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ABSTRACT 

Fitting -continuous or superior surfaces to a set  of points sampled on a 2-manifold is central to reverse engi- 
neering, computer aided geometric modeling, entertaining, modeling of art heritage, etc. This article addresses the fit- 

ting of analytic (ellipsoid, cones, cylinders) surfaces in general position in . Currently, the state of the art presents 
limitations in 1) automatically finding an initial guess for the analytic surface 

2C S



F  sought, and 2) economically estimat- 
ing the geometric distance between a point of  and the analytic surface S F . These issues are central in estimating an 
analytic surface which minimizes its accumulated distances to the point set. In response to this situation, this article 
presents and tests novel user-independent strategies for addressing aspects 1) and 2) above, for cylinders, cones and 
ellipsoids. A conjecture for the calculation of the distance point-ellipsoid is also proposed. Our strategies produce good 
initial guesses for F  and fast fitting error estimation for F , leading to an agile and robust optimization algorithm. 
Ongoing work addresses the fitting of free-form parametric surfaces to . S
 
Keywords: Surface Fitting; Optimization; Analytic Surfaces 

1. Introduction 

Surface reconstruction is a widely studied field because 
of its importance in CAD-CAM applications, virtual rea- 
lity, medical imaging and movie industry. Particularly, 
the reconstruction of analytic surfaces is important since 
they are frequently used in mechanical parts [1]. Surface 
reconstruction process consists in obtaining a surface that 
minimizes the distance between each point i  of a point 
sample  and its corresponding point on surface 

p
S F . It is 

assumed that S fulfills the Nyquist-Shannon criteria [2,3]. 

1.1. Optimization Approach 

The optimization problem of fitting F to S is described 
by the objective function f  shown in Equation (1). 

1

n
w
i

i

f d


                    (1) 

where the residual i  represents the minimum distance 
between the i-th point of  and its corresponding point 
on F and  indicates the order of the residual. Then 

 is given by: 

d
S

w

id

min
k

id F  ip

where is the norm-degree to calculate the distance. 

i

              (2) 

k  

To m nimize f  and find the best surface fit, some 
va

co

Table 1. Decision variables in analytic surfaces fitting. 

riables are tunned. These variables are specific for 
each situation. Table 1 shows the decision variables for 
each surface addressed in this paper. On the other hand, 
norm k  remains constant in the optimization process 
and is nsidered as a parameter of the problem. 
 

Surface Decision Variables Type G 

Cylinder Axis vector Vector  

 Axis pivot point 

Cone Apex 

Ax r 

Ellipsoid Center 

S  

Vector 7 

 Radius Scalar  

Vector  

 is vecto Vector 7 

 Semi angle Scalar  

point Vector  

 Angle 1 Scalar  

 Angle 2 Scalar  

 Angle 3 Scalar 9 

 emi axis 1 Scalar  

 Semi axis 2 Scalar  

 Semi axis 3 Scalar  

Copyright © 2013 SciRes.                                                                                AJCM 



O. RUIZ  ET  AL. 19

The umber of decision variables d the number 
of

tr

ization Method 

thod for solving non-linear 

n V  an
 equality constrains E  in a opt ization problem, 

allow to know the degrees of freedom with the equiation 
G V E  . Table 1 presents the degrees of freedom for 

tic surface addressed in this paper. Notice that 
G  corresponds to V  because the problem is uncon- 
s ained. 

1.2. Optim

im

each analy

The Gauss-Newton iterative me
optimization problems uses the Hessian approximation 

TH J J   to calculate the next iteration, as is shown in 
Equ ). 

1k

ation (3

      
1T Tkx x J x J x J x


  r        (3) 

where 



x  d r  is resi- is the decision variables vector an
duals vector. 

Notice that in the case in which f  is not strictly 
convex, J  can be singular at some iteration possibly 
causing the algorithm to diverge. This problem can be 
overcome by using the Levenberg-Marquardt (LM) 
Method ([4,5]): 

1k k       
1T T

x x  J x J x I J x


   r     (4) 

where   is the LM parameter and I  is the 
 

nction and its 

identity 
matrix.

1.3. Function and Region Convexity 

The convexity condition of an objective fu
feasible region determines if a local extrema corresponds 
to a global extrema or not. In order to evaluate this 
condition in f , it is required to examine the eigenvalues 
e  of its Hessian matrix fH  by solving Equation (5) 

det 0fH eI                  (x 5) 

If all eigenvalues of fH  are positive, then f  is 
strictly-convex, but if at least one eigenvalue is equal to 
zero, f  is convex [6]. In the case studies on this re- 
search, an exact calculation of fH  is not possible. Thus, 
a numerical calculation is re ed by approximating 
partial derivatives numerically. 

