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ABSTRACT

This study presents a new tool for solving stochastic boundary-value problems. This tool is created by modify the pre-
vious spectral stochastic meshless local Petrov-Galerkin method using the MLPGS scheme. This modified spectral sto-
chastic meshless local Petrov-Galerkin method is selectively applied to predict the structural failure probability with the
uncertainty in the spatial variability of mechanical properties. Except for the MLPGS scheme, deriving the proposed
spectral stochastic meshless local Petrov-Galerkin formulation adopts generalized polynomial chaos expansions of ran-
dom mechanical properties. Predicting the structural failure probability is based on the first-order reliability method.
Further comparing the spectral stochastic finite element-based and meshless local Petrov-Galerkin-based predicted
structural failure probabilities indicates that the proposed spectral stochastic meshless local Petrov-Galerkin method
predicts the more accurate structural failure probability than the spectral stochastic finite element method does. In addi-
tion, generating spectral stochastic meshless local Petrov-Galerkin results are considerably time-saving than generating
Monte-Carlo simulation results does. In conclusion, the spectral stochastic meshless local Petrov-Galerkin method
serves as a time-saving tool for solving stochastic boundary-value problems sufficiently accurately.

Keywords: Spectral Stochastic Meshless Local Petrov-Galerkin Method; Generalized Polynomial Chaos Expansion;

First-Order Reliability Method; Structural Failure Probability; Reliability Index

1. Introduction

Available stochastic numerical methods for solving sto-
chastic boundary-value problems include the Monte Ca-
rlo simulation, spectral stochastic finite element [1] and
stochastic element-free Galerkin methods [2]. The Monte
Carlo simulation may be simplest, since implementing it
requires sampling the existing random fields and substi-
tuting the resulting samples into deterministic solutions.
However, a perquisite of obtaining accurate Monte Carlo
simulation results is sufficiently sampling the existing
random fields; therefore, completing a Monte Carlo simu-
lation is usually time-consuming. This perquisite brings
about a motive of developing a time-saving tool for sol-
ving stochastic boundary-value problems.

Meanwhile, the spectral stochastic finite element or sto-
chastic element-free Galerkin methods are developed by
extending the finite element or element-free Galerkin me-
thods. For example, deducing a spectral stochastic finite
element couples a finite element formulation with such
as polynomial chaos and Karhunen-Loéve expansions of
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stochastic processes. These stochastic processes are as-
sumed to represent the existing uncertainty.

A number of spectral stochastic finite element formu-
lations are available for some branches in engineering
science and mechanics. References [3,4] are two recent
examples. Nevertheless, applying these two stochastic
numerical methods needs a finite element discretization
or background cells for the numerical integration. To pro-
vide more freedom in solving stochastic boundary-value
problems, a truly-meshless stochastic numerical method
may be a promising alternative. In a published study [5],
a spectral stochastic meshless local Petrov-Galerkin me-
thod has been developed by coupling a meshless local
Petrov-Galerkin formulation and radial basis function-
based meshfree shape functions with polynomial chaos
expansions [6] of stochastic processes. Since the mesh-
less local Petrov-Galerkin method is truly meshless [7],
the spectral stochastic meshless local Petrov-Galerkin
method is also truly meshless. Nonetheless, the spectral
stochastic meshless local Petrov-Galerkin results of two
elastostatic problems are more accurate than spectral
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stochastic finite element results of the same problems. In
addition, generating the spectral stochastic meshless local
Petrov-Galerkin results is considerably time-saving.

Based on the published conclusion [8] that the MLPGS
scheme may substitute for the finite element method to
solve boundary-value problems, the current study further
derives a two-dimensional spectral stochastic meshless
local Petrov-Galerkin formulation in elastostatics using
the MLPGS5 scheme. The resulting spectral stochastic
meshless local Petrov-Galerkin formulation is selectively
applied to predict the structural failure probability with
the uncertainty in the spatial variability of mechanical
properties. In addition to the MLPGS5 scheme, deriving
the proposed spectral stochastic meshless local Petrov-
Galerkin formulation adopts the generalized polynomial
chaos expansions [6] of random mechanical properties
and radial basis function-based meshless shape functions.
Meanwhile, predicting the structural failure probability is
based on the first-order reliability method [9].

The remainder of this study is organized in 5 sections.
In Section 2, deriving a meshless local Petrov-Galerkin
formulation in elastostatics using the MLPGS scheme is
presented. In Section 3, coupling the resulting expres-
sions in Section 2 with generalized polynomial chaos ex-
pansions of random mechanical properties to deduce a
spectral stochastic meshless local Petrov-Galerkin formu-
lation is presented. In Section 4, the algorithm for im-
plementing the first-order reliability method is reviewed.
Section 5 inspects the accuracy of spectral stochastic
meshless local Petrov-Galerkin-based results. Based on
this inspection, Section 6 presents the conclusion.

