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ABSTRACT 

We present the results of the symmetry classification of the electron energy bands in graphene and silicene using group 
theory algebra and the tight-binding approximation. The analysis is performed both in the absence and in the presence 
of the spin-orbit coupling. We also discuss the bands merging in the Brillouin zone symmetry points and the conditions 
for the latter to become Dirac points. 
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1. Introduction 

Since graphene was first isolated experimentally [1], it is 
in the focus of attention of both theorists and experiment- 
talists. Obviously, understanding of the symmetries of 
the electrons dispersion law in graphene is of crucial im- 
portance. Actually, the symmetry classification of the en- 
ergy bands in graphene (or “two-dimensional graphite”) 
was presented nearly 60 years ago by Lomer in his semi- 
nal paper [2]. Later the subject was analyzed by Slonc- 
zewski and Weiss [3], Dresselhaus and Dresselhaus [4], 
Bassani and Parravicini [5]. Recent approaches to the 
problem are presented in the papers by Malard et al. [6], 
Manes [7] and in our publication [8]. 

The present work has two aspects: a pragmatic and a 
pedagogical one. The first aspect is connected with the 
recent synthesis of silicene, the counterpart of graphene 
for silicon, with buckled honeycomb geometry. This no- 
vel two-dimensional material has attracted recently con- 
siderable attention, both theoretically [9,10] and experi- 
mentally, due to its exotic electronic structure and prom- 
ising applications in nanoelectronics as well as its com- 
patibility with current silicon-based electronic technol- 
ogy. So we present the symmetrty analysis of the sili- 
cene electron bands. 

The pedagogical aspect is connected with the fact that 
different approaches to the symmetry classification, even 
if giving the same results, are based on different methods 
of applications of group theory. Thus in our previous 
paper [8] the labeling of the bands was based on com  

patibility relations and guesses. In the present work we 
show that in the framework of the tight-binding appro- 
ximation the representations of the little group in the 
symmetry points can be rigorously found in the frame- 
work of the group theory algebra. Though the idea of 
using the tight-binding approximation is by no means 
new (it was used already in the work by Lomer), our 
mathematical approach is totally different, as one can ea- 
sily see comparing the present work with [2], and, to our 
opinion, more convenient for applications. This state- 
ment is supported by the analysis of the symmetry of the 
energy band in silicene. 

We also generalize the symmetry classification by tak- 
ing into account the spin-orbit coupling both for gra- 
phene and for silicene. This, to the best of our knowledge, 
wasn’t done before even for graphene. Though in gra- 
phene the spin-orbit coupling is very weak, the problem 
is interesting in principle. One can expect that in silicenr 
the coupling is stronger, and it will become even more so 
for graphene related materials from heavier elements, 
provided they can be synthesized. 

To remind to a reader a few basic things, important for 
the symmetry classification of the bands in any crystal, 
consider a point sub-group R of the space group character- 
izing the symmetry of a crystal (we restrict ourselves 
with the consideration of symmorphic space groups). Any 
operation of the group R (save the unit transformation) 
takes a general wavevector k into a distinct one. However, 
for some special choices of k some of the operations of the 
group R will take k into itself rather than into a distinct 
wavevector. These particular operations are called the 
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group of k; it is a subgroup of the group R. Points (lines) 
in the Brillouin zone for which the group of the wavevec- 
tor contains elements other than the unit element are call- 
ed symmetry points (lines). We may use a state (states) 
corresponding to such a special wavevector to generate a 
representation for the group of k [11,12]. In this paper we 
consider crystals with the hexagonal Brillouin zone. In this 
case the symmetry points are Γ—the center of the Bril- 
louin zone, the points K which are corners of the Brillouin 
zone and the points M which are the centers of the edges 
of the Brillouin zone. 

2. Tight-Binding Model 

We’ll deal with the materials with a basis of two atoms 
per unit cell, and we’ll search for the solution of Schroe- 
dinger equation as a linear combination of the functions 

  i
; e ,j

j

j
j

R
     k R

k r R         (1) 

where  are atomic orbitals,  labels the sublat- 
tices, and 

,j A B
jR  is the radius vector of an atom in the sub- 

lattice . j
A point symmetry transformation of the functions 

;
j
 k  is a direct product of two transformations: the 

transformation of the sub-lattice functions ,A Bk , where 
i

e ,j

j

j   k R
k

R

              (2) 

and the transformation of the orbitals  . Thus the re- 
presentations realized by the functions (1) will be the 
direct product of two representations. Generally, these 
representations will be reducible. To decompose a re-
ducible representation into the irreducible ones it is con-
venient to use equation 

   1
,

G

a G
g    G          (3) 

which shows how many times a given irreducible repre- 
sentation   is contained in a reducible one [13]. Addi- 
tional information about the representations can be ob- 
tained if we use projection operator [14] 

   ,
G

n
O G

g


 
  P G           (4) 

where n  is the dimensionality of the irreducible repre- 
sentation   and  is the operator corresponding 
to a transformation . The operator projects a given 
function to the linear space of the representation 

 P G
G

 . For 
a one dimensional representation the operator thus gives 
basis of the representation. 

