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ABSTRACT 

This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the pre- 
vious spectral stochastic meshless local Petrov-Galerkin method using the MLPG5 scheme. This modified spectral sto- 
chastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the 
uncertainty in the spatial variability of mechanical properties. Except for the MLPG5 scheme, deriving the proposed 
spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of ran- 
dom mechanical properties. Predicting the structural failure probability is based on the first-order reliability method. 
Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted 
structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method 
predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addi- 
tion, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating 
Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method 
serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately. 
 
Keywords: Spectral Stochastic Meshless Local Petrov-Galerkin Method; Generalized Polynomial Chaos Expansion; 

First-Order Reliability Method; Structural Failure Probability; Reliability Index 

1. Introduction 

Available stochastic numerical methods for solving sto-
chastic boundary-value problems include the Monte Ca- 
rlo simulation, spectral stochastic finite element [1] and 
stochastic element-free Galerkin methods [2]. The Monte 
Carlo simulation may be simplest, since implementing it 
requires sampling the existing random fields and substi-
tuting the resulting samples into deterministic solutions. 
However, a perquisite of obtaining accurate Monte Carlo 
simulation results is sufficiently sampling the existing 
random fields; therefore, completing a Monte Carlo simu- 
lation is usually time-consuming. This perquisite brings 
about a motive of developing a time-saving tool for sol- 
ving stochastic boundary-value problems. 

Meanwhile, the spectral stochastic finite element or sto- 
chastic element-free Galerkin methods are developed by 
extending the finite element or element-free Galerkin me- 
thods. For example, deducing a spectral stochastic finite 
element couples a finite element formulation with such 
as polynomial chaos and Karhunen-Loève expansions of  

stochastic processes. These stochastic processes are as-
sumed to represent the existing uncertainty.  

A number of spectral stochastic finite element formu-
lations are available for some branches in engineering 
science and mechanics. References [3,4] are two recent 
examples. Nevertheless, applying these two stochastic 
numerical methods needs a finite element discretization 
or background cells for the numerical integration. To pro- 
vide more freedom in solving stochastic boundary-value 
problems, a truly-meshless stochastic numerical method 
may be a promising alternative. In a published study [5], 
a spectral stochastic meshless local Petrov-Galerkin me- 
thod has been developed by coupling a meshless local 
Petrov-Galerkin formulation and radial basis function- 
based meshfree shape functions with polynomial chaos 
expansions [6] of stochastic processes. Since the mesh-
less local Petrov-Galerkin method is truly meshless [7], 
the spectral stochastic meshless local Petrov-Galerkin 
method is also truly meshless. Nonetheless, the spectral 
stochastic meshless local Petrov-Galerkin results of two 
elastostatic problems are more accurate than spectral 
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stochastic finite element results of the same problems. In 
addition, generating the spectral stochastic meshless local 
Petrov-Galerkin results is considerably time-saving. 

Based on the published conclusion [8] that the MLPG5 
scheme may substitute for the finite element method to 
solve boundary-value problems, the current study further 
derives a two-dimensional spectral stochastic meshless 
local Petrov-Galerkin formulation in elastostatics using 
the MLPG5 scheme. The resulting spectral stochastic 
meshless local Petrov-Galerkin formulation is selectively 
applied to predict the structural failure probability with 
the uncertainty in the spatial variability of mechanical 
properties. In addition to the MLPG5 scheme, deriving 
the proposed spectral stochastic meshless local Petrov- 
Galerkin formulation adopts the generalized polynomial 
chaos expansions [6] of random mechanical properties 
and radial basis function-based meshless shape functions. 
Meanwhile, predicting the structural failure probability is 
based on the first-order reliability method [9]. 

The remainder of this study is organized in 5 sections. 
In Section 2, deriving a meshless local Petrov-Galerkin 
formulation in elastostatics using the MLPG5 scheme is 
presented. In Section 3, coupling the resulting expres- 
sions in Section 2 with generalized polynomial chaos ex- 
pansions of random mechanical properties to deduce a 
spectral stochastic meshless local Petrov-Galerkin formu- 
lation is presented. In Section 4, the algorithm for im- 
plementing the first-order reliability method is reviewed. 
Section 5 inspects the accuracy of spectral stochastic 
meshless local Petrov-Galerkin-based results. Based on 
this inspection, Section 6 presents the conclusion. 

