

1

Pr{SKY( )}
k

i
i

G

 . In summary, the equation holds. 

Pruning strategy 3. Let Gu be the induced graph of 
the records that are not in current temporary set (the 
status of the records are not determined yet), compute the 

connected components of Gu and the optimal solution for 
each component, and then compute the global optimal 
solution by Theorem 4. This divide-and-conquer strategy 
avoids redundant computing of the domination relations, 
and improves the performance of the algorithm. 

Theorem 5. If the minimum domination graph G is a 
directed tree, in which there is only one edge pointing to 
each vertex except the root of the tree, the Pr-Skyline 
problem can be solved in polynomial time. 

Proof: We prove this theorem by giving a polyno-
mial-time algorithm for this special case. Because the 
tree root s cannot be dominated by any other vertices, 
there are two cases for the skyline SKYmax: (1) s is in 
SKYmax, and Pr{SKYmax} = Pr{s}. (2) s is not in SKYmax, 
and Pr{SKYmax} = (1-Pr{s})

Child( )

OPT( )
r s

r

  according 

to Theorem 4, where Child(s) is the children set of s, and 
OPT(r) refers to the maximum existence probability of 
the skylines in the tree rooted at vertex r. Because com-
puting OPT(r) is a sub-problem of the original problem, 
it can be solved by dynamic programming as the follow-
ing equation: 

Child( )

OPT( ) max{Pr{ }, (1 Pr{ }) OPT( )}
e r

r r r e


     (5) 

To obtain OPT(r), OPT(e) for  e∈Child(r) should 
be computed in advance. Hence the algorithm should run 
in a bottom-up way, starting from the computation of the 
leaves, and ending with OPT(s), which is Pr{SKYmax}. 

For arbitrary vertex r in the tree, it requires O(|Child(r)|) 
multiplies and O(1) comparisons to obtain OPT(r). Since 
there are N vertices in the tree, the time complexity of 
the algorithm is O(N  d), where d refers to the maximum 
size of the children sets of the vertices. Furthermore, it 
requires O(1) space to store OPT(r)  r∈G, the space 
complexity of the algorithm is O(N). Thus, we have pre-
sented a polynomial-time dynamic programming algo-
rithm, which completes the proof of the theorem.  

Pruning strategy 4. Find out the forest that consists 
of directed trees in the induced graph Gu, and compute 
the skylines of the trees by the above dynamic program-
ming algorithm. If a directed tree is a single vertex r, the 
skyline on the tree with maximum existence probability 
max(Pr{r}, 1 – Pr{r}) can be immediately computed 
without enumerating the status of the vertex. Further-
more, this pruning strategy shows notable efficiency in 
dealing with high-dimensional data because the domina-
tion graph is sparser than with low-dimensional data, and 
there are probably more directed trees generated in the 
search. 

5.3. Energy Efficiency and Workload Balance 

Energy efficiency. Consider the rectangle area on the 
plane centered at (x, y) with the sink as the original point, 
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and its side lengths dx and dy. If dx and dy are small 
enough, the distance from any sensor node in the area to 
the sink can be regarded as 2 2x y . Define the den-
sity of the sensor network as 2/N L  , and the number 
of sensor nodes in the area can be estimated as  dxdy. 
According to the analysis in Section 3.3, the energy cost 
to deliver a data packet from a sensor node in the area to 
the sink is estimated as 2 2x y  . Suppose a data 
packet can contain at most   records, since each sensor 
node has N/n records, the energy cost for all the sensor 
nodes in the area to send their data to the sink is esti-
mated as  2 2 2/ d dN L x y x y   . Therefore, the en-
ergy cost Ec of the sensor network can be estimated as 
the integral of the energy cost in unit area on the whole 
region, which is 

2 2
2

1
ln( 2 1) 2 /

3c

N
E x y dxdy NL

L

  


      
(6) 

in which the integral area   is the square region with 
side length L. Equation (6) indicates that the energy cost 
of the SKY-SEARCH algorithm is proportional to the 
product of data size N and network size L when the rout-
ing algorithm and packet size are both fixed. 

Workload balance. Let the communication radius of 
the sensor nodes be rc, the number of the sensor nodes 
less than rc away from the sink is about 21/ 4 cr . Be-
cause these sensor nodes have to forward N/   data 
packets generated by all the sensor nodes, the average 
number of forwarded data packets per sensor is 
N/( 21/ 4 cr ) = 2 24 / ( )cNL n r . On the other hand, 
the sensor nodes at the edge of the network only need to 
send their own data to their neighbors, hence the work-
load of these sensors is / ( )N n . It is clear that in the 
centralized algorithm, the heaviest workloads of the sen-
sors are 2 24 / ( )cL r  times as much as the lightest 
workloads. 