2. Literature Review 

quir

2.1. Objective Function and Distance  

Som searched the calculation of the dis- 

is prone to yield accuracy loss in the distance metric 

ality Conditions 

], Jiang and Cheng [9] 
 as a non-convex one. 

timization Methods 

loyd iterations to recon- 
 3D point cloud. Ying, 

n space. This 
im

ethod does not require an 
in

t mentioning the selection of the 
LM

Initial Guess 

ion strategies are sensitive to the 
ser to the ideal solution is the initial 

tion to axis orientation, 
ce

Measurement 

e authors have re
tance between a point and an analytic surface. Sappa and 
Rouhani [7] present a new technique for the estimation a 
pseudo geometric distance by calculating the height of a 
small tetrahedron intersecting the surface. This technique 

when applied to surfaces with high curvatures. Wang and 
Yu [1] present a comparison of the fitting processes im- 
plementing the algebraic, Euclidean, tangent or squared 
distance for fitting quadric surfaces. Zhou and Salvado [8] 
compare the geometric and algebraic distances in fitting 
ellipsoids. The authors estimate the geometric distance as 
the difference between the length of the ray connecting 
the point to ellipsoid center and the radius in the inter- 
section of the ray and the surface. This estimation being a 
fast solution, only works well in cases of quasi-spherical 
ellipsoids. 

2.2. Optim

Just like Zhou and Salvado [8
classify the surface fitting problem
The authors do not discuss the convexity analysis neither 
for the objective function nor for the optimization region. 
Other references reviewed do not report any classifica- 
tion of the surface fitting problem in terms of the con- 
vexity. 

2.3. Op

Yan, Liu and Wang [10] use L
struct quadric surfaces from a
Yang and Zha [11] fit ellipsoids to data using semidefi- 
nite programming obtaining low runtime.  

Jiang and Cheng [9] apply a decomposition technique 
to reduce the dimensions of the optimizatio

plies that the possibilities of dropping into local mini- 
ma decrease. However, as the approach is out of the 
geometrical field, coming up with an initial guess of the 
parameters is not an easy task. 

Li and Griffiths [12] fit ellipsoids by a least squares 
method using quadrics. This m

itial estimation but, as it is not based on real geome- 
trical distances, the results do not provide the best geo- 
metric fitting ellipsoid. 

References [8,13] report the use of LM method to fit 
analytic surfaces withou

 parameter and its influence on the optimization proc- 
ess. 

2.4. 

Numerical optimizat
initial guess. The clo
guess, the less number of iterations in the optimization 
process. On the other hand, a bad initial guess could 
make the algorithm to diverge. 

Just like Ruiz and Cadavid [14], Kwon et al. [15] use 
PCA for finding an approxima

nter coordinates and radius of point clouds belonging 
to circular cylindrical surfaces. Because this technique 
reduces the dimensionality of the data giving the direc- 

Copyright © 2013 SciRes.                                                                                AJCM 



O. RUIZ  ET  AL. 20 

tion of largest dispersion [16], it is limited to cylinders 
with aspect ratio lower than 5.0 [14] and to cylindrical 
caps. Similarly, Zhou and Salvado [8] use the eigen- 
vectors of the covariance matrix of the whole data as the 
axes of the ellipsoid coordinate system. As noted, this 
technique gives axes that probably will not correspond to 
the ellipsoid coordinate system in the case of ellipsoidal 
caps. 

Simari and Singh [17] estimate the ellipsoid’s center 
as the geometric centroid of the data set. This proposal 
w

 based on a least squares solution of the 
ge

lusions and  
Contribution of This Paper 

e litera- 
ture hat remain open in 

er Fitting 

y a radius , an axis 
d For 

a
s

ular Cylinder 
The initial guess of the cylinder’s parameters is obtained 

as explained 

 for each seed Fig- 
ur

the
 and the normal vector of the best plane fit 

to 

orks in the cases of ellipsoids completely sampled but it 
loses validity when the cloud is only a subsample of the 
whole ellipsoid. 

References [13,18] report the implementation of an 
algebraic method

neral quadric equation to find an initial guess of the 
parameters of analytic surfaces. 