2. Meshless Local Petrov-Galerkin  
Formulation 

Suppose the linearly elastic and isotropic material. In 
addition, the infinitesimal strain assumption holds. De-
scribe any physical parameter as functions of x and  
within a problem domain  in which x = (x1, x2) is a 
vector of spatial coordinates and  is an event in the 
probability space. The succeeding study introduces the 
stress equations of equilibrium to derive a meshless local 
Petrov-Galerkin formulation. These stress equations have 
the following tensor form [10]: 

, 0ij j ib                 (1) 

where (),j = ()/xj, ij is the stress field corresponding 
to the displacement field ui (i = 1 to 2) and bi is the body 
force. The boundary conditions are 

0

0
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where T is the natural boundary, U is the essential 
boundary, Ti are the tractions, U0i and T0i are known 
functions, nj are the components of a unit vector n out-

ward normal to , and  = UT. 
If NT nodes locate within  and S represents a local 

quadrature domain for a node xI (I = 1 to NT), a local 
weak form of Equation (1) is 

 , d
S

ij j i Ib w


0             (3) 

where wI is the test function associated with xI. Subse-
quently, this study similarly manipulates a published 
radial basis function-based interpolation formula [5] to 
construct the meshfree shape function N. Since the re-
sulting N satisfies the Kronecker delta function property 
(IJ = 0 for I  J, IJ = 1 for I = J, and I, J denote the I-th 
and J-th nodes), Equation (3) contains neither Lagran-
gian multipliers nor penalty parameters for imposing the 
essential boundary condition. Further simplifying Equa-
tion (3) by the divergence theorem results in 
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where ST = ST, SU = SU, LS = S – ST – SU, 
and S is the boundary of S. Theoretically speaking, the 
shape of S can be arbitrary in computing Equation (4). 
However, choosing each S as a rectangular centered at 
xI (I = 1 to NT) can simplify the numerical integration of 
Equation (4). In addition, S for xI (I = 1 to NT) may be 
different from an interpolation domain Q for approxi-
mating an unknown or a random field in the neighbor-
hood of the same node. The difference between S and 
Q is further illustrated in Figure 1. Also different in 
terpolation domains or points may be chosen for ap-
proximating an unknown or representing a random field. 

Now substituting wI(x) = H(x) = c (x  S) and wI(x) 
= 0 (x  S) (I = 1 to NT) [7] into Equation (4) results in 

0d d d
S SU ST S

i i iL
T T T b

  
di                (5) 

where H denotes the Heaviside step function, and c is an 
arbitrary constant (c = 1 is used in the succeeding study). 
Equation (5) outlines a distinguishing characteristic of 
the MLPG5 scheme. If the last term of this equation van- 
 

 

Figure 1. Difference between S and Q. 
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ishes, this equation contains no domain integrals. There- 
fore, if Equation (5) is adopted to derive a spectral sto- 
chastic meshless local Petrov-Galerkin formulation, com- 
puting the resulting spectral stochastic meshless local 
Petrov-Galerkin formulation is more time-saving than 
computing the published spectral stochastic meshless 
local Petrov-Galerkin formulation [5]. 

Moreover, substituting 

 2i ij j ij kk ij jT n G      n





 into Equation (5) yields 
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where  is the Lamè constant, G is the shear modulus, u 
= [u1, u2]

T, , b = [b1, b2]
T, and  T
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Next, similarly manipulating a published radial basis 
function-based interpolation formula [5], u over Q for a 
node is approximated by 
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where  T
1 2, , , MN N NN 



, , M 
is the total number of nodes within an Q, the subscript i 
is the i-th node, 
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1 2, ,R RR , MR ,  

 T p 1 2, , , mp p p  is a complete monomial basis of 
order m, Ri, i = 1 to M represent the radial basis function, 
and 
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in which x1 to xM represent those M nodes within Q for 
xI, and ri to rM represents the Euclidean distance between 
xI and each node within Q for xI. Constructing N for 
further details can be seen in the published study [5]. 