Besides, the required storage spaces of the sensor 
nodes are also unbalanced. Based on the above analysis, 
the sensor nodes within one hop to the sink have to store 

2 24 / ( )cNL n r  data packets on average if the data can-
not be sent to the sink in time and are stored on these 
sensor nodes, while the nodes at the edge of the network 
only need to store their own data, N/n packets. 
 
6. Distributed Optimization Strategy 

The distributed optimization strategy takes three steps. 
First, the sink s obtains I, the set of vertices that cannot 
be dominated by any other vertices, and R = {r|r∈I and 
Pr{r} > 0.5}. Then s broadcasts Pr{I} to obtain SKYfilter 
= R∪{r|Pr{r} > 1 – Pr{I}}. Finally, s broadcasts SKYfil-

ter to obtain the data that cannot be dominated by it. 
To obtain I and R, each node u needs to compute the 

skyline Iu of the tree rooted at u assuming all the exis-
tence probabilities of the records are equal to 1, and then 
uploads Iu to its parent. When the sink receives all the 
skylines from its children, it computes I and R, and then 
broadcasts R to each sensor node. When a sensor node 
receives R, it uploads the records which are generated by 
it and cannot be dominated by any records in R. 

The optimization strategy also uses the existence prob-
ability of skyline I as a filter condition. Specifically, if 
 r, Pr{r} > 1 – Pr{I}, then any record dominated by r 
cannot be in SKYmax. To see this, suppose x, r x  
and x∈SKYmax, rSKYmax and r cannot be dominated 
by any record in SKYmax, hence Pr{ SKYmax } ≤ 1 – Pr{r}. 
But we also have Pr{I} > 1 – Pr{r} since I is a skyline, a 
contradiction. Thus, all the records dominated by r can-
not be in SKYmax. 

Based on the above analysis, the sink should also 
broadcast Pr{I} to all the sensor nodes. Let U = {r|Pr{r} 
> 1 – Pr{I}}, when a sensor node receives Pr{I}, it up-
loads the records which are generated by itself and can-
not be dominated by any record in U. Recall that the lo-
cal data dominated by any record in R are not uploaded, 
we finally choose R∪U as the filter set. 
 
6.1. Algorithm Description and Analysis 
 
The computation cost of the distributed optimization algo-
rithm consists of three parts: (1) the cost for computing 
the local skyline, (2) the cost for computing the local set 
of data with existence probability larger than 1 – Pr{I}, 
and (3) the cost for computing the local data that cannot 
be dominated by the partially obtained filter. For each 
sensor node u, the time complexities are O(w2), O(w), 
and O(w  |SKYfilter|), respectively, where w is the size of 
the data on u. Thus, u spends O(w  (w+|SKYfilter|)) time 
in the procedure. As for storage cost, because u has to 
store its local data and skyline, and SKYfilter, the required 
storage space is O(w + |SKYfilter|). In the following sub-
section, we discuss the size of SKYfilter. 

The pseudo codes of the optimization algorithm run-
ning on the sink and the sensor nodes are shown in Algo-
rithm 2 and Algorithm 3, respectively. 
 
6.2. The Size of Skyline and SKYfilter 

We first discuss the size of the skyline on deterministic 
data. Given N D-dimensional vectors V = {r1, r2, ..., rN}, 
and Pr{ i jr r } = Pr{ j ir r } for arbitrary ri and rj (i ≠ j), 
we have 1 ≤ |SKY(V)| ≤ N. If there is one vector that can 
dominate the rest N – 1 vectors, then |SKY(V)| = 1. If 
none of these vectors can be dominated by any other 
vector, then |SKY(V)| = N. Because these vectors in set V 
are different from each other, SKY(V) cannot be empty,  
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Algorithm 2. The optimization algorithm on the sink 

1: broadcast the request for Pr-Skyline query; 
2: receive the skylines from the children; 
3: compute Pr{I} and R = {r|r∈I and Pr{r} > 0.5}, then broadcast 
Pr{I}; 
4: receive the data from the children, and compute SKYfilter = R∪
U; 
5: broadcast SKYfilter; 
6: receive the filtered data from the children as the input of 
SKY-SEARCH, and then compute SKYmax; 

Algorithm 3. The optimization algorithm on the sensor nodes 

1: receive and broadcast the request for Pr-Skyline query; 
2: receive the skylines from the children; 
3: compute local skyline and forward it to the parent; 
4: receive and broadcast Pr{I} from the parent; 
5: upload local records with existence probability larger than 1 – 
Pr{I}, and forward the data from the children to the parent; 
6: receive and broadcast SKYfilter; 
7:  upload local records not dominated by SKYfilter and forward the 
data from the children to the parent; 

 
i.e., |SKY(V)| ≠ 0. 

