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ABSTRACT 

Using the non-equilibrium Green’s function techniques with interatomic potentials, we study the temperature depend-
ence and the crossover of thermal conductance from the usual behavior proportional to the cross-sectional area at room 
temperature to the universal quantized behavior at low temperature for carbon nanotubes, silicon nanowires, and dia-
mond nanowires. We find that this crossover of thermal conductance occurs smoothly for the quasi-one-dimensional 
materials and its universal behavior is well reproduced by the simplified model characterized by two parameters. 
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1. Introduction 

Recently, phonon thermal transport properties of quasi- 
one-dimensional materials, such as carbon nanotubes 
(CNTs) and silicon nanowires (SiNWs), have attracted 
much attention in the fields of nanometer-scale electron 
devices and thermoelectric devices. The high thermal 
conductance opens the way to reduce the heating prob-
lems in nanometer-scale electron devices, while low 
thermal conductance leads to high efficiency of ther-
moelectric devices [1]. Consequently, it is very important 
to know how the quasi-one-dimensional materials con-
duct heat. It is predicted that thermal conductance is 
quantized as 0 B  at low tem-
perature and this quantization dose not depend on kinds 
of materials and carriers [2]. Indeed, this 0

 2 2( ) π / 3 /G T g k T h  
g  is experi-

mentally measured for phonons [3], electrons [4], and 
even photons [5]. However, it is known that this quanti-
zation breaks at high temperature. Moreover, in macro-
scopic, the conductance should be proportional to the 
cross-sectional area of wires [6]. We investigate this re-
gion between quantized and macroscopic thermal con-
duction. For such studies, including quantized thermal 
conductance, we need the computational approach taking 
the quantum effects explicitly into account. The Lan-
dauer formula [7] or the non-equilibrium Green’s func-

tion (NEGF) technique [8] has been widely studied. In 
addition to electron transport [9,10], these methods have 
recently been applied to the thermal transport [11] and 
the thermal conductance is calculated for SiNWs [12] 
and CNTs [13]. Recently using the NEGF technique, the 
quantized thermal conductance has been analyzed for 
SiNWs [14]. According to the calculation, thermal con-
ductance is quantized not proportional to diameter at all 
at low temperature and has a diameter dependence 
gradually as the temperature increases. Over the tem-
perature 100 K, the thermal conductance becomes pro-
portional to cross-sectional area of nanowires. 

Here, we report the thermal conductance of the quasi- 
one-dimensional systems, in particular, diameter depen- 
dence for materials such as CNTs, SiNWs, and diamond 
nanowires (DNWs) at various temperatures. Using a 
simplified model based on the assumption for the phonon 
dispersion relations, we first show the general behaviors 
of the crossover to quantized thermal conductance from 
the usual behavior, proportional to the cross-sectional 
area, to the unusual “quantum-type”, not dependent on 
the cross-sectional area or the diameter with decreasing 
temperature. Especially, we consider the following mo- 
del. Since the quasi-one-dimensional materials have four 
acoustic phonon modes; one longitudinal mode, two 
flexural modes, and one torsional mode, we propose the 
model that these modes are well separated in the phonon *Corresponding author. 
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dispersion relation from the other optical modes, the 
number of which is proportional to the number of atoms 
in cross-section of materials. We can obtain the universal 
thermal conductance behavior with only two parameters 
to describe the present simplified model. Then, we pre-
sent the elaborate atomistic calculations for the thermal 
conductance of various realistic systems using the NEGF 
technique. We explain the difference of the temperature 
dependence of thermal conductance by comparing with 
those for the simplified model and clarify the important 
two parameters to account for the crossover to the quan-
tized thermal conductance. 