Substituting Equation (8) into Equation (6) and writing 
the resulting expressions more succinctly in matrix alge- 
bra yield 

I I  IK u F                (10) 

where K and F are; respectively, the stiffness and force 
matrices, the subscript I represents the contribution to K 
or F at xI (I = 1 to NT),  T

1 2, , ,I M I
u u u u , KI and FI 

are derived by 
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where the subscripts i and j denote i-th and j-th node 
within Q for xI (I = 1 to NT); respectively and 
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Repeatedly deriving Equation (10) for all NT nodes and 
assembling all the resulting expressions based on a 
global numbering system yield 

    2 2 2 1 2 1T T T TN N N N   K u F       (13) 

Since this study accounts for the uncertainty in the 
spatial variability of mechanical properties in predicting 
the structural failure probability pf, the generalized poly-
nomial chaos expansion is introduced to represent ran-
dom mechanical properties. The next section presents the 
relevant derivation. 

3. Spectral Stochastic Meshless Local  
Petrov-Galerkin Formulation 

Observing the derivation of Equation (13) needs me- 
chanical properties G and . Thus, the generalized poly- 
nomial chaos expansions of G and  are [5] 

   
0 0

ˆ ˆand
PC PCN N

i i i i
i i

G G  
 

         (14) 

where  , , ,
1 2 ni i i    , i represent the multivariate 

orthogonal polynomial of , 
1 2 ni i i, , ,    denote 

multi-dimensional uncorrelated random variables having 
zero mean and unit variance (for facilitating the compu- 
tation of mean values and standard deviations of G and 
), NPC is equal to (n + P)!/n!P!–1, P is the highest order 
of , and n is the total number of uncorrelated random 
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variables. 
For facilitating the construction of Equation (14), 0, 

Ĝ0, and 0̂  are; respectively, set to 1, G, and  in 
which G, and  are mean values of G and ; respec- 
tively. Furthermore, computing Ĝi, and î  (i = 1 to NPC) 
needs the orthogonal relationship, 2,i j i ij     
(i, j = 0 to NPC) in which |   is the ensemble average. 
For example, Ĝi (i = 0 to NPC) are computed by 

2
ˆ i

i

i

G
G





              (15) 

where |   is computed as follows: If f and g are two 
functions, |   is computed by 
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2) Discrete case: 
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where    1 niW W   are the weighting functions. 
Since the succeeding study focuses on the continuous 
random fields, Table 1 [6] lists examples of orthogonal 
polynomials, statistical distributions and weighting func- 
tions to generate i (i = 0 to , 

1 ni i  , and 
 W  i iW

1 n
  ; respectively. 

Substituting Equation (14) into Equation (11) yields 

   

 
0

0

d

ˆ

PC

S SU

PC

N

I L LL
L

N

I L
LL






   

 

  



K nD B N nD B N

K

  d 


 (17) 

in which DL represents the computation of D using ĜL 
and ˆ

L  (L = 0 to M) and 
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Since the expressions of FI doesn’t contain G and , 
substituting the generalized polynomial chaos expansions 
 
Table 1. Examples of polynomials and corresponding weigh- 
ting functions and statistical distributions for generating the 
generalized polynomial chaos [6]. 

Distribution Polynomial W() Interval 

Gaussian 

gamma 

beta 
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Hermite Hn(x) 

Laguerre Ln(x) 

Jacobi Gn(p,q,x) 
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Note that [a, b] denotes a specific interval. 

of G and  into FI is unnecessary. Meanwhile, the gener- 
alized polynomial chaos expansion of u is 
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Substituting Equations (17) and (19) into Equation (11) 
results in 
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Requiring the residual resulting from a finite repre-
sentation of u (i.e. truncating ûJJ,  

1, 2,PC PCJ N N    ) to be orthogonal to the ap-
proximation space spanned by J yields 
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in which k = 0 to NPC. Solving Equation (21) can obtain 
ûJ (J = 0 to NPC). Collecting the resulting ûJ can construct 
the generalized polynomial chaos expansion of u. 