2.5. Literature Review Conc

As was shown in the taxonomy conducted in th
 review, there are several issues t

optimized analytic surfaces fitting which are studied in 
this work: 1) Estimation of the real geometric distance 
between a point and an ellipsoid, 2) Identification of the 
effect of the parameters such as the norm k in the dis- 
tance measurement, 3) Analysis of the optimality con- 
ditions effect on the convergence of the algorithm. 

3. Methodology 

3.1. Circular Cylind

A circular cylinder is defined b
vector and its pivot point v̂  an

 R
 respectively.  pv

purposes of this research, no assumption is m de on the 
orientation or position in pace of the cylinder from 
which the data set belongs. 

3.1.1. Initial Guess for Circ

with a statistical and geometrical procedure 
below and shown in Figure 1: 

1) Random seed points are selected from S  and a 
local neighborhood Ln  found . See 

e 1(a). 
2) Crossing each o r the line segments defined by a 

seed point n̂  
Ln , a set of points  1 2, , , nCp q q q   passing near 

v̂  are found. See Figure 1(b).  
3  PCA is execute ding an initial 

pproximation of the cylinder ax
) A d over for fin

a is and its pivot point, 

lat he es between 

Cp  

Figv̂  and pv  respectively. See ure 1(c). 
4) An approximation to the cylinder radius is calcu- 
ed as t average of the minimum distanc

S  and v̂ .  
This method allows processing both complete cylindri- 
l surfac s and cylindrical cca e aps. 

er Distance 
The minimum distance between the point  and a 
3.1.2. Estimation of Point-Cylind

i

circular cylindrical surface is calculated as: 
d  ip

 i i id R p pr           (6)    

where is the radius of the cylinde
orthog ojection of  onto 

lar Cone Fitting 

d by an axis vector 

R  
onal pr
 2. 

r and ipr  is the 
as is shown in i

Figure

3.2. Circu

p ˆkv  

A circular right cone can be define
an apex 

v̂ , 
Ap  and a semi-opening angle  . 

3.2.1. Ini l Guess for Circular Cone tia
The initial approximation of a circular conical surface to 

 and geometrical 

from . See Figure 4(a). 

a point cloud is obtained by an statistical
procedure as is depicted in Figure 3 and explained as 
follows: 

1) A set of seed points and local neighborhoods Ln  
are taken S

2) The minimum curvature direction minK̂  of Ln , 
 

 

   
(a)              (b)                (c) 

Figure 1. Initial es ation of cylind  parameters. (a) eed 
points an  line seg- 

tim er  S
d the local neighborhoods; (b) Crossing

ments defined by the normal vector of the best planet to Ln; 
(c) Statistical axis and radius of the cylinder. 
 

 

Figure 2. Calculation of point-cylinder distance. 
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Figure 3. Procedure for obtaining the initial guess of conical 
sample. 
 
being collinear with a generatrix of the cone, is found by 
fitting a paraboloid 
and calculating the eige

. See Figure 4(b). 

3) 

  2 2,p x y a bx cy dxy ex fy       
nvectors of it Hessian matrix 

 
2

2

e d
H p

d f

 
  
 

Ap   being the first approximation to Ap

min
ˆ

, is ob- 

d point and its corresponding 
tained by averaging the crossing points of all lines de- 
fined by a see K . Notice 

at th Ap  represents an statistical apex. See re 4(c).  

ng trough the points 

 Figu
4) By finding the center of gravity of the center of the 

circumferences passi 1̂1p Ap e  , 

2ˆ2p Ap e   and 3̂3p Ap e  ,  where   
 of minimum

is vector v̂

 
 and 1 2 3ˆ ˆ ˆ, ,e e e are 

curvatures, the in
unitary vectors in direction

guess of the ax

    
(a)                     (b) 

    
(c)                    (d) 

 
(e) 

Figure 4. Initial estimation of cone parameters. (a) Seed 
points and them local neighborhoods; (b) Minimum curvar- 
ture directions; (c) Statistical apex point; (d) Statistical axis 
vector; (e) Statistical semi opening angle. 

 
calculated. See Figure 4(d).  

5) The initial estimation of   
vecto

is taken as the average 
of the angles between the rs minK̂  and v̂ . See 
Figure 4(e).  

3.2.2. Point-Cone Distance stimati n 
The distance from a p  and a cone is calcu- 

 E
oint

o

i i

lated by solving the Equation (7) for ,
d  p  

   and    . 