Theorem 6. The expectation value of |SKY(V)| is 

 
1

1
1

1

| ( ) | 1 ( 1) ( 1)
N

i i D
N

i

E SK Y V C i N


 




      
 . 

proof: First, we prove that Pr{ri∈SKY(V)} = 
1

1
1

1

1 ( 1) ( 1)
N

i i D
N

i

C i


 




   . For arbitrary ri, rj∈V (i ≠ j), 

because Pr{ri[k] ≥ rj[k]} = 2-1 for 1 ≤ k ≤ D, and the val-
ues in one dimension are independent from those in an-
other dimension, Pr{ i jr r } = 2-D. Generally, the prob-

ability for k vectors to simultaneously dominate ri is 
Pr{rj1 ri,rj2  ri,...,rjk  ri} = Dk  . 

If ri∈SKY(V), then ri cannot be dominated by the rest 
N – 1 vectors. As a consequence, Pr{ri∈SKY(V)} = 1 – 
Pr{r1 ri OR ... OR ri-1 ri OR ri+1  ri ... OR rN ri}. 
Because the events rj ri and rk  ri (j, k ≠ i) are inde-
pendent, the equation can be rewritten as Pr{ri∈SKY(V)} 

= 1 – [ 1
1NC  Pr{ri is dominated by the rest 1 vector} – 

2
1NC  Pr{ri is dominated by the rest 2 vectors} + ... + 

1
1( 1)N N

NC 
 Pr{ri is dominated by the rest N – 1 vectors}] 

= 
1

1
1

1

1 ( 1) ( 1)
N

i i D
N

i

C i


 




   . Because there are N vectors, 

 
1

1
1

1

| ( ) | 1 ( 1) ( 1)
N

i i D
N

i

E SKY V C i N


 




      
  

Theorem 6 indicates that the expected size of the sky-
line is far smaller than data size N, especially when D is 
small. Figure 3 illustrates the expected size under dif-
ferent number of dimensions when N varies from 1 to 50. 

Because R is the subset of some skyline on determi-
nistic data, the expected size of R cannot be larger than 
|SKY(V)|. Moreover, the expected size of U is relative to 
the existence probabilities of the data. If most existence  
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Figure 3. The relation between the expected size of skyline 
and the number of records with variant dimensions. 
 
probabilities are near to 1, U may become very large. 
Because SKYfilter = R∪U, the communication cost for 
broadcasting SKYfilter is larger than that for collecting all 
the data to the sink when U > N/n. In this case, it is a 
better choice to let SKYfilter = R, regardless of U. 
 
7. Simulations 
 
The simulations consist of two parts: (1) the running time 
of the SKY-SEARCH algorithm, and (2) the energy cost 
of the distributed algorithm. The simulations run on ran-
domly-generated network topologies in a 300 by 300 m2 
square area, and the communication radius varies from 
50 m to 100 m. Each sensor node has 100 packets of data. 
The existence probabilities of the records are of three 
types: uniform distribution, normal distribution, and the 
derived distribution from Poisson distribution. A record 
in the derived distribution has an existence probability 

/ x  where x is the value of the random variable in 
Poisson distribution with 1  , and   is the normaliza-
tion coefficient. In the derived distribution, most records 
have existence probabilities near to 1. The simulations 
run on a PC with a Pentium 2.0 GHz CPU and 2 GB 
memory, and the network simulator is TOSSIM [28]. 