4. First Order Reliability Method 

This study introduces structural reliability assessment 
problems to evaluate the performance of Equation (21). 
Estimating this structural reliability follows the first- 
order reliability method [9]; therefore, this section sum- 
marizes the first-order reliability method. 

Given a traction T0 bearing on a structure subjected to 
the uncertainty in the spatial variability of G and , a 
vector X having components G and  at all NT nodes is 
created. In addition, a performance state function g(X) is 
defined to identify the failure (g(X) < 0) and safe states 
(g(X) > 0) of the structure. For example, a book [11] 
emphasizes T0 and its resistance R; thus, g(X) is 

  0g  X T R             (22) 

Moreover, a space of different X values is plotted and 
the location of g(X) is marked. Figure 2 [12] illustrates 
the special case of X = (X1, X2). In this figure, suppose 
the point A denotes the point 

1 2
 and the struc-

ture is safe at this point. Observing Figure 2 can know 
that the shortest distance between point A and g(X) sizes 
the range of X values within which a safe structural de- 
sign is expected. Extending this observation, the shortest 
distance between 

 ,X X  

 ,
1 2 2 NT

X X X  and g(X) sizes 
the range of X values within which a safe structural de-
sign is expected. Hasofer and Lind (1974) [9] defined the 
shortest distance between 

, , 

 
1 2 2 NT

X X X and g(X), 
in units of directional standard deviations as the reliabil-
ity index . They concluded that searching  is a con-
strained optimization problem in the form as [12] 
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Figure 2. Search of the reliability index  [12]. 
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xponential  ln 1
ii X iX Y      
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,
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0               otherwise
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X
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   

      

 

fX = probability density function. 

 
by choosing those probability distributions, which may 
be applied in the current study. 

 a spectral stochastic meshless 
cal Petrov-Galerkin FORTRAN code, a VA10AD sub- 
3) To incorporate with

lo
routine [14] is introduced to automate the above two 
steps. 

After finding the X value causing g(X) = 0 and com- 
puting the corresponding  value from Equation (25), the 
structural failure probability pf is estimated by 

   
 

   
0

d

1

f
g

p CDF PDF

 


 

    


X

X X X
     (26) 

where PDF is the probability density function. 

5. Results and Discussions 

aluate the 
rison, the 

ethod is applied to the 
age [15] is adopted to 

Two benchmark problems are introduced to ev
performance of Equation (21). As a compa
spectral stochastic finite element m
same problems. The FERUM pack
generate spectral stochastic finite element results. The 
first benchmark problem involves bending of a cantilever 
beam by a parabolically distributed traction at its free end. 
The second benchmark problem involves bending of a 
dam caused by the fluid pressure. Except for inspecting 
the accuracy of spectral stochastic meshless local Pet- 
rov-Galerkin-based predicted pf, two different radial ba- 
sis functions are; respectively, adopted to construct N in 
solving those two problems; thus, the effects of different 
radial basis functions on the accuracy of spectral stochas- 
tic meshless local Petrov-Galerkin results can be ob- 
served. 
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5.1. Bending of a Cantilever Beam by a  
Parabolically Distributed Traction 

Suppose the cantilever beam has the length L, width h, 
and unit thickness. Figure 3 illustrates the layout of this 

which Q 
ted trac- 

tion ubsequent- 

cantilever beam and boundary conditions in 
denotes the integration of parabolically distribu

along the x  direction and the point B is s2

ly used to define the performance state function g(X). If 
any uncertainty is neglected, the analytical solution of u2 
is [10] 

 
 

 
 

    21
1 1       4 3

42 2
L x x

G

2
2 1

2

2

3

26 3 2

5

Q G x L x
u

GG G I

h x

 




     
         

where I = h3/12 is the moment of inertia and Q is integra- 
tion of the parabolically distributed traction along
direction. Since only the analytical solution of u2 is 
adopted subsequently to implement the Monte Carlo 
simulation, analytical solutions of u  and   (i, j = 1 to 2) 



w

s CG and C: 

  (27) 

 the x2 

1 ij

are not listed here. Interested readers can find these ana- 
lytical solutions in the book [10]. 

