
American Journal of Computational Mathematics, 2013, 3, 11-17
http://dx.doi.org/10.4236/ajcm.2013.31A003 Published Online April 2013 (http://www.scirp.org/journal/ajcm)

On Constructing Approximate Convex Hull

M. Zahid Hossain, M. Ashraful Amin
Computer Vision and Cybernetics Research Group, School of Engineering and Computer Science,

Independent University, Dhaka, Bangladesh
Email: mzhossain@gmx.com, aminmdashraful@ieee.org

Received January 29, 2013; revised February 28, 2013; accepted March 13, 2013

Copyright © 2013 M. Zahid Hossain, M. Ashraful Amin. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

ABSTRACT

The algorithms of convex hull have been extensively studied in literature, principally because of their wide range of
applications in different areas. This article presents an efficient algorithm to construct approximate convex hull from a
set of n points in the plane in time, where k is the approximation error control parameter. The proposed al-

gorithm is suitable for applications preferred to reduce the computation time in exchange of accuracy level such as ani-
mation and interaction in computer graphics where rapid and real-time graphics rendering is indispensable.

O n k 

Keywords: Convex Hull; Approximation Algorithm; Computational Geometry; Linear Time

1. Introduction

The construction of planar convex hull is one of the most
fundamental problems in computational geometry. The
applications of convex hull spread over large number of
fields including pattern recognition, regression, collision
detection, area estimation, spectrometry, topology, etc.
For instance, computer animation, the most crucial sec-
tion of computer gaming, requires fast approximation for
real-time response. Consequently, it is evidential from
literature that numerous studies focus on fast approxima-
tion of different geometric structures in computer gra-
phics [1,2]. Moreover, the construction of exact and ap-
proximate convex hull is used as a preprocessing or inter-
mediate step to solve many problems in computer gra-
phics [3,4].

Convex hull for a given finite set of
points where denotes the -dimensional Eucli-
dean space, is defined as the smallest convex set that
contains all the points. A set is convex if
for two arbitrary points

dP  

d

n
d

n

d

S 
,a b S , the line segment ab

is entirely contained in the set . Alternatively, the
convex hull can be defined as the intersection of all half-
spaces (or half-planes in) containing . The main
focus of this article is limited on the convex hull in
Euclidean plane .

S

2 P

2

2. Previous Work

Because of the importance of convex hull, it is natural to

study for improvement of running time and storage
requirements of the convex hull algorithms in different
Euclidean spaces. Graham [5] published one of the fun-
damental algorithms of convex hull, widely known as
Graham’s scan as early as 1972. This is one of the earli-
est convex hull algorithms with worst-case
running time. Graham’s algorithm is asymptotically opti-
mal since

 logO n n

 logn n is the lower bound of planar con-
vex hull problem. It can be shown [6] that is
a lower bound of a similar but weaker problem of deter-
mining the points belonging to the convex hull, not
necessarily producing them in cyclic order.

 logn n

However, all of these lower bound arguments assume
that the number of hull vertices is at least a fraction
of . Another algorithm due to Jarvis [7] surpasses the
Graham’s scan algorithm if the number of hull vertices

 is substantially smaller than . This algorithm with

h

n

n

h
 O nh running time is known as Jarvis’s march. There

is a strong relation between sorting algorithm and convex
hull algorithm in the plane. Several divide-and-conquer
algorithms including MergeHull and QuickHull algori-
thms of convex hull modeled after the sorting algorithms
[8] and the first algorithm Graham’s [5] scan uses expli-
cit sorting of points.

In 1986, Kirkpatrick and Seidel [9] proposed an algo-
rithm that computes the convex hull of a set of points
in the plane in

n
 logO n h time. Their algorithm is both

output sensitive and worst case optimal. Later, a simplifi-
cation of this algorithm [9] was obtained by Chan [10].

Copyright © 2013 SciRes. AJCM

M. Z. HOSSAIN, M. A. AMIN 12

In the following year Melkman [11] presented a simple
and elegant algorithm to construct the convex hull for
simple polyline. This is one of the on-line algorithms
which construct the convex hull in linear time.

Approximation algorithms for convex hull are useful
for applications including area estimation of complex
shapes that require rapid solutions, even at the expense of
accuracy of constructed convex hull. Based on approxi-
mation output, these algorithms of convex hull could be
divided into three groups—near, inner, and outer approxi-
mation algorithms. Near, inner, and outer approximation
algorithms compute near, inner, and outer approximation
of the exact convex hull for some point set respectively.