   ˆ ˆ ˆip Ap u n n

itial   is  

1 2





 
  
 
  

          (7) 
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where û  is a rotation of v̂  around  an angle 1̂n  , 

1

ˆ ˆ
ˆ

ˆ ˆ
w v

n
w v





 and 1

2
1

ˆ ˆ
ˆ

ˆ ˆ
u n

n
u n





 as is sh wn in the Figure 

5. Finally d

o

i   is the signed distance between 

As is shown in Table 1, an ellipsoid in general position 
is defined by the center coordinates 

ip  
and the cone. 

3.3. Ellipsoid Fitting 

 , ,x y zC C C , the 
semi axes , ,x y zR R R  and the Euler angles , ,x y z   . 

3.3.1. Initial Guess for Ellipsoid 
The fi ation to the parameters of the ellipsoid rst approxim
can be obtai th the follow

1) A general quadric surface is defined by Equation (8). 

       (8) 

(8) appropriately [18], it can be 

34

ned wi ing procedure: 

2
1 2 3 4 5

6 7 8 9 10 0

a x

a yz a x a y a z a


   

2 2a y a z a xy a xy  
 

Rearranging Equation 
written as: 

   2 2 2 2 2
1 2

4 5 6 7 8 9

2 2

2 2

b x y z b x y z

b b x b y b z b

    

    

2 b xy

xz b yz



  
2 2 2 .x y z  

In compact form, the above equation is: 

B R                    (9) 

If the n  points of S  are taken into account,   is a 
 9 n  matrix where its row -th is: i

2 2 2 2 2 22 , 2 ,4 ,2 , 2 , , , ,1i i i i i i i i i i i i i i ix y z x y z x y x z y z x y z     

R  is a  1n  vector with row i -th: 2 2 2
i i ix y z  . 

B  is the efficients vector and it can be  
ng th  of Equation (9). 

re
with the pseudo-inverse matrix of 

2) The initial approximation o

co
e linear system

rspecified, a least squa

obtained by
As the system 

s solution is calculated the 
solvi
is ove

, :  

B R   

f the center coordinates 
, ,x y z , the semi xes , ,C C C    a x y zR R R  and the Euler 

, ,

  

angles x y z    , are obtained from the subdiscr inant  im
A  in the matrix notation of a eneral og riented quadric: 

 

 

Calculation of point-cone distance. 

T 0X AX VX d            (10

Figure 5. 

) 

here w

 

 

1 4

4 2 6

5 6 3

T

7 8 9

5

T

1 1

2 2
1 1

2 2
1 1

2 2

.

a a a

a a a

a a a

a a a

x y z

 
 
 
   
 
 
 

10d a







A

V

X

 

eigenvectors of 



The A  represent the axes of the 
ellipsoid, then ,x y    and z

  can be calculated. The 

eigenvalues of 
   2 2

1 1
,

x yR R 
A  are proportional to  and 

 2

1

zR
 [19], then ,x yR R   and zR  can be obtained. The 

initial guess of the ellipsoid center can be obtained as 

3.3.2. Point-Ellipsoid Distance Estimation 
W

1, ,x y zC C C A V        . 

e present the following conjecture (Figure 6). 
Conjecture. Let E  be an ellipsoid centered in 

 , ,x y zC C C i wit er angl  , ,h es Eul x y z    and semi axes 
, ,x y zR R R . Let  , ,i i i ix y z  be a p Then, p oint in  3 .

an ellipsoid E  with the
t with semi axes 

exists  same center a enta- nd ori
tion to E , bu

, ,x x i y z id R R R R d y i zR R d      , that contain ip . 

If E  and are translated to the origin and aligned 

following equation ca be posed: 

 p  i

with the principal axes by a rigid transformation, the 
n 

     

2 2 2

1i i ix y z
2 2 2

R d R dR dx i z iy i

  
 

     (11) 

: Rearranging (11)
5 4 3

2 1 0
6 2

6 5 4 3ik d k d k d ki i i i ik d k d k d 0        (12) 

where 

 

 , , , , ,j i i i x y zk y z R R R  with 0,1, ,6j   . 

 

f x

 

Figure 6. Calculation of point-ellipsoid distance. 
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The minimum absolute real root of the polyn
Equation (12) corresponds to the minimum signed dis- 

om  to

4. Results and Discussion 

In order to test our fitting routines two study cases were 
proposed as follows. 

4.1. Data Set 1. Frog 

In order to prove the algorithm for fitting ellipsoids, a 
subset of the frog shown in Figure 7(a) was taken. In 
Figu ids 
w

omial in 

tance fr ip  E . 

re 7(b) the highlighted points to which the ellipso
ere fitted can be seen. The result of the fitting process 

is presented in Figures 7(c) and (d). 
 