2. Simplified Model 

First, we introduce a simplified model to discuss the 
temperature dependence of thermal conductance of 
quasi-one-dimensional systems. In particular, we try to 
analyze qualitatively the crossover to quantized thermal 
conductance from the usual conductance, which is pro-
portional to its cross-sectional area. Here we note that in 
the Debye approximation where the phonon dispersion 
relation for the quasi-one-dimensional model composed 
of mono-atomic chain is approximated by the simple 
linear dispersion as shown in Figure 1(a), there appar-
ently shows no crossover of thermal conductance since 
the transmission coefficient exists only for that phonon  
 

 

Figure 1. (a) Phonon dispersion relation of a quasi-one- 
dimensional mono-atomic model for the acoustic mode in 
the debye approximation; (b) Schematic picture of phonon 
dispersion relation in the present simplified model, which is 
composed of four acoustic phonon modes for 0   and 

the other uniform phonon modes for 0 m

mode (Figure 1(c)). 
Instead, we consider a system for the phonon thermal 

transport which is described by two dimensionless pa-
rameters   and  . Here  indicates the ratio of 

0 max


/  , where max  is the maximum phonon fre-

quency for all the phonon modes and 0  is the phonon 
frequency under which only four acoustic phonon modes 
exist. It should be noted that the torsional mode appears 
in the quasi-one-dimensional systems in addition to the 
one longitudinal mode present typically in one-dimen- 
sional system as in Figure 1(a) and two flexural modes 
present for bulk system. Important point is that we con-
sider these four modes are well separated from the other 
phonon modes which exist in the higher energies and 
play the important role for the quantized thermal con-
ductance at low temperature. As the temperature in-
creases, various phonon modes are excited beyond these 
acoustic modes. In general, the degrees of the freedom 
increase linearly with the number of the atoms and the 
number of the phonon bands increases correspondingly. 

In the region of frequencies between 0  and max , 
we assume for simplicity that the number of the phonon 
modes becomes uniform and is proportional to the num-
ber of atoms  in the cross-sectional area. Since the 
transmission coefficient 

N
    corresponds to the num-

ber of phonon modes for ballistic transport, we obtain 
N  , where we introduce the parameter   as the 

proportional constant. As an example of the simplified 
model, we show a schematic phonon dispersion relation 
and the corresponding transmission function ( )   in 
Figures 1(b) and (d), respectively. 

The thermal current thJ  for the system is expressed 
in the Landauer’s type as follows, [2] 

    
0

, ,
2πth BE L BE R

d
J n T n T      


     ,  (1) 

where  ( ),BE L Rn T  is the Bose-Einstein distribution 
function of equilibrium phonons with an energy of   
in the left (right) lead at temperature ( )L R . For adiabatic 
contact between the wire and the leads, 

T
    is ex-

pressed in the present model as follows, 

 

 

0

0 max

max

4

( )

0 .

N

 
     

 

 
  
 

        (2) 

In the limit of small temperature difference between 
the left and right leads, the temperature dependence of 
thermal conductance  G T  is given by 

ax    ; (c) 

Typical transmission coefficient     as a function of pho- 

non frequency   for the one-dimensional monoatomic 

model in (a); (d) Transmission coefficient     in the 

simplified model.  B N  is the number of phonon modes 

at  , where we assume  is proportional to the number 
of atoms  in the cross-sectional area. 

B
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The thermal conductance  G T

G T

 G T

N

 shows explicitly the 
size dependence for  in addition to the temperature 
dependence. At low temperature the first term dominates 
the thermal conductance and  shows the quan-
tized thermal conductance, without any dependence of 

, a universal features as 0 . As the tem-
perature increases, the contribution from the second term 
having the size dependence plays a dominant role. Since 
this term is proportional to , that is, its cross-sectional 
area, it represents the usual thermal conductance. With 
use of these expressions, we calculate the temperature 
dependence of the thermal conductance to discuss the 
crossover region between the quantized conductance and 
the usual conductance. 

N



N 4g

In order to express the characteristic feature on the 
temperature dependence of thermal conductance explic-
itly, let us extrapolate the thermal conductance by the 
power-law as . This enables us to discuss 
the crossover from  to for 
various temperatures. Figure 2 shows the exponent  
as a function of the temperature. The temperature is 
measured in units of 

  nG T N
0n T

max

 

/

0  1n T  
n

Bk . The horizontal axis cor- 
 

 

Figure 2. (Top) Exponent 
 

of thermal conductance n

  nG T N  as a function of temperature  for 

various parameters of  with 

max/Bk T 

10 / max   

max

; (Bottom) 