In 1982, Bentley et al. [12] published an approxima-
tion algorithm for convex hull construction with  O n k
running time. Another algorithm due to Soisalon-Soini-
nen [13] which uses a modified approximation scheme of
[12] and has the same running time and error bound.
Both of the algorithms are the inner approximation of
convex hull algorithm. The proposed algorithm in this
article is a near approximation algorithm of  O n k
running time.

3. Approximation Algorithm

Let be the finite set of points in general
position and the (accurate) convex hull of be

. Kavan, Kolingerova, and Zara [14] proposed an
algorithm with running time which parti-
tions the plane into k sectors centered in the ori-
gin. Their algorithm requires the origin to be inside the
convex hull. (It is possible to choose a point

2P  

 P

3n 
P

P

CH
 2O n k

2


p and
translate all the other points of accordingly using
additional steps in their algorithm). Conversely, we
partition the plane into vertical sector pair with
equal central angle

P

2 k
 in the origin and for our algori-

thm the origin could be located outside of the con-
vex hull. The sets represent the vertically opposite sec-
tors that form the vertical sector pairs defined as

O

    
    

2

2

: atan 2 , 1

: atan 2 π ,π 1

i

i

S p p i i

S p p i i

 

 

    

     

�

�

where, and the central angle 0,1, , 1i k   π k  .
Then, the sets i and denote the points belonging
to the set in sectors and respectively. For-
mally,

S

P
iS

iS
iS

i i

i i

s S P

s S P

 





 

A pair of unit vectors iu and obtain in th
vertical sector pair as

iu i

cos ,sin
2 2iu i i
             

   

cos , sin
2 2iu i i
              

    


The maximum projection magnitudes in the directions
of iu and are (Figure 1) iu

max ,

max , .

i

i

i i
p s

i i
p s

m u

m u



 










 

p

p

The definition of max function is extend to return 

i

for no parameter. The sets of points which provide the
maximum projection magnitude in the sectors of th
vertical sector pair are

 
 

: ,

: ,

i i i

i i i

M p s u p m

M p s u p m

    

     .

i

i





The vectors that produce the maximum magnitude in
the directions of iu and for some points in the

th vertical sector pair are
iu

i

 

 

max max , ,

max max , , .

i i

i i

i i
p s M

i i
p s M

v u p

v u p
 

i i

i i

m u

m u

  

 

 

 
   

 
 

   
 

 

 



 

The magnitude of the vectors i and i could be v v

 for the th vertical sector pair containing less than
two points. The sets V

i
 and V containing all the

finite vectors in the ranges



 0,π and  , are , 2ππ

 
 

1

0

1

0

:

: .

k

i i
i

k

i i
i

V v v

V v v


  







  

    

Let, and contains at least three
terminal points of the vectors in general position to
construct the convex hull.

V V V   V




 Figure 1. An example of convex hull CH16 constructed us-
ing proposed algorithm based on a set of 50 points.

Copyright © 2013 SciRes. AJCM

M. Z. HOSSAIN, M. A. AMIN 13

The convex hull approximation of vertical sector
pairs according to the proposed algorithm in this article
is:

k

    2, :k x yCH P CH w w w V  

4. Implementation

The input of the algorithm is a set of
points in general position. For simplicity, we assume that
the origin and . (This assumption can be
achieved by taking a point arbitrarily close to the origin
instead of the origin itself, within the upper bound of
error calculated in Section 5) (Figure 2).

2P  

2

3n 

O P k 

We also assume that at least two vertical sector pairs
together contains minimum three points (where none of
these two are empty). The assumption can be reduced to
one of the requirements of minimum three points input
(i.e., 3P ) of convex hull. To illustrate that, let us
consider and q to be two points in such that p

π
P

pOq   



 where O is the origin. Such two points
do exist if no three points are collinear in (i.e., the
points of are in general position). If Ot is the
bisector of , then adding the angle of from
positive

P
P

pOq Ot
x -axis as an offset to every vertical sector pair

ensures that all the input points cannot be in the same
vertical sector pair. Thus, the assumption is satisfied.
Alternatively, if less than three absolute values in M
are finite, then for each iM M , assign cosiM  to