3. Group Theory Analysis in the  
Tight-Binding Model without the  
Spin-Orbit coupling 

Our tight-binding model space includes four atomic or- 

bitals: ,s p . Notice that we assume only symmetry of 
the basis functions with respect to rotations and reflec- 
tions; the question how these functions are connected 
with the atomic functions of the isolated carbon atom is 
irrelevant. 

3.1. Graphene 

The Hamiltonian of graphene being symmetric with re- 
spect to reflection in the graphene plane, the bands built 
from the z  orbitals decouple from those built from the 

, ,s x y  orbitals. The former are odd with respect to 
reflection, the latter are even. In other words, the former 
form  bands, and the latter form π   bands. 

The group of wave vector  at the point k   is 6h , 
at the point  is 3h , at the lines  is  [8,15]. 
The representations of the groups  and  can be 
obtained on the basis of identities  

D
K D -K

3hD
2vC

6hD

3 3 6 6, .h s h vD D C D C Cs            (5) 

the irreducible representations of the group 3  are pre- 
sented in the Table 1. Each representation of the group, 
say 1

D

A , begets two representations of the group 3h : 

1

D
A  and 1A ; prime means that the representation is even 

with respect to reflection h , double prime means that it 
is odd. 

The irreducible representations of the group 6v  are 
presented in the Table 2. Because the inversion trans-
formation 

C

I  can be presented as 

2 ,hI C                  (6) 

the representations of the group 6h  can be classified 
as symmetric (g) or antisymmetric (u) with respect to 
inversion. Thus each representation of the group , 
say 1

D

6vC
A , begets two representations of the group : 6hD

1gA  and 1uA . 
Notice that the orbitals s  (or z ) realize 1A  rep- 

resentation both of the group 3  and of the group 6v , 
hence the representations of the groups realized by the 
functions 

D C

,
, ;

A B
s z k  will be identical to those realized by the 

sub-lattice functions ,A Bk . 
Let us start from the symmetry analysis at the point  . 

Because the transformations 2 6, , vC C   change sublat- 
tices, the characters corresponding to these transfor of the 
group . 6vC
 
Table 1. Characters table for irreducible representations of 
D3  point groups. 

D3 E 2C3 3U2 

A1 1 1 1 

A2 1 1 −1 

E 2 −1 0 
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Table 2. Characters table for irreducible representations of 
 point group. vC6

C6V E C2 2C3 2C6 2 v  '3 v  

A1 1 1 1 1 1 1 

A2 1 1 1 1 −1 −1 

B2 1 −1 1 −1 1 −1 

B1 1 −1 1 −1 −1 1 

E2 2 2 −1 −1 0 0 

E1 2 −2 −1 1 0 0 

 
Mations are equal to zero. The transformations  

3, , vE C    leave the sub-lattices as they were. Hence 
from Table 2, we see that the functions ,A B0  realizes 
reducible representation 

1R A B   2                (7) 

Taking into account the symmetry of the states relative 
to reflection in the plane of graphene, we obtain that at 
the point  the functions  z  (here and further on, 
when this is not supposed to lead to a misunderstanding, 
we’ll suppres the index  in ;k  k ) realize 1uA  and 

2gB  representations of the group , characterizing 6hD
  band; the functions s  realize 1gA  and 2u  rep- 
resentations of the group , characterizing 

B

6hD   band. 
Acting by projection operators AO  and BO  on a 

function j , we obtain that the irreducible representa- 
tion 1A  is realized by symmetric combination of the A  
and  orbitals, and the irreducible representation 2  
by the antisymmetric combination. One can expect that 
the first case occurs in the hole band, and the second in 
the electron band. 