Exponent  as a function of n /Bk T   for various 

parameters of   with . 0.05 

responds to the temperatures from 0 to 300 K for the 
maximum phonon energy of typical parameter of max  
of 100 meV. We note that this parameter value would be 
different from material to material in the realistic systems. 
It is observed that smooth transition curves from the 
quantized conductance regime  to the usual 
thermal conductance regime  are obtained. The 
upper panel shows the exponent  for various 

 0n 
 1

n


n

  with 
1  . The onset temperature is determined by   be-

cause only four phonon modes exist under the frequency 

0  leading to the quantized conductance. With an in-
crease of temperature, the second term dependent on  
in Equation (3) enhances and  approaches to one. The 
lower panel shows the exponent for various 

N
n

  with 
0.05  . As the parameter   becomes smaller or   

becomes larger, the asymptotic behavior of the exponent 
 to approach the value of  becomes slower. This 

is because the first term which is independent of  in 
Equation (3) becomes not negligible in this case. 

n 1n 
N

These calculations suggest that qualitative general be-
haviors might be elucidated using a simplified model 
based on the assumption of simple phonon dispersion 
relation. We note that these characteristic features are 
represented by only two critical parameters,  and   . 
Realistic materials have more complex phonon disper-
sions. In the next section, we perform more elaborate 
atomistic calculations for the phonon dispersion and the 
thermal transport to investigate the details of crossover to 
the quantized thermal conductance and study the validity 
of the present simplified model. 

3. Realistic Atomistic Calculations 

Next, we consider the temperature dependence of ther-
mal conductances of realistic quasi-one-dimensional ma-
terials. As typical examples, we take SiNWs, DNWs, and 
CNTs, and analyze the phonon transport properties from 
an atomistic viewpoint. The Hamiltonian H  for the 
present phonon transport is expressed as follows: 

2
,

,
, , , , ,

1 1
( ) ( ) ( ) .

2 2i i i j
i sys i j sysi

x y z x y z

jH p t u t K u t
M    

  
 
 

     (4) 

Here iM  is a mass of -th atom and  is an op-
erator for displacement of -th atom along 

i  iu t
i   direction 

from equilibrium position, respectively. We split the total 
Hamiltonian into four pieces:  

intL S RH H H H H    , 

where  L R  is the Hamiltonian for the left (right) lead, 

S

H
H  is for the scattering region, and intH  is for the in-
teraction between the scattering region and the left (right) 
lead. Using the NEGF technique [11], the thermal current 

thJ  and the thermal conductance  from the left 
lead to the scattering region can be expressed in the 
similar form as Equations (1) and (3) such as 

 G T
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    
0

d
, ,

2π

th L

BE L BE R

J H

n T n T
     



  

 



 
 

The dynamical matrix K  which is contained in the 
total Hamiltonian is constructed from the force constants 
between the atoms. The matrix elements of ,i jK  

i

 are 
calculated by finite difference of the force F  with 
respect to jr   as   

0
( ) d .

2π
B BE

B

k n
G T

k T

  
 





          (5) 

   2

, 2

i j i j

i j
i j j

F R F RE
K

r r R

   
 

  

       
  

  (9) Here the bracket   denotes the non-equilibrium sta-
tistical average of the physical observable and     is 
the transmission coefficient for the phonon transport 
through the scattering region given by 

          .r a
L RTr G G               (6) 

The force iF  is obtained from the derivative of  
with respect to i

E

r , where  is the total energy of the 
system and 

E

ir  is the atomic coordinate of the -th atom 
along the 

i
  direction. Therefore jiF R

Here,  /r aG   is the retarded/advanced Green’s func-
tion for the scattering region and  /L R   is the cou-
pling constant. For the ideal ballistic limit without any 
scatterings,     is equal to the number of phonon 
subbands at frequency  . 