2. Meshless Local Petrov-Galerkin
Formulation

Suppose the linearly elastic and isotropic material. In
addition, the infinitesimal strain assumption holds. De-
scribe any physical parameter as functions of X and &
within a problem domain Q in which X = (x|, x;) is a
vector of spatial coordinates and @ is an event in the
probability space. The succeeding study introduces the
stress equations of equilibrium to derive a meshless local
Petrov-Galerkin formulation. These stress equations have
the following tensor form [10]:

o, +b =0 (1)

.J
where (-); = 0(:)/0x;, oy is the stress field corresponding
to the displacement field u; (i = 1 to 2) and b; is the body
force. The boundary conditions are
I=oyn; =T, onl';

2

u,=U, onlY,

where I'7 is the natural boundary, I'y is the essential
boundary, 7; are the tractions, U, and Ty are known
functions, #; are the components of a unit vector n out-
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ward normal to ', and I = T' ;UL

If N7 nodes locate within Q and Qg represents a local
quadrature domain for a node X; (/ = 1 to Ny), a local
weak form of Equation (1) is

jﬂs(o—.. b, )w,dQ=0 3)

]

where wy; is the test function associated with X;. Subse-
quently, this study similarly manipulates a published
radial basis function-based interpolation formula [5] to
construct the meshfree shape function N. Since the re-
sulting N satisfies the Kronecker delta function property
(8y=0forI#J, &,=1 for I=J, and I, J denote the I-th
and J-th nodes), Equation (3) contains neither Lagran-
gian multipliers nor penalty parameters for imposing the
essential boundary condition. Further simplifying Equa-
tion (3) by the divergence theorem results in

-[Qs o,w; ,dQ - 95L5 w,T,dI" - cﬁrw w, T,dI"

)
= q;rv w, T, dT" + jﬂs bw,dQ

where I'sy = Qf ', Tsy = Qf Ty, Ls = T's — Tsr — Ty
and s is the boundary of Q. Theoretically speaking, the
shape of ()5 can be arbitrary in computing Equation (4).
However, choosing each Qg as a rectangular centered at
X; (I = 1 to Ny) can simplify the numerical integration of
Equation (4). In addition, Qg for X; (/ = 1 to Ny) may be
different from an interpolation domain €, for approxi-
mating an unknown or a random field in the neighbor-
hood of the same node. The difference between Qg and
Qo is further illustrated in Figure 1. Also different in
terpolation domains or points may be chosen for ap-
proximating an unknown or representing a random field.
Now substituting wiX) = H(X) = ¢ (X € Q) and wq(X)
=0 (X ¢ Qg) (/=1 to Ny) [7] into Equation (4) results in

—gSLS Tdr - gsrw Tdr = ‘ﬁrsr T,.dl + jQS bdQ  (5)

where H denotes the Heaviside step function, and c is an
arbitrary constant (¢ = 1 is used in the succeeding study).
Equation (5) outlines a distinguishing characteristic of
the MLPGS5 scheme. If the last term of this equation van-

Quadrature point
Interpolation
point

e

'\:‘ Qg for representing a random field
Qg for interpolating an unkown

Figure 1. Difference between Qg and Qq,
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ishes, this equation contains no domain integrals. There-
fore, if Equation (5) is adopted to derive a spectral sto-
chastic meshless local Petrov-Galerkin formulation, com-
puting the resulting spectral stochastic meshless local
Petrov-Galerkin formulation is more time-saving than
computing the published spectral stochastic meshless
local Petrov-Galerkin formulation [5].
Moreover, substituting

T, =o,n, =(A8,6, +2Ge, )n, into Equation (5) yields

nDBudI’
(©)
=¢Tdr+[ bdQ
st Qg

—q}LS nDBudr—qSr

where A is the Lame conTstant, G is the shear modulus, u
= [uh uZ]T: To :[]})1’7;)2] s b: [bla bZ]Ta and

A+2G A 0

0
n:["‘ ”2}, D=| 1 442G 0
0 m m 0 0 G
o
ox, 0 ™
0
B=| 0 -2
ox,
0 0
| Ox, Ox, |

Next, similarly manipulating a published radial basis
function-based interpolation formula [5], u over Q for a
node is approximated by

u=N"U=[R" pT]{L:)}
o 51

where N'=[N,N,,---,N,,], U :[ul,u2,---,uM]T, M
is the total number of nodes within an €, the subscript i
is the i-th node, R' =[R,R,,"-,R,/],

p" =[pipys- P, is @ complete monomial basis of

order m, R;, i = 1 to M represent the radial basis function,
and

®

R(r) Ry(n) Ry (1)

R Rl(:rz) Rzgrz) - RM:(rz) -
R(ry) Ri(r) =+ Ry(ny)
p(x)  p(x) Pa(X)

po Ale) pUe) b))
(X)) Pr(X) P (%)
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in which X, to X,, represent those M nodes within Q,, for
X;, and r; to ), represents the Euclidean distance between
X; and each node within Qy for X;. Constructing N for
further details can be seen in the published study [5].