B B

The orbitals ,x y  realize representation 1  of the 
group 6v  [13]. Hence, representation of the group rea- 
lized by the functions 

E
C

,
,

A B
x y  can be decomposed as 

1 1 .E R E E   2              (8) 

Taking into account the symmetry of the states relative 
to reflection in the plane of graphene, we obtain that at 
the point   the functions ,x y  realize 1u  and E 2gE  
representations of the group , characterizing 6hD   
bands.  

To find wavefunctions, realizing each of the irreduci- 
ble representations, we apply the projection operators 
and obtain 

1 2
, ,j j j j j j

E EO O                 (9) 

where j B  if , and vice versa. Thus represen- 
tation  is realized by symmetric (antisymmetric) 
combinations of 

j A
 1 2E E

,x y  orbitals. One can expect that the 
first representation is realized at the hole band, and the 

second at the valence band. 
Now let us perform the symmetry analysis at the point 
. The representation of the group realized by the func- 

tions 
K

,A BK  is determined by the transformation law of 
the exponentials 

i
e jK R

 under the symmetry operations. 
Rotation of the radius vector by the angle 2π 3  anti- 
clockwise, is equivalent to rotation of the vector K  in 
the opposite direction, that is to substitution of the three 
equivalent corners of the Brillouin zone:  

2 3 , K K K K  where  

 2π 3 ,2π 3 3a aK ,  2 0, 4π 3 3a K  and  

 3 2π 3 ,2π 3 3a K a . The rotation multiplies each  

basis vector by the factor 2πi 3e . Using Eqation (3), we 
obtain 

   2πi 3 2πi 31 3 2 e e 1.Ea           (10) 

Hence, the functions ,A BK

D
 realize irreducible repre- 

sentation  of the group . E 3

Taking into account the symmetry of the states relative 
to reflection in the plane of graphene, we obtain repre- 
sentation E  of the group 3h , realized by the D z  
functions (merging   bands), and representation E , 
realized by the s  functions, characterizing   bands. 

The orbitals ,x y  realize representation  of the 
group 3  [13]. Hence, representation of the group real- 
ized by the quartet of functions 

E
D

,
,

A B
x y  can be decom- 

posed as 

1 2 .E E A A E                (11) 

taking into account the symmetry of the states relative to 
reflection in the plane of graphene, we obtain representa- 
tions 1A , 2A  and E  of the group 3h , realized by 
the 

D

,x y  functions, characterizing   bands. 
Acting by projection operators, we obtain that the 

representation 1A  is realized by the vector space with 
the basis vector A B   , and the representation 2A  is 
realized by the vector space with the basis vector 

A B   . The vector spaces realizing representations 

1A  and 2A  being found, the representation  is 
obviously realized by the vector space spanned by the 
vectors 

E

,A B A B      

Because the irreducible representation  is realized 
both by 

  . 
E

s  and ,x y  functions, these representations 
should be considered together. According to Wigner 
theorem [16] we still have two representations, each 
of them being realized by two functions from a quartet 

s s

E

, ,A A B , AB B         . Each  representation char- 
acterizes two 

  E
  bands, merging at the point K . 

The symmetry of the electron bands at the points   
and K  being determined, the symmetry at the lines 

-K  follows unequivocally from the compatibility 
relations, presented in Table 3 [8,13]. The table shows 
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compatibility of the representations of the point group 

2v , realized at the symmetry line , with those re- 
alized at the symmetry points 
C -K

  and . K
The results of this section are presented on Figure 1, 

reproduced from [8]. 

3.2. Silicene 

The difference between silicene (or symmetrically equi- 
valent to it buckled graphene) and graphene for our con- 
sideration is due solely to the decreased symmetry of the 
former. The group of the wavevector at the point K  in 
silicene is 3 , at the point D   – 3d  (this is also the 
point group of silicene). The representations of the group 

 we can obtain on the basis of identity 

D

iC
3dD

3 3 dD D              (12) 

The direct product has twice as many representations 
as the group , half of them being symmetric (denoted 
by the suffix 

3D
g ), and the other half antisymmetric 

(suffix ) with respect to inversion. The characters of 
the representations of the group  are presented in 
the Table 4.  

u

3dD

,A B

The symmetry analysis in silicene parallels that in gra- 
phene, so we’ll be brief. 

At the point  the functions K K  realize  gra- 
phene, so we’ll be brief. 

E

 
Table 2. Compatibility relations. 

C2v D6h D3h 

A1 A1g B2u E1u E2g 1A  E  

A2 A1u B2g E1g E2u A''  E''  

B1 B1u A2g E1u E2g 2A  E  

B2 A2u B1g E1g E2u A''  E''  

 

 

Figure 1. (Color online) Graphene band structure evaluated 
with use of the FP-LAPW method. The dashed line shows 
the Fermi energy [reproduced from [8]]. 