1iM  i and 1M  where these are infinite. (The next pa-

 Approximate-Convex-Hull ,P k

 01. π k 

 02. for to 0i  1k 

 03.     cos 2 ,sin 2iU i i     

 04. i k iU U  
 05. i k iM M   
 06. for each p P do

 07.  atan 2i p    

 08. ,it U p

 09. if iM t then iM t

 10. else  max ,i k i kM M t  

 11. V 

 12.  anglexf M

 13. for to i f 2 1f k 

 14. if then  ,0i kM     i k i kV V M U  

 15. if then  0,iM   i iV V M U 

 16. return  Melkman-Convex-Hull V

Figure 2. The proposed algorithm to compute an approxi-
mate convex hull in  O n k

n

 time from inputs P and

where is a set of points in the plane and k is
the number of vertical sector pair partitioning the plane.

k

P 2

ragraph contains details about M.) Therefore, the num-
ber of points in must be at least three. V

A circular array is used to contain the pairs of
unit vectors of all the vertical sector pairs and ano-
ther circular array

U k
k

M is used to hold the number of
pairs of maximum projection magnitude in all the
vertical sector pairs. Both circular arrays have the same
size of and use zero based indexing scheme. The
function atan2 is a variation of function arctan with
point as a parameter. The function returns the angle in
radians between the point and the positive

k
k

2k

x -axis of the
plane in the range of  0,2π

i
j

V

. The function anglex
searches sequentially for the index of maximum angular
distance between two consecutive positive finite vectors
(computed using projection magnitude with index refer-
ring angle). If the index is such that maximum angle
occurs in between and , the anglex function returns

. The final convex hull is constructed using Melkman’s
[11] algorithm from set of V points which are the
terminal points of finite vectors computed in steps 14 and
15. If the first three points of are collinear, displac-
ing one of these points within the error bound solves the
problem.

i
j

Since the vertices of the convex hull produced by the
proposed algorithm are not necessarily in the input point
set , the algorithm cannot be applied straight away to
solve some other problems. Let us consider another cir-
cular array Q of size which used to contain the
points generating the inner products of

P

2k
M . Adding the

point jQ instead of j jM U to the sequence V in Steps
14 and 15 ensures that the vertices of the convex hull will
be the points from . These modifications of the algo-
rithm allow us to solve some problems including appro-
ximate farthest-pair problem but increase the upper
bound of error (described in Section 5) to

P

 πr ksin .

5. Error Analysis

There are different schemes for measuring the error of an
approximation of the convex hull. We measured the error
as distance from point set of accurate convex hull

 CH P . The distance of an arbitrary point x from a
set is defined as S

   dist , inf : .x S x y y   S

Formally the approximation error can be defined
as

E

     sup dist ,CH : CH .kE p P p  P

It is sufficient to determine the upper bound of error
 of the approximate convex hull . Let,

be be a point lying outside of the convex hull
E  CHk P Q

 PCHk
and be the origin. Suppose that, O AB is an edge of
the approximate convex hull (as shown in Figure 3).

Copyright © 2013 SciRes. AJCM

M. Z. HOSSAIN, M. A. AMIN 14

Figure 3. The approximation error of the proposed algo-
rithm measured as a distance TQ of the point lying

outside of the approximate convex hull with an edge

Q

AB .

Therefore, the distance of the point from the Q

 CHk P is

sinTQ AQ TAQ  .

The distance of the point from vertex Q A is
sinAQ OQ AOQ  . Thus,

sin sinTQ OQ AOQ TAQ   .

Let, and d TQ max p Pr p O . Thus we obtain

sin sin

π π
sin sin sin .

2 2

d OQ TAQ AOQ

OQ AOQ r
k

  

  

It follows that the minimum distance directly
depends on which is denoted as function

d
k  d k

E
.

Thus, the upper bound of approximation error is
 sin π 2r k . If approaches to infinity, the k  CHk P

converges to .  PCH

  π
lim lim sin 0.

2k k
d k r

k 
 

For instance, when k approaches to a large value, the area
approximation error of the circle is reducing exponen-
tially as shown in Figure 4. Therefore, this algorithm is
more optimize than the KKZ algorithm [14] with respect
to error bound as shown in Figure 5.

6. Correctness

Theorem 1. The approximation algorithm produces the
convex hull from a set of points in correctly within
the prescribed error bound.