Substituting Equation (8) into Equation (6) and writing
the resulting expressions more succinctly in matrix alge-
bra yield

K,uu,=F, (10)

where K and F are; respectively, the stiffness and force
matrices, the subscript / represents the contribution to K
or Fatx, (I=1to Np), U, =[u,uy,u,] , K and F,
are derived by

K,:—CJSLSnDB(N)dF—ch nDB(N )dl

Ty
(11)
F, = q;rsr Tl + | o, DAQ2

where the subscripts i and j denote i-th and j-th node
within Qg for X; (/ = 1 to Ny); respectively and

oN
Ox, 0
B(N)=| 0 % (12)
ON  oN
| Ox, Ox, |

Repeatedly deriving Equation (10) for all Ny nodes and
assembling all the resulting expressions based on a
global numbering system yield

K(ZNTXZNT)U(ZNTXI) = F(ZNTxl) (13)

Since this study accounts for the uncertainty in the
spatial variability of mechanical properties in predicting
the structural failure probability p, the generalized poly-
nomial chaos expansion is introduced to represent ran-
dom mechanical properties. The next section presents the
relevant derivation.

3. Spectral Stochastic Meshless L ocal
Petrov-Galerkin Formulation

Observing the derivation of Equation (13) needs me-
chanical properties G and A. Thus, the generalized poly-
nomial chaos expansions of G and A are [5]

Npc Npc
G=) GY¥,(£) and A=) AV, (&) (14)
i=0 i=0
where &= ((,“‘il N ,-~~,§l."), Y; represent the multivariate
orthogonal ~polynomial of & ¢ .¢& ,e,6, denote
multi-dimensional uncorrelated random variables having
zero mean and unit variance (for facilitating the compu-
tation of mean values and standard deviations of G and
A), Npc is equal to (n + P)!/n!P!-1, P is the highest order
of ¥, and » is the total number of uncorrelated random

WIM



104 G.Y. SHEU

variables.

For facilitating the construction of Equation (14), ¥,
Gy, and /io are; respectively, set to 1, 4, and g; in
which /i, and y; are mean values of G and 4; respec-
tively. Furthermore, computing G;, and A, (i =1 to Np¢)
needs the orthogonal relationship, <‘Pl.,‘l’j> =<‘I’f>5y.
(i,j=0to NPC) in which ( | ) is the ensemble average.
For example, G; (i = 0 to Npc) are computed by

. (G¥)
G = (15)
()
where < | ) is computed as follows: If f and g are two

functions, ( | ) is computed by
1) Continuous case:

(£(£).2(£))

[ @aew (e ) (g )ag ag,
2) Discrete case:
(1(8)-2(8)
YT )-w(z) 1O

Siy Sip Siy

where W(efil )---W(én) are the weighting functions.
Since the succeeding study focuses on the continuous
random fields, Table 1 [6] lists examples of orthogonal
polynomials, statistical distributions and weighting func-
tions to generate ¥; (i = 0 to «), & & , and
W(ﬁ,. ) W(é‘l ) ; respectively.

Substituting Equation (14) into Equation (11) yields

K, =IVZ’)T[—95L§ nD,B(N)dr-§, nD,B(N )dl"}
L=0 ! (17)

Np¢

= 2(K), ¥
in which D, represents the computation of D using G,
and 4, (L=0to M) and

(K/),=~$, nD,B(N)dr—¢_ nD,B(N)dr (18)

Since the expressions of F; doesn’t contain G and A,
substituting the generalized polynomial chaos expansions

Table 1. Examples of polynomials and corresponding weigh-
ting functions and statistical distributionsfor generating the
generalized polynomial chaos[6].

Distribution Polynomial w(&) Interval

Gaussian Hermite H,(x) exp(-&) (—o0, )
gamma Laguerre L,(x) exp(—%) [0, 0]
beta Jacobi G,(p,q.x) (1-gpeg! [a, b]
uniform Legendre P,(x) 1 [a, b]

Note that [a, b] denotes a specific interval.
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of G and A into F, is unnecessary. Meanwhile, the gener-
alized polynomial chaos expansion of U is

Npc

u=>a,¥, (19)
J=0

Substituting Equations (17) and (19) into Equation (11)
results in

Npc Npc R Npc
K. 0¥, ¥, = Z FY, (20)
L=0 J=0 L=0

Requiring the residual resulting from a finite repre-
sentation of U (i.e. truncating 0,V
J=Np.+1L,Np. +2,---) to be orthogonal to the ap-
proximation space spanned by ‘¥, yields

Npe Nee Npc
DD KGO (W, YY) =D F (YY) @D
L=0 J=0 L=0

in which k = 0 to Npc. Solving Equation (21) can obtain
0, (J= 0 to Npc). Collecting the resulting 0, can construct
the generalized polynomial chaos expansion of u.

