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ABSTRACT 

The algorithms of convex hull have been extensively studied in literature, principally because of their wide range of 
applications in different areas. This article presents an efficient algorithm to construct approximate convex hull from a 
set of n points in the plane in  time, where k is the approximation error control parameter. The proposed al- 

gorithm is suitable for applications preferred to reduce the computation time in exchange of accuracy level such as ani- 
mation and interaction in computer graphics where rapid and real-time graphics rendering is indispensable. 

O n k 
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1. Introduction 

The construction of planar convex hull is one of the most 
fundamental problems in computational geometry. The 
applications of convex hull spread over large number of 
fields including pattern recognition, regression, collision 
detection, area estimation, spectrometry, topology, etc. 
For instance, computer animation, the most crucial sec- 
tion of computer gaming, requires fast approximation for 
real-time response. Consequently, it is evidential from 
literature that numerous studies focus on fast approxima- 
tion of different geometric structures in computer gra- 
phics [1,2]. Moreover, the construction of exact and ap- 
proximate convex hull is used as a preprocessing or inter- 
mediate step to solve many problems in computer gra- 
phics [3,4]. 

Convex hull for a given finite set  of  
points where  denotes the -dimensional Eucli- 
dean space, is defined as the smallest convex set that 
contains all the  points. A set  is convex if 
for two arbitrary points 

dP  

d

n
d

n

d

S 
,a b S , the line segment ab  

is entirely contained in the set . Alternatively, the 
convex hull can be defined as the intersection of all half- 
spaces (or half-planes in ) containing . The main 
focus of this article is limited on the convex hull in 
Euclidean plane . 

S

2 P

2

2. Previous Work 

Because of the importance of convex hull, it is natural to 

study for improvement of running time and storage 
requirements of the convex hull algorithms in different 
Euclidean spaces. Graham [5] published one of the fun- 
damental algorithms of convex hull, widely known as 
Graham’s scan as early as 1972. This is one of the earli- 
est convex hull algorithms with  worst-case 
running time. Graham’s algorithm is asymptotically opti- 
mal since 

 logO n n

 logn n  is the lower bound of planar con- 
vex hull problem. It can be shown [6] that  is 
a lower bound of a similar but weaker problem of deter- 
mining the points belonging to the convex hull, not 
necessarily producing them in cyclic order. 

 logn n

However, all of these lower bound arguments assume 
that the number of hull vertices  is at least a fraction 
of . Another algorithm due to Jarvis [7] surpasses the 
Graham’s scan algorithm if the number of hull vertices 

 is substantially smaller than . This algorithm with 

h

n

n

h
 O nh  running time is known as Jarvis’s march. There 

is a strong relation between sorting algorithm and convex 
hull algorithm in the plane. Several divide-and-conquer 
algorithms including MergeHull and QuickHull algori- 
thms of convex hull modeled after the sorting algorithms 
[8] and the first algorithm Graham’s [5] scan uses expli- 
cit sorting of points. 

In 1986, Kirkpatrick and Seidel [9] proposed an algo- 
rithm that computes the convex hull of a set of  points 
in the plane in 

n
 logO n h  time. Their algorithm is both 

output sensitive and worst case optimal. Later, a simplifi- 
cation of this algorithm [9] was obtained by Chan [10]. 
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In the following year Melkman [11] presented a simple 
and elegant algorithm to construct the convex hull for 
simple polyline. This is one of the on-line algorithms 
which construct the convex hull in linear time. 

Approximation algorithms for convex hull are useful 
for applications including area estimation of complex 
shapes that require rapid solutions, even at the expense of 
accuracy of constructed convex hull. Based on approxi- 
mation output, these algorithms of convex hull could be 
divided into three groups—near, inner, and outer approxi- 
mation algorithms. Near, inner, and outer approximation 
algorithms compute near, inner, and outer approximation 
of the exact convex hull for some point set respectively. 

In 1982, Bentley et al. [12] published an approxima- 
tion algorithm for convex hull construction with  O n k  
running time. Another algorithm due to Soisalon-Soini- 
nen [13] which uses a modified approximation scheme of  
[12] and has the same running time and error bound. 
Both of the algorithms are the inner approximation of 
convex hull algorithm. The proposed algorithm in this 
article is a near approximation algorithm of  O n k  
running time. 

3. Approximation Algorithm 

Let  be the finite set of  points in general 
position and the (accurate) convex hull of  be 

. Kavan, Kolingerova, and Zara [14] proposed an 
algorithm with  running time which parti- 
tions the plane  into k  sectors centered in the ori- 
gin. Their algorithm requires the origin to be inside the 
convex hull. (It is possible to choose a point 

2P  

 P

3n 
P

P

CH
 2O n k

2


p  and 
translate all the other points of  accordingly using 
additional steps in their algorithm). Conversely, we 
partition the plane  into  vertical sector pair with 
equal central angle 

P

2 k
  in the origin and for our algori- 

thm the origin  could be located outside of the con- 
vex hull. The sets represent the vertically opposite sec- 
tors that form the vertical sector pairs defined as 

O

    
    

2

2
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where,  and the central angle 0,1, , 1i k   π k  . 
Then, the sets i  and  denote the points belonging 
to the set  in sectors  and  respectively. For- 
mally, 

S

P
iS

iS
iS

i i

i i

s S P

s S P

 





 
 

A pair of unit vectors iu  and  obtain in  th 
vertical sector pair as 

iu i

cos ,sin
2 2iu i i
             

   

cos , sin
2 2iu i i
              

    
  

The maximum projection magnitudes in the directions 
of iu  and  are (Figure 1) iu

max ,

max , .
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i i
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i i
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The definition of max function is extend to return 

i

 
for no parameter. The sets of points which provide the 
maximum projection magnitude in the sectors of th 
vertical sector pair are  

 
 

: ,

: ,

i i i

i i i

M p s u p m
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The vectors that produce the maximum magnitude in 
the directions of iu  and  for some points in the 

th vertical sector pair are  
iu

i

 

 

max max , ,

max max , , .

i i

i i

i i
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i i
p s M
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i i
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The magnitude of the vectors i  and i  could be v v

  for the th vertical sector pair containing less than 
two points. The sets V

i
  and V  containing all the 

finite vectors in the ranges 



 0,π  and  , are  , 2ππ

 
 
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0

1

0
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Let,  and  contains at least three 
terminal points of the vectors in general position to 
construct the convex hull. 