2

Proof. Since, Melkman’s algorithm can construct the
convex hull correctly for points on a simple polygonal
chain, it suffices to prove that the sequence of points
denotes a simple polygonal chain. (Melkman [11] pub-
lished the on-line algorithm of convex hull with formal
proof of correctness in 1987).

V

Figure 4. The graph showing approximation error of a
circle area with respect to error control parameter

where the number of input points is lying on a
circle of radius 4 units.

k

 n 316 10

Figure 5. The graph representing the relation between the
error control parameter and upper bound of error k E .

The upper error bounds  r kn si and

    ,r k r kmax tan 2 sin  are calculated in this article

and in [14] (i.e., KKZ Algorithm) respectively where is
unit in the graph.

r

Suppose that, the plane is partitioned into

vertical sector pairs which correspond to the sequence

2 k

0 1 2 1, , , kS s s s   of 2k ple sectors. The sequence

S of sect

 sim

ors is ordered according to the angle measured
anticlockwise. If ih is a half-line (denoting the set of
points on the half-l e) from the origin in the direction of in

Copyright © 2013 SciRes. AJCM

M. Z. HOSSAIN, M. A. AMIN 15

the unit vector of the sector is , then the sequence

0 1 2 1, , , kH h h h   represents all the half-lines corre-

lated with the sequence S . According to the algorithm
all the points of V must be distinct (as referred in steps
9-10) and lying some of the half-lines of on H . The
sequence of half-lines H H  where each contained at
least one point from V , is

:i iH h H   h

ai

V  

Each half-line can cont n at most two points

of
ih H 

 V . Let, ,iv v V are points on each half- i ih 

 that line  suchih i iv O v O  . If a half-line h 
i

contai s only one length of virtu l n point of e a V , th

i iv v is zero with iv and vi
 refer to the same point

 (e.g., 2ih  co ains on one point in the Figure
6). t i jh h notes the angle from ih to
of V

Le
nt ly

 de jh where

ih and jh
ee

are half-lines from the orig the an-
 betw n two consecutive half-lines

in. Since
gle 1 πi ih h k  
and O V (because 0t  for our assumptions O P
and in the alg m), no two line seg 2k orith ments

i iv v and j jv v intersect each other, for all i j .
ver, th e segment Howe e lin 1i iv v


 could cros

polygonal chain 0 0 1 1v v v v    if the angle

1 πi ih h   . The equ 1 (derived using
sines and basic pr f triangle) also

illustrates this fact mathematically for 1i iOv v

s the

iv v
Ov

opert

i


i v

ies
ation of i



 othe law of

  (as
shown in the Figure 6).

1 1
1 1

arccot cot .
sin

i
i i i i

i i O
i

Ov
Ov v v Ov

Ov v v


 

 
 


    

 
 

 



Figure 6. The proof of correctness of the algorithm that
consider both the simple and non-simple variation of
polygonal chain      i i i i i i i iv v v v v v v v1 1 1 1 2 2

       with   i ih h 1 

and   i ih h 1  .

Th wie solution th minimum magnitude of the above
equation is negative for 1π 2πi iv Ov

   , even if

1i iOv Ov
  . Thus the line segment 1iiv v


 could

 the edges of the polygonal only if

1 πi iv Ov


intersect with chain
  . If the maximum angle between two con-

ines is 1i ih h secutive half-l   for some i , then anglex
function returns the i 1 that ensures the con-
struction a simple polygonal ch 1 1 2 2i i i i i m i mv v v v v v  

       
where

ndex i
ain

m H  and all the indi
Thus t nce of points V represents a sim
polygonal chain. (It is possible to prove the algorithm
obtained by interchanging the steps 14 and 15, using a
similar method). 

Theorem 2. If

ces are modulo m .
plehe seque

 is the number of input points and n
f vk

ru
 is the number o ertical sector pairs in 2 , then the
nning time of the proposed algorithm is O n k  .
Proof. Let us estimate the running time f art oo pr each f

the algorithm to prove that the algorithm compute the
approximate convex hull in  O n k time. It is clear
that, the initialization steps 2-  k time. Since,
the next loop of steps 6-10 iterates for point p P

5 take O
 each  ,

thus it takes  O n time considering constant time for
floor function ording to the description of anglex
function in Section 4, the function can be implemented in

. Acc

 O k time because it requires 2k iterations to com-
he index. The loop of step 13-15 takes pute t s  O k

time and Melkman’s [11] algorithm runs in linear
Steps 1 and 11 require constant time. Thus the running
time of the algorithm is

time.