4. First Order Reliability Method

This study introduces structural reliability assessment
problems to evaluate the performance of Equation (21).
Estimating this structural reliability follows the first-
order reliability method [9]; therefore, this section sum-
marizes the first-order reliability method.

Given a traction T, bearing on a structure subjected to
the uncertainty in the spatial variability of G and A, a
vector X having components G and A at all Ny nodes is
created. In addition, a performance state function g(X) is
defined to identify the failure (g(X) < 0) and safe states
(g(X) > 0) of the structure. For example, a book [11]
emphasizes T and its resistance R; thus, g(X) is

g(X)=T,-R (22)

Moreover, a space of different X values is plotted and
the location of g(X) is marked. Figure 2 [12] illustrates
the special case of X = (X}, X5). In this figure, suppose
the point A denotes the point ( My, s ‘qu) and the struc-
ture is safe at this point. Observing Figure 2 can know
that the shortest distance between point 4 and g(X) sizes
the range of X values within which a safe structural de-
sign is expected. Extending this observation, the shortest
distance between |y , ey, oy, ) and g(X) sizes
the range of X values within which a safe structural de-
sign is expected. Hasofer and Lind (1974) [9] defined the
shortest distance between § By s Hoy s My, Zand 2(x),
in units of directional standard deviations as the reliabil-
ity index f. They concluded that searching £ is a con-
strained optimization problem in the form as [12]

o _ T ~-1 _
ﬁ—l;l;N(X u) CH(X-n)
subjected to g(X)=0

(23)
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Performance state surface

Failure region
gX)<0

a ;
:>< My, weensens .g.

BSy, i
1 E SX] H

Safe region
gX)>0

12¢

Xi

g = Performance state function, = mean value,
§ = standard deviation, A = points of mean values
X = vector of random material properties

Figure 2. Search of thereliability index £[12].

where F denotes the failure region on the space of X,
u= (,u)(1 SRy ) , and C is the covariance matrix.

A number of algorithms have been developed to solve
Equation (23) or similar equations. This study chooses a
popular algorithm suggested by Lowe and Tang [12].
Briefly, this algorithm is based on the Rackwitz-Fiessler
equivalent normal transformation [13] but the concepts
of coordinate transformation and frame-of-reference ro-
tation are not applied. Correlation is accounted for by
setting up the quadratic form directly. Similarly manipu-
lating the previous study [12], three steps are performed
to solve Equation (23):

1) Modify Equation (23) with standard normal random
variables. Transform the vector X into a new vector of Y
having standard normal random variables Y; (i = 1 to 2Ny)
in the form as

‘ki :uX- -1
Y=— """ =D CDF(X. 24
i SX I: ( 1)] ( )

i

in which @(X):#f;exp(—g?/z)dg is the cu-
T

mulative probability function of a standard normal dis-
tribution, CDF is the cumulative probability function
computed at X;. Using the new vector Y, Equation (23) is
modified to

B= 1)1<1i1rr1\/YTp’lY subjected to g(X)=0  (25)

in which pis the correlation matrix evaluated at Y.

2) Start from ¥; =0 (i =1 to 2Ny) (or X, =, ) to
search the X value causing g(X) = 0. In searching such an
X value, increase Y values and calculate the correspond-
ing X value by Table 2 [12]. Note that this table is edited
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Table 2. Obtaining X; from Y; based on CDF(X;) = ®(Y;) [12].

Distribution X,=CDF(F(Y))
Normal X, =u, +YS,
:
Lognormal A =empldrel). &= 1{1-{5‘:] }
A=lnp, —05¢
S X =’7_ln[—1n((1)(Y,))]’ - n
value “ V65,

n=p, —0.5772/a

Exponential X, =-u, ln[l - q)()’,)]

X,=a+(b-a)®(Y),

[fX(X) _ {l/(b—a) X e[a,b] ]

0 otherwise

Uniform

fx = probability density function.

by choosing those probability distributions, which may
be applied in the current study.

3) To incorporate with a spectral stochastic meshless
local Petrov-Galerkin FORTRAN code, a VA10AD sub-
routine [14] is introduced to automate the above two
steps.

After finding the X value causing g(X) = 0 and com-
puting the corresponding S value from Equation (25), the
structural failure probability p,is estimated by

p,=CDF(X)= j PDF (X )dX

g(X )SO
~0(-p)=1-0(4)
where PDF'is the probability density function.