Table 4. Characters table for irreducible representations of 

dD3  point group. 

Rep E 2C3 3U2 I 2S6 d3  

A1g 1 1 1 1 1 1 

A2g 1 1 −1 1 1 −1 

A1u 1 1 1 −1 −1 −1 

A2u 1 1 −1 −1 −1 1 

Eg 2 −1 0 2 −1 0 

Eu 2 −1 0 −2 1 0 

 
Orbitals s  and z  realize 1A  representation, and 

the orbitals ,x y  realize E  representation of the group. 
Thus at the point  the functions K s  (and z ) rea- 
lize representation of the group . Reducible repre- 
sentation realized by the functions 

E 3

,

D

x y  can be decom- 
posed into the irreducible ones: 

1 2 .E E A A E               (13) 

So when the symmetry is reduced by going from gra- 
phene to silicene, the representations 1A  and 2A  turn 
into 1A  and 2A . Representation  and two represen- 
tations 

E
E  turn into three representations . Loosing 

the reflection in plane symmetry, we can not claim now 
that one representation is realized exclusively by 

E

z  
orbitals. All the  representations mix E ,s p  orbitals. 

At the point   the the functions ,A B0  realizes re- 
ducible representation of the group : 3D d

1 2 .g uR A A                 (14) 

Orbitals s  realize u , orbitals A1 z  – 2uA , and 
orbitals ,x y  – u  representations of the group. Thus 
the functions (1) realize reducible representation of the 
group  which can be decomposed as 

E

3dD

   1 2 1 2

1 2 2 1 .

u u u g u

u g u g g

A A E A A

uA A A A E E

   

     
       (15) 

So when the symmetry is reduced by going from 
graphene to silicene, the representations 2gE  and 1u  
turn into the representations 

E

gE  and  respectively. u

The band structure of silicene is being different from 
that of graphene, the merging of the bands is no different. 
The statement becomes clear when comparing Figure 2, 
reproduced from [10], with Figure 1. 

E

4. Group Theory Analysis in the  
Tight-Binding Model with the  
Spin-Orbit Coupling 

In the absence of spin-orbit coupling, electron spin can 
be taken into account in a trivial way: each band we con- 
sidered was doubly spin degenerate. 

When the spin-orbit coupling is taken into account, the 
symmetry, and the representations realized by the sub-  
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Figure 2. (Color online) DFT-PBE band structures for sili-
cene. The dashed line shows the Fermi energy and the insets 
show the spectrum near the Fermi level in the vicinity of the 
K point [reproduced from [10] with permission]. 
 
lattice functions (2) remaim the same. However, instead 
of atomic orbitals we should consider atomic terms. So 
for the case of hybridization, sp   enumerates states 
from doublets  1 2

,s p and quartet  3 2
p . 

Due to the semi-integer value of the angular momen- 
tum J  we have to consider double-valued representa- 
tions realized by the atomic terms (and by the crystal 
wave functions). We remind that in this case it is 
convenient to introduce the concept of a new element of 
the group (denoted by ); this is a rotation through an 
angle  about an arbitrary axis, and is not the unit 
element, but gives the latter when applied twice: 

Q
2π

2Q E . 
The characters of the rotation by angle   applied to 

the term  j  is 

  1
sin sin .

2 2
j J

1     
 

       (16) 

With respect to the inversion I the character is 

   2 1j I J    ,            (17) 

where the sign plus corresponds to the s states, and the 
sign minus to the p states. Finally, the charecters corre- 
sponding to reflection in a plane   and rotary reflec- 
tion through an angle   are found writing these sym- 
metry transformations as 

   2 , π .IC S IC            (18) 

Both in graphene and in silicene we’ll restrict our- 
selves by the symmetry analysis at the point K . 

4.1. Graphene 

The sub-lattice functions ,A BK  realize gE  represen- 
tation of point group 3h . The electron terms realize 
two-valued representations of the group, which are pre- 
sented in Table 5 [17]. 