Nevertheless, this study accounts for the uncertainty in 
random G and  in predicting pf. Assume G and  vary 
according to 

   1 and 1G GG            x x   (28)  

here G and  are two homogeneous Gaussian random 
fields with zero mean and having the following covari-
ance function

   1 2 1 1 2 2

1 22

1 2

expGS
d L d h
  

   
 

 (29a) 

cov , , ,GC G x x G x x     

   1 2 1 1 2 2

1 22

3 4

cov , , ,

exp

C x x x x

S
d L d h





   

 

 
 

   
 

 

in which cov represents the covariance, (x1, x2) and (x1 + 
 

 (29b) 

 

Figure 3. Bending of a cantilever beam by a parabolically 
distributed at its ends (not to scale, i = 1 to 2). 

1, x2 + 2) are two points on the cantilever beam, SG and 
S are; respectively, standard deviations of G and , and 
di (i = 1 to 4) are four correlation parameters. 

To predict pf of the cantilever beam with the uncer- 
tainty in random G and , essential data are listed below 

1) Define the problem domain  as 0  x1  L and 
–h/2  x2  h/2. 

2) Generate two cases of meshless discretizations and 
one case of finite element discretization. Figure 4

T

 illus- 
trates these meshless (top and middle sub-figures) and fi- 
nite element discretizations (bottom sub-figure) in which 
the meshless discretization of randomly located nodes 
(middle sub-figure) is obtained by randomly distributing 
the meshless discretization of equally spaced nodes (bot- 
tom sub-figure). 

3) Experiment to represent G, , and u by the Laugue- 
rre polynomial chaos. 

4) Set a complete monomial basis p  = [1, x1, x2] (m = 
3). Setting such a low-order of p is intentional. Observing 
the accuracy of corresponding numerical results is de-
sired. 

5) Construct N by the Gaussian radial basis function; 
that is,  2expi c iR r   (i = 1 to M) where c ( 0) is a 
shape parameter. 

6) Choose each Q as a circle centered at a point and 
each   as a rectS angular centered at a node. The length 
and width of each S and radius of each Q are set sub-
sequently.  

7) Define the performance state function g(X) by 

  2,Bg u u X             (30) 

where u is a threshold of displacement and the subscript 
B denotes the point B in Figure 3. 

8) Generate Monte rlo simulation results to serve as 
the accuracy stan

 Ca

 n 
(2  into 

 

dard in comparing spectral stochastic 
finite element-based and spectral stochastic meshless 
local Petrov-Galerkin-based predicted pf. Following a 
book [11] the first step of implementing a Monte Carlo 
simulation is sampling of G and  according to Equatio

8). Each sample of G and  are then substituted

 

Figure 4. Meshless and finite element discretizations for 
analyzing the first benchmark problem. 
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Equation (27) to compute a sample of u2,B. If Nsample is the 
total number of samples of u2,B and N(g(X)  0) is the 
total number of samples of u2,B causing the structural 
failure, pf is computed by 

  
sample

0
f

N g
p

N




X
         (31) 

Moreover, the resulting pf can be inverted to compute 
the reliability index . If G and  are sufficiently sam- 
pled, the Monte Carlo simulation-based pf and  ap- 
proach their exact values. 

C G

e radius of each Q, and Nq is 
the total number of quadrature points in each S or finite 
element. 

Moreover, in order to state quantitatively the accuracy 
of

9) Unless otherwise stated, the following parameters 
are adopted: L = 48 m, h = 12 m, NP  = 10,   = 11.5 
MPa,  = 17.3 MPa, c = 0.03, Hs = 9.6 m, BS = 6 m, rQ 
= 6 m, Nsample = 106, Nq = 16, di = 1 (i = 1 to 4), Q = 103 
kN where HS and BS are; respectively, the height and 
width of each S, rQ is th

 spectral stochastic meshless local Petrov-Galerkin or 
spectral stochastic finite element results, two error esti- 
mators  and  are defined below 


 

  
 

 
   

 

%

%

f fMCS SSMLPG

f MCS

f fMCS SSFEM

f MCS

p

p p

p


 