(26)

5. Results and Discussions

Two benchmark problems are introduced to evaluate the
performance of Equation (21). As a comparison, the
spectral stochastic finite element method is applied to the
same problems. The FERUM package [15] is adopted to
generate spectral stochastic finite element results. The
first benchmark problem involves bending of a cantilever
beam by a parabolically distributed traction at its free end.
The second benchmark problem involves bending of a
dam caused by the fluid pressure. Except for inspecting
the accuracy of spectral stochastic meshless local Pet-
rov-Galerkin-based predicted p;, two different radial ba-
sis functions are; respectively, adopted to construct N in
solving those two problems; thus, the effects of different
radial basis functions on the accuracy of spectral stochas-
tic meshless local Petrov-Galerkin results can be ob-
served.
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5.1. Bending of a Cantilever Beam by a
Parabolically Distributed Traction

Suppose the cantilever beam has the length L, width 7,
and unit thickness. Figure 3 illustrates the layout of this
cantilever beam and boundary conditions in which O
denotes the integration of parabolically distributed trac-
tion along the x, direction and the point B is subsequent-
ly used to define the performance state function g(X). If
any uncertainty is neglected, the analytical solution of u,
is [10]

L ___0(2+G) {3/1x§(L—xl)
* 6G(34+2G)I| 2(A+G)

Y L
+[4+—2(/1+2G)} 7] (3L xl)xl}

where I = /*/12 is the moment of inertia and Q is integra-
tion of the parabolically distributed traction along the x,
direction. Since only the analytical solution of u, is
adopted subsequently to implement the Monte Carlo
simulation, analytical solutions of , and o (i, j = 1 to 2)
are not listed here. Interested readers can find these ana-
lytical solutions in the book [10].

Nevertheless, this study accounts for the uncertainty in
random G and A in predicting p. Assume G and A vary
according to

G=ug[l+as(x)] and A=u,[1+a,(X)] (28)

where o and ¢, are two homogeneous Gaussian random
fields with zero mean and having the following covari-
ance functions C; and Cj:

C, :COV[G(XI,XZ),G(X1 +C%+8, )]
; 1 , (29a)
=5; exp(—%—%}

Cy=cov[ A(x,%,), A (x5 +& x5, + ) |

ool L2l
Sp(ﬁﬂ

27)

(29b)

in which cov represents the covariance, (xj, x,) and (x; +

71> B
w2 1
A >
h/2 X1
\
< L a I‘
« -1
Tixx=-h2)=0 Ty(x;=L)=-0 ufx;=0)=0
Ti(x,=h/2)=0  (parabolically

Ty(x;=L)=0 distributed)

Figure 3. Bending of a cantilever beam by a parabalically
distributed at itsends (not to scale, i = 1to0 2).
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$1, X3 + &) are two points on the cantilever beam, Sg and
S, are; respectively, standard deviations of G and A, and
d; (i =1 to 4) are four correlation parameters.

To predict p, of the cantilever beam with the uncer-
tainty in random G and A, essential data are listed below

1) Define the problem domain Q as 0 < x; < L and
—h/2 < x, < h/2.

2) Generate two cases of meshless discretizations and
one case of finite element discretization. Figure 4 illus-
trates these meshless (top and middle sub-figures) and fi-
nite element discretizations (bottom sub-figure) in which
the meshless discretization of randomly located nodes
(middle sub-figure) is obtained by randomly distributing
the meshless discretization of equally spaced nodes (bot-
tom sub-figure).

3) Experiment to represent G, A, and U by the Laugue-
rre polynomial chaos.

4) Set a complete monomial basis p’ = [1, x, x,] (m =
3). Setting such a low-order of p is intentional. Observing
the accuracy of corresponding numerical results is de-
sired.

5) Construct N by the Gaussian radial basis function;
thatis, R, = exp(—acrf ) (i=1to M) where . (> 0) is a
shape parameter.

6) Choose each Q as a circle centered at a point and
each ()5 as a rectangular centered at a node. The length
and width of each Qg and radius of each €, are set sub-
sequently.

7) Define the performance state function g(X) by

g(X)=us—u,, (30)

where us is a threshold of displacement and the subscript
B denotes the point B in Figure 3.

8) Generate Monte Carlo simulation results to serve as
the accuracy standard in comparing spectral stochastic
finite element-based and spectral stochastic meshless
local Petrov-Galerkin-based predicted p. Following a
book [11] the first step of implementing a Monte Carlo
simulation is sampling of G and A according to Equation
(28). Each sample of G and A are then substituted into

o -] o L=} o -] -] o -]
=] o o o o o 1] o o
o -] -] o o L] o o -]

L,
(et
] Jom St

Figure 4. Meshless and finite element discretizations for
analyzing thefirst benchmark problem.
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Equation (27) to compute a sample of u; 5. If Nggmpie is the
total number of samples of u, 3 and N(g(X) < 0) is the
total number of samples of u,p causing the structural
failure, p,is computed by
N(g(X)<0
p, = M (31)
sample

Moreover, the resulting p, can be inverted to compute
the reliability index f. If G and A are sufficiently sam-
pled, the Monte Carlo simulation-based p, and S ap-
proach their exact values.

9) Unless otherwise stated, the following parameters
are adopted: L =48 m, &h = 12 m, Npc = 10, ug = 11.5
MPa, 1, =17.3 MPa, . = 0.03, H,=9.6 m, Bg=6m, 1o
=6 m, Nampe = 10, N, = 16,d;=1 (i=1to 4), 0 = 10°
kN where Hg and Bj are; respectively, the height and
width of each Q, 7o is the radius of each Qp, and N, is
the total number of quadrature points in each Qg or finite
element.