D

Doublet  1 2
s realizes 7  representation of the group; 

doublet  1 2
p realizes 8  representation, quartet 

 3 2
p realizes 7  representation twice (We decided to 

use chemical notation for the single-valued representa- 
tion, and BSW notation for double-valued representa- 
tions [9]). The sub-lattice functions realize representa- 
tion gE ; from Equation (3) we obtain 
 

7 8 7 .g gE E 8                 (19) 

Thus at the point K  four bands realize representation 

7  of the group 3D  each, and four bands realize repre- 
sentation 8  each. In particular, we obtained the (well 
known) result that the four-fold degeneracy (including 
spin) of the bands merging at the point  is partially 
removed by the spin-orbit coupling, and only two-fold 
(Kramers) degeneracy is left.  

K

4.2. Silicene 

The two-valued representations of  are presented in 
Table 6 [17]. Each of the doublets

3D
 1 2

,s p realizes 4  
representation of the group. Quartet  3 2

p realizes this 
representation twice. The sub-lattice functions realize 
representation  of the group. From Equation (3) we 
obtain  

E

4 4 5 .E 6                (20) 

(For the same reasons as for ordinary representations, 
two complex conjugate two-valued representations 

5 6   must be regarded as one physically irreducible 
representation of twice the dimension). 

Thus at the point  four bands which realize repre- 
sentation 4

K
  of the group 3  each, and four bands re- 

alize representation 
D

65   each. 

5. Dirac Points 

In this final part of the paper we would like to clarify the 
relation between the symmetry and the existence of dirac 
points. 

According to the classical approach [18,19], the merg- 
ing of the bands at a point 0  is connected with the 
multi (higher than one)-dimensional representation of the 
space group 0 , realized in this point. Looking for a 
linear dispersion point in the vicinity of the merging point 
we may use the degenerate  perturbation theory. 
Let a two-dimensional irreducible representation is realiz- 
ed at a point 0 . Expanding the wavefunction with re- 
spect to the basis of the representation 

k

k 

G

k

p

     
2

0
1

,i i
i

k c k k 


            (21) 

for the expansion coefficients we obtain equation in the 
orm f
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Table 3. Characters for two-valued irreducible representations of group  

hD3 .

E Q h  3hD  C3 S3 3U2 2
3C  2

3S  3 v  

   C3Q S3Q 3U2Q 

2 −2 0 1 −1 

hQ  2
3 QC  2

3S Q  3 vQ  

7  3  − 3  0 0 

8  2 −2 0 1 −1 − 3  − 3  0 0 

2 −2 0 −2 2 0 0 0 0 9  

 
Table 4. Characters for two-valued irreducible representa- 
tions of group D . 

Rep E Q C3 3U2 3U2Q 2

3C  

   C3Q   

1 −1 −1 1 i −i 

2
3 QC  

5  

6  1 −1 −1 1 −i i 

2 −2 1 −1 0 0 4  

 

     
2

1

,ij
j i

j

c k k c k
m







k p
         (22) 

where    0 0ij i jp k p k   
nversion symmetry at

(of course, we need the 
absence of i  the point, for the matrix 
elements to be different from zero). The dispersion law is 
given by the equation 

  a k k k   
 

   k           (23) 

where ,   are cartesian indexes ,x y
wavev

ect to
the group 

y te

. Equation (24) 
shoul n only combinations of ector compo- 
nent  are invariant with resp  all elements of 
the gr . In the case when  does not 
have any r invariants, and the onl nvariant is 
the qu

d contai
s which

oup G
 vect

antity 

0

o
0G

nsor i
2 2
x yk k , we obtain th ersio

              (24) 

which, like it was shown by Dirac himself in 1928, gua- 
ranties that Equation (25) is Dirac equation, in the sense 
the the matrices 

e disp n law 

  ,vk  k  

xp  and yp  satisfy anticommutation 
relations 

 2 2 , ,x y x yp p I p p


    0,       (25) 

where I  is the unity matrix. 
To be more specific, consider the groups of wavevector 

at the point ; in graphene it is , and in silicene it is 
In both cases, to find the dis on law at the point 
t is eno  to study invarian he group  And 

we can easily check up that both tions,  for 
the existence of the Dirac point, are satisfied. This ex- 
plains, in particular, why the band calcu- lations show the 
existence of Dirac points in silicene [9,10], which has a 

lower symmetry than graphene. 
In general, the role of the tight binding approximation 

in symmetry classification of the bands in graphene, like 
its role in symmetry classification of bands in other crys- 
tals, is only auxiliary. The approximation greatly helps in 
the classification and sheds additional light on the nature 
of the bands. but one must remember that there are more 
important things that this or that approximation and this is 
symmetry. 

6. Conclusion 

This paper presents an applications of group theory to 
very important cases of graphene and silicene. 
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