The retarded/advanced Green’s function for the scat-
tering region is given by 

 
1/ 2 / / ,r a r a r a

L RG M K 


            (7) 

   indi-
cates the force of the -th atom along the i   direction 
generated by the -th atom along the j   direction with 
a displacement of R  from the pristine wire’s equi-
librium positions. Here R  is a displacement, for 
which we take 402 1R    Å in the present work. As 
for the total energy formula , we use the interatomic 
Tersoff potential [16] for silicon systems and Brenner 
potential [17] for carbon systems. These potentials de-
scribe the interatomic potentials with only elementary 
functions of atomic coordinates. The Tersoff (Brenner) 
potential describes total energy as follows: 

E

where M  is the diagonal matrix whose element is a 
mass of a silicon or a carbon atom and  /

/
r a
L R 

 

 is the 
retarded/advanced self-energy due to the coupling to the 
left/right semi-infinite lead with the scattering region, 
which is obtained independently from the atomistic 
structure of the lead. We use a quick iterative scheme 
with the surface Green’s function technique [15] to cal-
culate the self-energy for complex atomic structures of 
nanowires. The coupling constant /L R   in Equation 
(6) is then obtained from 

1

2i
i i j

E E V


  ij                (10) 

1 2( )[ ] .ij ijr
ij c ij ij ijV f r a Ae b Be

    r
        (11) 

Here, A , , 1B   and 2  are constants, ijr  is a dis-
tance between the -th and -th atoms and  and 

 are determined by only atomic coordinates. 
i j ija

ijb
     / / / .r a

L R L R L Ri               (8) Figures 3(a)-(c) show the phonon dispersion relations  
 

 

Figure 3. Phonon dispersion relations of (a) 100 -SiNW with 1.5 nm in diameter; (b) 100 -DNW with 1 nm in diameter; 

and (c) (5,5)-CNT. Here, =5.362 Å, =3.567 Å, and =2.49 Å are unit vectors of the SiNW, DNW, and CNT, respec-

tively; (d) Transmission function 
1a 2a 3a

    for the phonon dispersion relation of (5,5)-CNT; (e)     corresponding to the 

simplified model for the 100 -SiNW; (f)     corresponding to the simplified model for the (5,5)-CNT; (g) Differentials 

of the distribution functions  ,BEn T  with respect to T  for 5 K (green solid line), 100 K (red dashed line), and 300 K 

(blue dotted line). Note that the integral of its product with     corresponds to  G T . 
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of a 100 -SiNW with a diameter of 1.5 nm, a 
100 -DNW with a diameter of 1.0 nm, and a (5,5)-CNT 

respectively. Since the SiNW and the DNW have the 
same atomic configurations with the same numbers of 
atoms in cross-sectional areas, these two phonon bands 
have similar structures with a difference of the phonon 
energy range, for which DNW has a larger value due to 
the stronger interatomic force acting between carbon 
atoms. On the other hand, the CNT has a cylindrical 
shape and each band of the CNT tends to have disper-
sions with a wide energy range, which induces large 
thermal conductance. Figures 3(d) and (g) show the 
transmission function     for the CNT and the dif-
ferentials of the distribution functions  as a 
function of the phonon energy. The integral of these 
products corresponds to the thermal conductance 

 ,BEn T 

 G T . 
At small phonon energy regime, we see that all quasi- 

one-dimensional structures have four acoustic modes, 
one longitudinal, two flexural, and one torsional modes, 
which do not depend on the detailed structures of 
nanowires. When only these four modes conduct heat, 
thermal conductance shows a universal feature for any 
material or diameter. This accounts for the quantized 
thermal conductance at low temperature regime [2]. As 
the temperature increases, various phonon modes begin 
to contribute to the thermal transport. 

Here, we compare the behaviors of thermal conduc-
tance for SiNWs and CNTs, which have completely dif-
ferent atomic configurations as nanowires. The bottom 
panels of Figure 4 show the temperature dependences of  
 

 

Figure 4. (Top) Exponent  for several temperatures ex-
trapolated from the thermal conductance as described by 

, where  is the number of atoms in the cross- 
section area. (Bottom) Thermal conductance as a function 
of the diameter 

n

nG N N

D  for several temperatures in cases of the 
SiNW (left) and the CNT (right). 

the calculated thermal conductances as a function of the 
diameter  for the SiNW (left) and the CNT (right). At 
300K the thermal conductances are proportional to the 
square of the diameter  for SiNWs (left) and to the 
diameter  for CNTs (right). Since the SiNWs have 
columnar shapes and the CNTs have cylindrical shapes, 

 for the SiNWs and  for the CNTs. 
This indicates that the thermal conductance is propor-
tional to the cross-sectional area at high temperature. As 
the temperature decreases from 300 K, the behaviors of 
thermal conductances to the diameter dependence are 
seen to change gradually. At enough low temperature, we 
see no dependence on a diameter  for the thermal 
conductance 

D

D

2D

2N D N D

D
 G T  for both cases. 