      (32) 

in which the subscripts MCS, SSMLPG, and SSFEM de-
note the Monte Carlo simulation, spectral stochastic 
meshless 

p p

fin
local Petrov-Galerkin and spectral stochastic 

ite element methods; respectively. 
Figure 5 compares variation of the predicted PDF of 

u2 at the point B versus different prediction methods 
 

 

Figure 5. Variation of the predicted probability density fun- 
ction of u2 at the point B versus different SG/G and S/ 
values (First benchmark problem, meshless discretization: 
the top sub-figure of Figure 4, d1 = d2 = d3 = d4 = 1). 

and SG/G = S/ = 0.12, 0.24, 0.32. Figure 6 (in the 
next page) presents variation of the predicted pf at the 
point B versus different u values, prediction methods, 
and SG/G = S/ = 0.12, 0.24, 0.32. Furthermore, Table 
3 compares the time spent to produce the spectral sto-
chastic meshless local Petrov-Galerkin-based and Monte 
Carlo simulation-based predicted pf with SG/G = S/ = 
0.12. 

Benefiting from adopting the MLPG5 scheme to de-
rive a spectral stochastic meshless local Petrov-Galerkin 
formulation, Table 3 indicates that generating spectral 
stochastic meshless local Petrov-Galerkin results is con- 
siderably time-saving, even if the Monte Carlo simula- 
tion is implemented using analytical solutions. Mean- 

u , 

  value peaks about at 13.97 %. 

while, Figure 5 illustrates the necessity of predicting u 
with the uncertainty in the spatial variability of G and . 
When the SG/G and S/ values increase, the standard 
deviation of u2 increase; thus, obtaining the predicted 2

which is different from its mean value, becomes more 
and more possible. In addition, Figure 6 presents that the 
spectral stochastic meshless local Petrov-Galerkin me- 
thod predicts more accurate pf than the spectral stochastic 
finite element method does. For example, if computing  
and  values with SG/G = S/ = 0.12, the resulting  
value approximately peaks at 0.36 %; whereas, the re- 
sulting

Nevertheless, the performance of both Equation (21) 
 

 

Figure 6. Variation of the predicted structural failure pro- 
bability pf at the point B versus different S /  and S /  
va
the top sub-figure of Figure 4, d1 = d2 = d3 = d4 = 1). 

 
Table 3. Comparison of the time spent to generate Monte 
Carlo simulation and spectral stochastic meshless local 
Petrov-Galerkin results*. 

Monte Carlo  Spectral stochastic meshless local  

G G  
lues (first benchmark problem, meshless discretization: 

Simulation Petrov-Galerkin method 

281 seconds 1.5 seconds 

*On a MacBook Pro with an Intel Core i5 Processor, GFortran compiler. 
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and spectral stochastic finite element method becomes 
gradually unsatisfactory when SG/G and S/ increases. 
If SG/G and S/ values measure the degree of uncer- 
tainty, Figure 6 outlines that the degree of uncertainty 
can apparently reduce the accuracy of predicted u or pf. 
Furthermore, observing Equations (29a) to (29b) can find 
that decreasing di (i = 1 to 4) values and increasing SG/G 
and S/ values have similar effects on the accuracy of 
predicted u or pf. 

Next, replacing Lauguerre polynomial chaos with 
Hermite polynomial chaos to represent G, , and u, Fig-
ure 7 compares spectral stochastic meshless local Pet-
rov-Galerkin-based predicted pf values versus different
types of the polynomial chaos, SG/G = S/ = 0.12, and

 values 

ite polynomial chaos, the cor- 
responding  value peaks at about 2.758%. 

N  meshl pa- 
ced n ub-figur eshless 
discretization of randomly loca (the middle 
sub-fi ), Figure 7 riation 

 
 

different u values. 
Figure 7 implies the importance of preparing some 

pilot tests before choosing a specific type of polynomial 
chaos to represent a random field. Calculating 
using this figure finds that the performance of Lauguerre 
polynomial chaos is more satisfactory. If G and  are re- 
presented using the Herm

ext, replacing ess discretization of equally s
odes (the top s e of Figure 4) with m

ted nodes 
 re-compares vagure of Figure 4

of Monte Carlo simulation-based and spectral stochastic 
meshless local Petrov-Galerkin-based predicted pf values 
versus different u values, and SG/G = S/ = 0.12. 