Moreover, in order to state quantitatively the accuracy
of spectral stochastic meshless local Petrov-Galerkin or
spectral stochastic finite element results, two error esti-
mators A and J are defined below

(pf )MCS B pf')SSMLPG

A(%) =
(32)

in which the subscripts MCS, SSMLPG, and SSFEM de-
note the Monte Carlo simulation, spectral stochastic
meshless local Petrov-Galerkin and spectral stochastic
finite element methods; respectively.

Figure 5 compares variation of the predicted PDF of
u at the point B versus different prediction methods

8 T T T T T
Sk = Sim

E- =0.12

8&

< S — Monte Carlo simulation

zg 4 A Spectral stochastic meshless | ] )

B '§ local Petrov-Galerkin

SE V Spectral stochastic finite

g element
OF, L 1 [ N 2]
8 rr T T T

5, Sl = Su; = 0.24 Sefug=Su,=0.32

P

g 4T 1F

2B

o

£

(=]

s n—ﬂmu v—n—/m\g\ﬂ—v
OF, . il E L

0.2 0.9 1.6 02 0.9 1.6

Displacement u, (cm) Displacement u, (cm)

Figure 5. Variation of the predicted probability density fun-
ction of u, at the point B versus different Sg/us and Sy/uy
values (First benchmark problem, meshless discretization:
thetop sub-figureof Figure4,d; =d, =d; =d; = 1).
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and S¢/pe = Si/p, = 0.12, 0.24, 0.32. Figure 6 (in the
next page) presents variation of the predicted p;, at the
point B versus different us values, prediction methods,
and S¢/u = Sy/u; = 0.12, 0.24, 0.32. Furthermore, Table
3 compares the time spent to produce the spectral sto-
chastic meshless local Petrov-Galerkin-based and Monte
Carlo simulation-based predicted p, with S¢/ug = Si/p; =
0.12.

Benefiting from adopting the MLPGS scheme to de-
rive a spectral stochastic meshless local Petrov-Galerkin
formulation, Table 3 indicates that generating spectral
stochastic meshless local Petrov-Galerkin results is con-
siderably time-saving, even if the Monte Carlo simula-
tion is implemented using analytical solutions. Mean-
while, Figure 5 illustrates the necessity of predicting u
with the uncertainty in the spatial variability of G and A.
When the S¢/u and S/, values increase, the standard
deviation of u, increase; thus, obtaining the predicted u,,
which is different from its mean value, becomes more
and more possible. In addition, Figure 6 presents that the
spectral stochastic meshless local Petrov-Galerkin me-
thod predicts more accurate p,than the spectral stochastic
finite element method does. For example, if computing A
and o values with S¢/u = Sy/py = 0.12, the resulting A
value approximately peaks at 0.36 %; whereas, the re-
sulting o value peaks about at 13.97 %.

Nevertheless, the performance of both Equation (21)

0.6 T T
E & Sduc="S/u;=0.12
& & — Monte Carlo simulation
] 3 03 A Spectral stochastic meshless | 4
g -E local Petrov-Galerkin
g & W Spectral stochastic finite
“ element
[ - 1 P S 1 PR
0.6 = T T T T
o Sdue=Siu; Sdue=Siw;
ERS =024 =032
=
== 03 1t E
53
Q
E&
v
[/} - M. B N v . 4
0.8 1.2 1.6 0.8 1.2 1.6

Threhold of displacement u; (cm) Threhold of displacement u; (cm)

Figure 6. Variation of the predicted structural failure pro-
bability p; at the point B versus different Sg/uc and Sy/uy
values (first benchmark problem, meshless discretization:
thetop sub-figureof Figure4,d; =d, =d; =d; = 1).

Table 3. Comparison of the time spent to generate Monte
Carlo simulation and spectral stochastic meshless local
Petrov-Galerkin results.

Monte Carlo Spectral stochastic meshless local

Simulation Petrov-Galerkin method

281 seconds 1.5 seconds

“On a MacBook Pro with an Intel Core i5 Processor, GFortran compiler.
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and spectral stochastic finite element method becomes
gradually unsatisfactory when S¢/z; and S,/u; increases.
If S¢/ug and S,/u; values measure the degree of uncer-
tainty, Figure 6 outlines that the degree of uncertainty
can apparently reduce the accuracy of predicted U or py.
Furthermore, observing Equations (29a) to (29b) can find
that decreasing d; (i = 1 to 4) values and increasing S¢/ 1
and S,/u; values have similar effects on the accuracy of
predicted U or py.

Next, replacing Lauguerre polynomial chaos with
Hermite polynomial chaos to represent G, A, and u, Fig-
ure 7 compares spectral stochastic meshless local Pet-
rov-Galerkin-based predicted p, values versus different
types of the polynomial chaos, S¢/u = S/, = 0.12, and
different us values.