 O n k .

7. Conclusion

Geometric algorithms are frequently formulated under

8. Acknowledgements

y a grant from Independent

REFERENCES
[1] J. Hu and H. imation of Digital

Curves Based on the Principles of Perceptual Organiza-

the non-degeneracy assumption or general position assump-
tion [15] and the proposed algorithm in this article is also
not an exception. To make the implementation of the
algorithm robust an integrated treatment for the special
cases can be applied. There are other general techniques
called perturbation schemes [16,17] to transform the
input into general position and allow the algorithm to
solve the problem on perturbed input. Both symbolic per-
turbation and numerical (approximation) perturbation
(where perturbation error is consistent with the error
bound of the algorithm) can be used on the points of P
to eliminate degenerate cases.

This research is supported b
University Bangladesh (IUB).

Yan, “Polygonal Approx

Copyright © 2013 SciRes. AJCM

M. Z. HOSSAIN, M. A. AMIN

Copyright © 2013 SciRes. AJCM

16

tion,” Pattern Recognition, Vol. 30, No. 5, 2006, pp. 701-
718. doi:10.1016/S0031-3203(96)00105-7

[2] R. Bellman, B. Kashef and R. Vasudevan, “Mean Square
Spline Approximation,” Journal of Mathematical Analy-
sis and Applications, Vol. 45, No. 1, 1974, pp. 47-53.
doi:10.1016/0022-247X(74)90119-X

[3] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowiz
and K. Zikan, “Efficient Collision

ral
 Detection Using

,

Bounding Volume Hierarchies of k-DOPs,” IEEE Trans-
actions on Visualization and Computer Graphics, Vol. 4,
No. 1, 1998, pp. 21-36. doi:10.1109/2945.675649

[4] X. Zhang, Z. Tang, J. Yu and M. Guo, “A Fast Convex
Hull Algorithm for Binary Image,” Informatica (

et,” Information

Slove-
nia), Vol. 34, No. 3, 2010, pp. 369-376.

[5] R. L. Graham, “An Efficient Algorithm for Determining
the Convex Hull of a Finite Planar S
Processing Letters, Vol. 1, No. 4, 1972, pp. 132-133.
doi:10.1016/0020-0190(72)90045-2

[6] A. C.-C. Yao, “A Lower Bound to Finding Con
Hulls,” Journal of the ACM, Vol. 2

vex
8, No. 4, 1981, pp

.

780-787. doi:10.1145/322276.322289

[7] R. A. Jarvis, “On the Identification of the Convex Hull of
a Finite Set of Points in the Plane,” Information Process-
ing Letters, Vol. 2, No. 1, 1973, pp. 18-21.
doi:10.1016/0020-0190(73)90020-3

[8] F. P. Preparata and M. I. Shamos, “Comp
ometry: An Introduction,” Springe

utational Ge-
r-Verlag Inc., New

 Algorithm,” SIAM Journal on Computing

York, 1985.

[9] D. G. Kirkpatrick and R. Seidel, “The Ultimate Planar
Convex Hull ,
Vol. 15, No. 1, 1986, pp. 287-299. doi:10.1137/0215021

[10] T. M. Chan, “Optimal Output-Sensitive Convex Hull

Algorithms in Two and Three Dimensions,” Discrete &
Computational Geometry, Vol. 16, No. 4, 1996, pp. 361-
368. doi:10.1007/BF02712873

[11] A. A. Melkman, “On-Line Construction of the Convex
Hull of a Simple Polyline,” Information Processing Let-
ters, Vol. 25, No. 1, 1987, pp. 11-12.
doi:10.1016/0020-0190(87)90086-X

[12] J. L. Bentley, F. P. Preparata and M. G. Faust, “Ap-
proximation Algorithms for Convex Hulls,” Communica-
tions of the ACM, Vol. 25, No. 1, 1982, pp. 64-68.
doi:10.1145/358315.358392

[13] E. Soisalon-Soininen, “On Computing Approximate Con-
vex Hulls,” Information Processing Letters, Vol. 16, No.
3, 1983, pp. 121-126. doi:10.1016/0020-0190(83)90062-5

[14] L. Kavan, I. Kolingerova and J. Zara, “Fast Approxima-
tion of Convex Hull,” Proceedings of the 2nd IASTED
International Conference on Advances in Computer Sci-
ence and Technology, ACTA Press, Anaheim, 2006, pp.
101-104.