Computing the  value using data in Figure 8 finds 
that the resulting  value peaks at about 2.367%. Con- 
sequently, Equation (21) still predicts pf sufficiently ac- 
curately, even if a meshless distribution of discrete nodes 
is adopted. Moreover, in an attempt of more understand- 
ing the effects of different nodal spacings on the accu-  

 

 

Figure 7. Variation of the predicted structural failure pro- 
bability pf at the point B versus different types of the poly- 
nomial chaos (first benchmark problem, meshless discreti-
zation: the upper sub-figure of Figure 4, d1 = d2 = d3 = d4 = 
1). 

racy of predicted pf, the problem domain  is re-discre- 
tized using equally spaced nodes and NT = 27 (3  9), 52 
(4

igure 9 reports that the effects of different h values 
on the accuracy of predicted pf are not noticeable. For 
example, if the NT value increases from 52 (3  9) to 85 
(5  17), the corresponding  value only changes slightly; 
consequently, adopting more nodes for improving the 
accuracy of Monte Carlo simulation-based or spectral 
stochastic meshless local Petrov-Galerkin-based predict- 
ed pf is laborious. 

5.2. Bending of a Dam Caused by Fluid Pressure 

Suppose the dam has the length L, width h, and unit thick- 
 

  13), 85 (5  17). Figure 9 depicts the corresponding  
variation of Monte Carlo simulation-based and spectral 
stochastic meshless local Petrov-Galerkin-based pre- 
dicted pf versus different h values, u = 0.95 cm, and 
SG/G = S/ = 0.12 where h denotes the spacing of any 
two connecting nodes. 

F

 

Figure 8. Variation of the predicted structural failure pro- 
bability p  at the point B f versus randomly nodal distribution 

rst benchmark problem, meshless discretization: the mid- 
dle sub-figure of Figure 4, d1 = d2 = d3 = d4 = 1). 
 

(fi

 

Figure 9. Variation of the predicted structural failure pro- 
bability pf at the point B versus different nodal spacing h (m) 
(First benchmark problem, meshless discretization: the 
upper sub-figure of Figure 4, d1 = d2 = d3 = d4 = 1). 
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ness. This dam is fixed at one end and subjected to fluid 
pressure. Figure 10 illustrates the layout of problem do- 
main  and boundary conditions in which C and D are 
subsequently used to define the performance state func- 
tion and f is the unit weight of fluid. 

If any uncertainty is neglected, the analytical solutions 
of u1 and u2 are [10] 

 
   

   
 

2
2 2 2 2

1 1 22

3 3 2 2 2
1 1 2 2
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 
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 
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 


           

           

  

(33b) 

However, suppose G and  vary according to two uni- 
form distributions: 

       (34) 

where –1 < i (i = 1 to 4) < 1 represent four random 
variables. 

 
 

2
1 2

2
3 4

1

1

G GG S

S 

  

   

    
    

 

To predict pf of the dam with the uncertainty in ran- 
dom G and , the essential data are provided below: 

1) Define the problem domain  as –h/2  x2  h/2 and 
0  x1  L. 

2) Generate a meshless discretization and a finite ele- 
ment discretization. Figure 11 presents these meshless 

 

 

 

Fi re 11. Meshless and finite element discretizations for 
analyzing the second benchmark problem. 
 
and finite element discretizations. 

3) Represent G, , and ui (i = 1 to 2) by the Legendre 
polynomial chaos. 

4) Still set a complete monomial basis pT = [1, x1, x2] 
but adopt the multiquadric radial basis function to con-  

struct ; that is, 

gu

 22
q

i i c cR r d     (i = 1 to M) where  

c (0) and q are two shape parameters and dc is the 
characteristic length related to the nodal spacing in an Q. 

5) Define two performance state functions g1(X) and 
g2(X) as follows:  

 1 2, C2,g u u X          (35a) 

 2 1, 1,Dg u u X  

where ui, (i = 1 to 2) ar

        (35b) 

e two thresholds of displacements 
and the subscripts C and D denote the points C and D in 
Figure 10. 