 
7.1. Running Time 

 
When D = 2, the running time of the SKY-SEARCH 
algorithm with variant data size is shown in Figure 4, 
Figure 5 and Figure 6. When the number of records 
varies from 10 to 105, the running time of the algorithm 
without pruning (denoted as SKY-SEARCH in the fig-
ures) rapidly increases from 0ms to 104 ms level, while 
the running time of the algorithm with pruning tech-
niques (denoted as SKY-SEARCH-OPT in the figures) is 
of 1-2 orders of magnitude lower than the previous one. 
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Figure 4. Running time with uniform distribution of the 
existence probabilities. 
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Figure 5. Running time with normal distribution of the 
existence probabilities. 
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Figure 6. Running time with the derived distribution of the 
existence probabilities. 
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Figure 7. Impact of D with uniform distribution of the exis-
tence probabilities. 
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Figure 8. Impact of D with normal distribution of the exis-
tence probabilities. 
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Figure 9. Impact of D with the derived distribution of the 
existence probabilities. 
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When N = 200, the running time of the algorithm with 
variant dimension D is illustrated in Figure 7, Figure 8, 
and Figure 9. As D increases from 2 to 4, the algorithm 
without pruning runs more than 108 ms (not shown in the 
figures), while the algorithm with pruning runs less than 
104 ms. Besides, the running time of the algorithm with 
pruning appears to be a downward trend after rising for 
the first. The reason is two-folds. First, when D begins to 
increase from 2, the number of domination relations 
starts to decrease from a very dense situation, hence the 
search space increases. Second, when D increases to a 
large number, i.e., 8, the number of domination relations 
is fairly small, and pruning strategy 4 shows efficiency. 
Figure 10, Figure 11 and Figure 12 depict the sizes of 
SKYmax and SKYfilter with variant data size when D = 2. 
The size of SKYmax grows from 2 to about 10 as the 
number of records grows from 10 to 105. |SKYfilter| is  
always larger than |SKYmax| with uniform distribution 
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Figure 10. The sizes of SKYmax and SKYfilter with uniform 
distribution of the existence prob. 
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Figure 11. The sizes of SKYmax and SKYfilter with normal 
distribution of the existence prob. 
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Figure 12. The sizes of SKYmax and SKYfilter with the de-
rived distrib. of the existence prob. 
 
and normal distribution, while they are almost the same 
with the derived distribution. These results are consistent 
with the analysis in Section 6. 

7.2. Energy Cost 

The workloads of the sensor nodes of a 100-node net- 
work are illustrated in Figure 13, Figure 14, and Figure 
15. The workloads of a sensor node u in both algorithms 
are sorted by the number of packets sent by u without the 
optimization in descending order. For all of the three 
distributions, there are more than 20 nodes whose work-
loads are more than 100 packets, while all of the nodes 
forward less than 100 packets with the optimization. 

Figure 16 illustrates the energy cost of the network as 
the network size grows from 20 nodes to 100 sensor 
nodes. The number of packets grows from about 5000 to 
more than 25000 when using the algorithm without op-
timization, and each node send more than 250 packets on 
average. With the optimization, the number of packets 
grows slowly (about 5000 packets when there are 100 
sensor nodes). These results indicate that the optimiza-
tion strategies notably reduce the communication cost. 

Figure 17 and Figure 18 show the energy costs for 
delivering SKYfilter and un-dominated data when D = 2 
and D = 4, respectively. We can see that most packets are 
for uploading local skylines and broadcasting SKYfilter 
for all of the three distributions, while the cost for up-
loading un-dominated data takes a small partition. The 
effect of SKYfilter is obvious. 
 
8. Conclusions and Future Work 
 
This paper proposes an efficient algorithm SKY-SEARCH 
with distributed optimization strategies for the Pr-Sky-
line problem in WSNs. Although the problem is proved  
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Figure 13. Workloads of the sensors with uniform distribu-
tion of the existence probabilities. 
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Figure 14. Workloads of the sensors with normal distribu-
tion of the existence probabilities. 
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Figure 15. Workloads of the sensors with the derived dis-
tribution of the existence prob. 
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Figure 16. Energy cost of the network. 
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Figure 17. Energy costs for delivering variant types of data 
(D = 2). 
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Figure 18. Energy costs for delivering variant types of data 
(D = 4). 
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as an NP-Complete problem, and cannot be approxi-
mated within a given expression, the algorithm with 
pruning techniques shows its efficiency given relatively 
large input size, and the filter-based distributed optimiza-
tion strategy significantly reduce the transmission cost 
and the required storage space of the sensor nodes by 
extensive simulations. 

In the future, we will consider how to maintain sky-
lines for a time period over uncertain data streams since 
there are potential requirements for continuous skyline 
query. Besides, efficient algorithms for complex queries 
over uncertain data, i.e., similarity search, is one of the 
suggested future works. 
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