Figure 7 implies the importance of preparing some
pilot tests before choosing a specific type of polynomial
chaos to represent a random field. Calculating A values
using this figure finds that the performance of Lauguerre
polynomial chaos is more satisfactory. If G and A are re-
presented using the Hermite polynomial chaos, the cor-
responding A value peaks at about 2.758%.

Next, replacing meshless discretization of equally spa-
ced nodes (the top sub-figure of Figure 4) with meshless
discretization of randomly located nodes (the middle
sub-figure of Figure 4), Figure 7 re-compares variation
of Monte Carlo simulation-based and spectral stochastic
meshless local Petrov-Galerkin-based predicted p, values
versus different u s values, and S/ = S/, = 0.12.

Computing the A value using data in Figure 8 finds
that the resulting A value peaks at about 2.367%. Con-
sequently, Equation (21) still predicts p, sufficiently ac-
curately, even if a meshless distribution of discrete nodes
is adopted. Moreover, in an attempt of more understand-
ing the effects of different nodal spacings on the accu-

— Monte Carlo

0.4 simulation
g i A Laugurre
= ;; polynomial
b= chaos
5 _'§ V Hermite
88 02k polynomial |.
g = chaos

0.8 1 1.2

Threhold of displacement u; (cm)

Figure 7. Variation of the predicted structural failure pro-
bability pr at the point B versus different types of the poly-
nomial chaos (first benchmark problem, meshless discreti-
zation: the upper sub-figure of Figure4,d; =d, =d3 =d; =
1).
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racy of predicted pj, the problem domain Q is re-discre-
tized using equally spaced nodes and Ny =27 (3 x 9), 52
(4 x 13), 85 (5 x 17). Figure 9 depicts the corresponding
variation of Monte Carlo simulation-based and spectral
stochastic meshless local Petrov-Galerkin-based pre-
dicted p, versus different s values, us = 0.95 cm, and
S/ = S)/u; = 0.12 where h denotes the spacing of any
two connecting nodes.

Figure 9 reports that the effects of different # values
on the accuracy of predicted p, are not noticeable. For
example, if the N value increases from 52 (3 x 9) to 85
(5 x 17), the corresponding A value only changes slightly;
consequently, adopting more nodes for improving the
accuracy of Monte Carlo simulation-based or spectral
stochastic meshless local Petrov-Galerkin-based predict-
ed pyis laborious.

5.2. Bending of a Dam Caused by Fluid Pressure
Suppose the dam has the length L, width /4, and unit thick-

0.6 T T T
— Monte Carlo
simulation
g < A Spectral
i stochastic
=5 03 b meshless ]
38 local Petrov-
‘E_’, [ Galerkin
S5 e
7]
0 1 1 L
0.9 1 1.1 1.2

Threhold of displacement u; (cm)

Figure 8. Variation of the predicted structural failure pro-
bability pr at the point B ver susrandomly nodal distribution
(first benchmark problem, meshless discr etization: the mid-
dle sub-figureof Figure4,d; =d, = d3=d; = 1).

0.15 | -
Spectral stochastic
g & meshless local Petrov-
3 .? Galerkin
gg 02} i
9
g& Monte Carlo
@ simulation
025 .
2 4 6
Nodal spacing 4 (m)

Figure 9. Variation of the predicted structural failure pro-
bability pr at the point B versus different nodal spacing h (m)
(First benchmark problem, meshless discretization: the
upper sub-figure of Figure4,d; =d, =d;=d,; =1).
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ness. This dam is fixed at one end and subjected to fluid
pressure. Figure 10 illustrates the layout of problem do-
main Q and boundary conditions in which C and D are
subsequently used to define the performance state func-
tion and y;is the unit weight of fluid.

If any uncertainty is neglected, the analytical solutions
of u; and u, are [10]

_ (A+G)xy, {(xf—Lz)(—x§+£)

T G(BAT26)1 20

JW-L) Al -2y, {_lﬂ_z[ﬁ_éﬂ
h2 2

3 4G(32+2G)| 2 h

(33a)

u, =

(A+G)(x,—L)y,x, {_sz (ﬁ_ij

2G(31+2G) n\n 2
L s _(xf—LQ)Jr(xl—L)(xz_ij
2G(34+2G)h| 2k 2 (270

(33b)

However, suppose G and A vary according to two uni-
form distributions:

G:/JG|:1+SC2~;(§1+§2):|
A=, (1453 (6+44) ]

where -1 < & (i =
variables.

To predict p, of the dam with the uncertainty in ran-
dom G and A, the essential data are provided below:

1) Define the problem domain Q as —4/2 < x, < 4/2 and
0<x 1 <L.