6) Similarly manipulate point (8) in Section 5.1 but re- 
place Equation (27) with Equations (33a) to (33b) to 
generate the Monte Carlo simulation-based predicted pf. 
The resulting Monte Carlo simulation-based predicted pf 
serves as the accuracy standard in comparing the spectral 
stochastic meshless local Petrov-Galerkin and spectral 
stochastic finite element results. 

7) Unless otherwise stated, the following data are used: 
L = 30 m, h = 10 m, f = 9.81 kN/m3, NPC = 10, G = 11.5 
MPa,  = 17.3 MPa, c = 1.0, dc = 3.0, q = 1.03, HS = 5 
m, BS = 5 m, rQ = 5 m, Nsample = 106, and Nq = 16. 

Figure 12 (in the next page) compares variation of the 
pf at the point C with respect to SG/G = S/ = 12, 

G G  = 0.12, 0.24, 
nd u1, values. 

formance of  

 0.
0.24, 0.32, different prediction methods and u2, values. 
Figure 13 (in the next page) compares variation of the pf 
t the point D with respect to S /  = S/a

0.32, different prediction methods a
Observing Figure 12 confirms that the per

Figure 10. Bending of a dam caused by fluid pressure [10] 
(not to scale, i = 1 to 2). 
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Figure 12. Variation of the predicted structural failure 
probability pf at the point C versus different SG/G and 
S/ values (Sec
 

ond benchmark problem). 

 

Figure 13. Variation of the predicted structural failure pro- 
bability pf at the point D versus different SG/G and S/ 
values (Second benchmark problem). 

 
spectral stochastic meshless local Petrov-Galerkin me- 
thod is more satisfactory than the performance of spectral 
stochastic finite element method. Even if different statis- 
tical distributions are encountered, Figures 6, 12, and 13 
present the spectral stochastic meshless local Petrov- 
Galerkin results are more accurate than the spectral sto- 
chastic finite element results. In addition, careful inspec- 
tion of spectral stochastic finite element results in Fig-
ures 12 to 13 finds that the errors between Monte Carlo 
simulation and spectral stochastic finite element results 
majorly source from inaccurate spectral stochastic finite 
element-based predicted mean values of u at the points C 
and D. Resolving this problem may need high-order fi

Prior to the previous [5] and current studies, available 
stochastic numerical methods include the Monte Carlo 

simulation, spectral stochastic finite element, and sto- 
chastic element-free Galerkin methods. The Monte Carlo 
simulation is simplest. As demonstrated in Sections 5.1 
and 5.2, implementing the Monte Carlo simulation only 
needs deterministic solutions. Even so, as outlined by 
Table 3, completing the Monte Carlo simulation is still 
more time-consuming than generating the spectral sto- 
chastic meshless local Petrov-Galerkin results. Producing 
such results attributes to that the total number of samples 
for implementing a Monte Carlo simulation is usually 
very large. 

Meanwhile, applying the spectral stochastic finite 
element method is easy, since numerous resources (com

 stochastic meshless 

- 
nite elements. But, to the author’s knowledge, similar 
experiences seem to be seldom seen. 

. Conclusions 6

- 
- puter software and experiences) are available. Neverthe

less, based on these resources, this study finds that the 
spectral stochastic finite element results of some prob- 
lems are less accurate than spectral
local Petrov-Galerkin results of the same problems. Sec- 
tions 5.1 and 5.2 provide two examples. 

Together with the previous study [5], the succeeding 
study provides a new alternative for solving stochastic 
boundary-value problems. This new stochastic numerical 
method is truly-meshless. As demonstrated in Sections 
5.1 and 5.2, no finite elements or background cells for 
the numerical integration are created in applying the spec- 
tral stochastic meshless local Petrov-Galerkin method. 
However, the spectral stochastic meshless local Petrov- 
Galerkin method successfully spend less time but still 
predict the accurate structural failure probability pf in 
Sections 5.1 and 5.2. 

In conclusion, the spectral stochastic meshless local 
Petrov-Galerkin method is a time-saving tool for solving 
stochastic boundary-value problems. 
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