To analyze the temperature dependence of the thermal 
conductance, as we did in the previous section, we ex-
trapolate the exponents  for the thermal conductance n
  nG T N  for the SiNWs, DNWs and CNTs, which 

are shown in the top panel of Figure 4. At 300 K, the 
exponents of wires are nearly equal to 1 which corre-
spond to usual thermal conductance and the exponents 
approach to 0 which correspond to “quantum-type” 
thermal conductance as the temperature decreases. We 
see that the crossover to  from 0n  1n   differs 
slightly according to the kinds of materials. The rapid 
decrease of the exponent  from the saturation appears 
at the lowest temperature for SiNWs. This can be under-
stood from the scaling of the temperature by max

n

/ Bk  
as shown in Figures 3(e) and (f), where max  are 70 
meV for SiNWs, 180 meV for DNWs, and 210 meV for 
CNTs. Among these materials the normalized tempera-
ture of SiNWs is the lowest, which is also related to the 
Debye temperature in the specific heat. To compare the 
behaviors of thermal conductance between DNWs and 
CNTs which have similar max , we see that the onset 
temperature of CNTs is lower. This can be understood 
because 0 max/    is smaller for CNTs than DNWs. 
We note that another parameter of the proportional con-
stant   is determined so that     in the simplified 
model has the same area as that in the realistic atomic 
system. 

These data show that the simplified model as intro-
duced in the previous section is effective to understand 
the behaviors of crossover to quantized thermal conduc-
tance, even if it is expressed with two parameters by the 
abbreviation of the precise transmission coefficients 
    to the simplified ones as shown in Figures 3(e) 

and (f). Here we note that, in the present theoretical 
scheme, thermal conductance should not necessarily be 
proportional to the cross-sectional area in the high tem-
perature limit, since the contribution to the transport from 
each phonon band depends on the width of the band dis-
persion, while the number of total phonon modes is pro-
portional to the number of atoms in a unit cell. 

Copyright © 2013 SciRes.                                                                                OJCM 
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Phonon-phonon scattering effect is not taken into ac- 
count here. Experimentally it has been observed that for 
nanowires less than 37 nm thick, the effect of anhar- 
monicity on the thermal conductivity is not significant up 
to room temperature. Instead, the phonon boundary scat- 
tering due to surface roughness becomes important for 
the nanowires [18]. The effect is also discussed theoreti- 
cally [12]. It is shown that anharmonicity is suppressed 
for nanowires shorter than tens of nanometers. We con- 
sider the clean wire case, where no edge or internal scat-
terings are present simply. However, note that such scat- 
terings have the effects on the thermal conductance in the 
length direction . We have checked the effects of the 
boundary scattering due to surface roughness in the 
SiNW on the exponent . We remove 5% atoms from 
the surface randomly with 10 different configurations 
and treat the results statistically. As a result, we find that 
the trend of the exponential behavior of the conductance 
from  to 0 remains for the boundary scattering 
although the conductance reduces. 

L

n

1n 

4. Conclusion 

We have proposed a simplified model to discuss the 
crossover to universal quantized thermal conductance of 
the quasi-one-dimensional systems. From the calcula-
tions of the temperature dependence of thermal conduc-
tance for the realistic atomistic systems of CNTs, SiNWs, 
and DNWs, for which the crossover from the usual be-
havior at room temperature to the universal “quan-
tum-type” behavior at low temperature is obtained by 
using the non-equilibrium Green’s function techniques 
with interatomic potentials, we find that this crossover 
occurs smoothly for the quasi-one-dimensional materials 
and its universal behavior is well reproduced by the sim-
plified model characterized by two parameters. 
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