2) Generate a meshless discretization and a finite ele-
ment discretization. Figure 11 presents these meshless

(34

1 to 4) < 1 represent four random

Tix;=0)=0
x, * A

= <« n2wle h2 > &
[ c ‘;
N D ~
L T&l ® ® S
= =
L2 L2 &~

i A >

7 7

y Ux;=L)=0

X

Figure 10. Bending of a dam caused by fluid pressure [10]
(not to scale, i =1t0 2).
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Figure 11. Meshless and finite element discretizations for
analyzing the second benchmark problem.

and finite element discretizations.

3) Represent G, 4, and ; (i = 1 to 2) by the Legendre
polynomial chaos.

4) Still set a complete monomial basis p* = [1, x;, x,]
but adopt the multiquadric radial basis function to con-

struct ¢; thatis, R, = |:”,-2 +(a.d, )2 T (i=1to M) where

i

. (20) and ¢ are two shape parameters and d, is the
characteristic length related to the nodal spacing in an Q.

5) Define two performance state functions g;(X) and
22(X) as follows:

& (X ) SUys—Uyc (35a)

&> (X ) =U s —Up (35b)

where u; 5 (i = 1 to 2) are two thresholds of displacements
and the subscripts C and D denote the points C and D in
Figure 10.

6) Similarly manipulate point (8) in Section 5.1 but re-
place Equation (27) with Equations (33a) to (33b) to
generate the Monte Carlo simulation-based predicted py.
The resulting Monte Carlo simulation-based predicted p,
serves as the accuracy standard in comparing the spectral
stochastic meshless local Petrov-Galerkin and spectral
stochastic finite element results.

7) Unless otherwise stated, the following data are used:
L=30m,h=10m, =9.81 kN/m®, Npc = 10, gt = 11.5
MPa, 1, =17.3 MPa, .= 1.0,d.=3.0,¢=1.03, Hy=5
m, Bg=5m, rg=5m, Nygmpie = 10°, and N, = 16.

Figure 12 (in the next page) compares variation of the
pr at the point C with respect to S¢/ug = S/ = 0.12,
0.24, 0.32, different prediction methods and u, s values.
Figure 13 (in the next page) compares variation of the p;,
at the point D with respect to S¢/us = Si/u; = 0.12, 0.24,
0.32, different prediction methods and u, s values.

Observing Figure 12 confirms that the performance of
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Figure 12. Variation of the predicted structural failure
probability p; at the point C versus different Sg/us and
Sy/u; values (Second benchmark problem).
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Figure 13. Variation of the predicted structural failure pro-
bability pr at the point D versus different Sg/us and Sy/u;
values (Second benchmark problem).

spectral stochastic meshless local Petrov-Galerkin me-
thod is more satisfactory than the performance of spectral
stochastic finite element method. Even if different statis-
tical distributions are encountered, Figures 6, 12, and 13
present the spectral stochastic meshless local Petrov-
Galerkin results are more accurate than the spectral sto-
chastic finite element results. In addition, careful inspec-
tion of spectral stochastic finite element results in Fig-
ures 12 to 13 finds that the errors between Monte Carlo
simulation and spectral stochastic finite element results
majorly source from inaccurate spectral stochastic finite
element-based predicted mean values of U at the points C
and D. Resolving this problem may need high-order fi-
nite elements. But, to the author’s knowledge, similar
experiences seem to be seldom seen.

6. Conclusions

Prior to the previous [5] and current studies, available
stochastic numerical methods include the Monte Carlo

Copyright © 2013 SciRes.

simulation, spectral stochastic finite element, and sto-
chastic element-free Galerkin methods. The Monte Carlo
simulation is simplest. As demonstrated in Sections 5.1
and 5.2, implementing the Monte Carlo simulation only
needs deterministic solutions. Even so, as outlined by
Table 3, completing the Monte Carlo simulation is still
more time-consuming than generating the spectral sto-
chastic meshless local Petrov-Galerkin results. Producing
such results attributes to that the total number of samples
for implementing a Monte Carlo simulation is usually
very large.

Meanwhile, applying the spectral stochastic finite
element method is easy, since numerous resources (com-
puter software and experiences) are available. Neverthe-
less, based on these resources, this study finds that the
spectral stochastic finite element results of some prob-
lems are less accurate than spectral stochastic meshless
local Petrov-Galerkin results of the same problems. Sec-
tions 5.1 and 5.2 provide two examples.

Together with the previous study [5], the succeeding
study provides a new alternative for solving stochastic
boundary-value problems. This new stochastic numerical
method is truly-meshless. As demonstrated in Sections
5.1 and 5.2, no finite elements or background cells for
the numerical integration are created in applying the spec-
tral stochastic meshless local Petrov-Galerkin method.
However, the spectral stochastic meshless local Petrov-
Galerkin method successfully spend less time but still
predict the accurate structural failure probability p, in
Sections 5.1 and 5.2.

In conclusion, the spectral stochastic meshless local
Petrov-Galerkin method is a time-saving tool for solving
stochastic boundary-value problems.
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