 
(a) Frog model 

 
(b) Frog point cloud 

 
(c) Ellipsoid fitting results. View 1 

 
(d) Ellipsoid fitting results. View 2 

Figure 7. Ellipsoid fitting results. Original 3D model ob- 
tained from Thingiverse® [20]. 

A good initial guess found by an algebraic approach, 
let to a fast convergence of the algorithm. In Figure 8 it 
may be seen that the longest fitting process required of 
12 iterations for finding the optimum according to the 
termination criteria. In Figure 9 the initial estimation 
ellipsoid and the best geometrical ellipsoid fit are shown. 
Notice that the initial surface wraps most of the points, 
giving a good starting point for the LM algor m. Table 
2 presents a co ial ellipsoids 
and the optimized ones. 
 

ith
mparison between the the init

 

Figure 8. Behavior of objective function in the optimization 
process. 
 

 

Figure 9. Comparison between initial guess and optimiza- 
tion results in ellipsoid fitting. 
 

Table 2. Fitting results in frog’s study case. 

Data Eye Pupil 

Number of Points 1215 667 

Number of Iterations 8 12 

Final Residual 1.5e−4 2.1e−5 

Radius 1 Variation 67.7% 86.6% 

Radius 2 Variation 47.1% 177.9% 

Radius 3 Variation 152.4% 245.9% 

Angle 1 Variation 2.9% 25.1% 

Angle 2 Variation 11.1% 15.9% 

Angle 3 Variation 78.2% 7.1% 

Center Variation 2.9278 1.5143 
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4.2. Data Set 2. Fan 

To test the cylinder and cone fitting algorithms some parts 
of the fan shown in Figure 10(a) were processed with 
the algorithms. Figure 10 displays the results of the opti- 
mization process of two conical surfaces and one cylin- 
der. As in the case of ellipsoids, the algorithm found the 
optimal surface after a few iterations. The history of the 
optimized function for the Fan Data Set is shown in 
Figure 11. The cones (Figure 12) required 4 iterations 
while the cylinders (Figure 13) required 6 iterations. The 
good initial estimation of the surfaces allows the conver- 
gence of the algorithm and to reduce the number of iter- 

Shaf Air ir 

ations, therefore saving computing resources. Geome- 
trical statistics for the Fan Data Set appear in Table 3. 
 

Table 3. Fitting results in fan’s study case. 

Data t A

Number of Points 235 827  908 

Number of Iterations 3 4 6 

1.6e 2.0e−2 −4  

2.1e 53 

4.5% N/A 

N/A 38.23 51 

N/ 10.5% 

Final Residual −5 2.3e

Axis Variation −8 1. 0.92 

Radius Variation N/A 

Apex Distance  
IG vs LM 

367.

Angle Variation A 28.5% 

 

  
(a) Fan model               (b) Fan point cloud 

 
(c) Co

 
Figure 11. Behavior of objective function in the optimiza- 
tion process of the fan parts. 

 

 
Figure 12. Comparison between initial guess and optimiza- 
tion results in cone fitting. 

 

 
F
tion results in 

igure 13. Comparison between initial guess and optimiza- 
cylinder fitting. 

5. Conclusions and Future Work 

This article presents the fitting of analytic surfaces (such 
as cylinders, cones and ellipsoids) in the sense of mathe- 
matical optimization. The objective function for each 
surface was implemented in terms of the real geometric 
distance. In the case of cylinder and conical surfaces this 
metric is formulated and calculated easily. However, in 
the ellipsoid case the measurement of the distance be- 

ne and linder fitting results 

Fig udy c es iginal l 
obtained from GrabCAD  [21]. 

 cy

ure 10. Fan st ase fitting r
®

ults. Or  3D mode
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tween a point and the surface is not trivial. In response to 
this situation this work presented a novel methodolo
calculate this distance. The addressed results allow t
check that the proposed distance calculation works fine. 

The routines for the initial guess of the surfaces were
implemented using geometrical and statistical proced
The study cases allow to prove that the iterative optimi-
zation algorithms converge fast with a good initial guess. 

Future work includes the extension of the optimizatio
strategies to other analytic and to free form parametric
surfaces. 
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Nomenclature 

S:  0 1, , , np p p  Noisy point sample 
F: Best fit surface to S 
PCA: Principal Component Analysis 
LM: Lenvenberg-Marquardt 
k: Norm degree 
f: Objective function 
di: Minimum distance between the i-th point of S  

ts corresponding point on F and i
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