[15] J. O’Rourke, “Computational Geometry in C,” 2nd Edi-
tion, Cambridge University Press, New York, 1998.
doi:10.1017/CBO9780511804120

[16] H. Edelsbrunner and E. P. Mücke, “Simulation of Sim-
plicity: A Technique to Cope with Degenerate Cases in
Geometric Algorithms,” ACM Transactions on Graphics,
Vol. 9, No. 1, 1990, pp. 66-104.
doi:10.1145/77635.77639

[17] I. Z. Emiris, J. F. Canny and R. Seidel, “Efficient Pertur-
bations for Handling Geometric Degeneracies,” Algo-
rithmica, Vol. 19, No. 1-2, 1997, pp. 219-242.
doi:10.1007/PL00014417

http://dx.doi.org/10.1016/S0031-3203(96)00105-7
http://dx.doi.org/10.1016/S0031-3203(96)00105-7
http://dx.doi.org/10.1016/S0031-3203(96)00105-7
http://dx.doi.org/10.1016/0022-247X(74)90119-X
http://dx.doi.org/10.1016/0022-247X(74)90119-X
http://dx.doi.org/10.1016/0022-247X(74)90119-X
http://dx.doi.org/10.1109/2945.675649
http://dx.doi.org/10.1109/2945.675649
http://dx.doi.org/10.1109/2945.675649
http://dx.doi.org/10.1016/0020-0190(72)90045-2
http://dx.doi.org/10.1016/0020-0190(72)90045-2
http://dx.doi.org/10.1016/0020-0190(72)90045-2
http://dx.doi.org/10.1145/322276.322289
http://dx.doi.org/10.1145/322276.322289
http://dx.doi.org/10.1145/322276.322289
http://dx.doi.org/10.1016/0020-0190(73)90020-3
http://dx.doi.org/10.1016/0020-0190(73)90020-3
http://dx.doi.org/10.1016/0020-0190(73)90020-3
http://dx.doi.org/10.1137/0215021
http://dx.doi.org/10.1137/0215021
http://dx.doi.org/10.1137/0215021
http://dx.doi.org/10.1007/BF02712873
http://dx.doi.org/10.1007/BF02712873
http://dx.doi.org/10.1016/0020-0190(87)90086-X
http://dx.doi.org/10.1016/0020-0190(87)90086-X
http://dx.doi.org/10.1145/358315.358392
http://dx.doi.org/10.1145/358315.358392
http://dx.doi.org/10.1016/0020-0190(83)90062-5
http://dx.doi.org/10.1016/0020-0190(83)90062-5
http://dx.doi.org/10.1017/CBO9780511804120
http://dx.doi.org/10.1017/CBO9780511804120
http://dx.doi.org/10.1145/77635.77639
http://dx.doi.org/10.1145/77635.77639
http://dx.doi.org/10.1007/PL00014417

M. Z. HOSSAIN, M. A. AMIN 17

Appendix

The article describes a near approximation algorithm for
convex hull however it is possible to extend the concept
for inner as well as outer approximation algorithms for
convex hull. An illustration of inner approximate convex
hull algorithm is shown in Figure 7.

 Inner-Approximate-Convex-Hull ,P k

 01. π k 

 02. for to 0i  1k 
 03.     cos 2 ,sin 2iU i i     

 04. i k iU U  
 05.  0,0i k iQ Q  
 06. i k iM M   
 07. for each p P do

 08.  atan 2i p    

 09. ,it U p

 10. if iM t then   , ,i iQ M p t 
 11. else if i kM t   then  Q M , ,i k i k p t    
 12. V 

 13.  anglexf M

 14. for to i f 2 1f k 
 15. if then 0,iM   iT Q else T 

 16. if then  ,0i kM     i kT T Q  

 17.  sortV V T 

 18. return  Melkman-Convex-Hull V

Figure 7. The proposed algorithm to compute an inner ap-
proximate convex hull in  O n k time from inputs P

and where is a set of points in the plane
and is the number of vertical sector pair partitioning
the plane.

k
k

P  2 n

Copyright © 2013 SciRes. AJCM