V V V   V

 

 




 Figure 1. An example of convex hull CH16 constructed us- 
ing proposed algorithm based on a set of 50 points. 
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The convex hull approximation of  vertical sector 
pairs according to the proposed algorithm in this article 
is: 

k

    2, :k x yCH P CH w w w V    

4. Implementation 

The input of the algorithm  is a set of  
points in general position. For simplicity, we assume that 
the origin  and . (This assumption can be 
achieved by taking a point arbitrarily close to the origin 
instead of the origin itself, within the upper bound of 
error calculated in Section 5) (Figure 2). 

2P  

2

3n 

O P k 

We also assume that at least two vertical sector pairs 
together contains minimum three points (where none of 
these two are empty). The assumption can be reduced to 
one of the requirements of minimum three points input 
(i.e., 3P  ) of convex hull. To illustrate that, let us 
consider  and q  to be two points in  such that p

π
P

pOq   



 where O  is the origin. Such two points 
do exist if no three points are collinear in  (i.e., the 
points of  are in general position). If Ot  is the 
bisector of , then adding the angle of  from 
positive 

P
P

pOq Ot
x -axis as an offset to every vertical sector pair 

ensures that all the input points cannot be in the same 
vertical sector pair. Thus, the assumption is satisfied. 
Alternatively, if less than three absolute values in M  
are finite, then for each iM M , assign cosiM   to 

1iM  i and 1M   where these are infinite. (The next pa-  
 

 Approximate-Convex-Hull ,P k  

 01. π k   

 02. for  to 0i  1k   

 03.        cos 2 ,sin 2iU i i       

 04.     i k iU U  
 05.     i k iM M   
 06. for each p P  do 

 07.     atan 2i p      

 08.    ,it U p  

 09.    if iM t  then iM t  

 10.    else  max ,i k i kM M t    

 11. V   

 12.  anglexf M  

 13. for  to i f 2 1f k   

 14.    if then  ,0i kM      i k i kV V M U    

 15.    if  then  0,iM   i iV V M U   

 16. return  Melkman-Convex-Hull V  

Figure 2. The proposed algorithm to compute an approxi- 
mate convex hull in  O n k

n

 time from inputs P and  

where  is a set of  points in the plane and k is 
the number of vertical sector pair partitioning the plane. 

k

P 2

ragraph contains details about M.) Therefore, the num- 
ber of points in  must be at least three. V

A circular array  is used to contain the  pairs of 
unit vectors of all the  vertical sector pairs and ano- 
ther circular array 

U k
k

M  is used to hold the number of  
pairs of maximum projection magnitude in all the  
vertical sector pairs. Both circular arrays have the same 
size of  and use zero based indexing scheme. The 
function atan2 is a variation of function arctan with 
point as a parameter. The function returns the angle in 
radians between the point and the positive 

k
k

2k

x -axis of the 
plane in the range of  0,2π

i
j

V

. The function anglex 
searches sequentially for the index of maximum angular 
distance between two consecutive positive finite vectors 
(computed using projection magnitude with index refer- 
ring angle). If the index is  such that maximum angle 
occurs in between  and , the anglex function returns 

. The final convex hull is constructed using Melkman’s 
[11] algorithm from set of V  points which are the 
terminal points of finite vectors computed in steps 14 and 
15. If the first three points of  are collinear, displac- 
ing one of these points within the error bound solves the 
problem. 

i
j

Since the vertices of the convex hull produced by the 
proposed algorithm are not necessarily in the input point 
set , the algorithm cannot be applied straight away to 
solve some other problems. Let us consider another cir- 
cular array Q  of  size which used to contain the 
points generating the inner products of 

P

2k
M . Adding the 

point jQ  instead of j jM U  to the sequence V  in Steps 
14 and 15 ensures that the vertices of the convex hull will 
be the points from . These modifications of the algo- 
rithm allow us to solve some problems including appro- 
ximate farthest-pair problem but increase the upper 
bound of error (described in Section 5) to 

P

 πr ksin . 

5. Error Analysis 

There are different schemes for measuring the error of an 
approximation of the convex hull. We measured the error 
as distance from point set of accurate convex hull 

 CH P . The distance of an arbitrary point x  from a 
set  is defined as  S

   dist , inf : .x S x y y   S  

Formally the approximation error  can be defined 
as  

E

     sup dist ,CH : CH .kE p P p  P  

It is sufficient to determine the upper bound of error 
 of the approximate convex hull . Let,  

be be a point lying outside of the convex hull 
E  CHk P Q

 PCHk  
and  be the origin. Suppose that, O AB  is an edge of 
the approximate convex hull (as shown in Figure 3). 
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Figure 3. The approximation error of the proposed algo- 
rithm measured as a distance TQ  of the point  lying 

outside of the approximate convex hull with an edge 

Q

AB . 
 

Therefore, the distance of the point  from the Q

 CHk P  is  

sinTQ AQ TAQ  . 

The distance of the point  from vertex Q A  is 
sinAQ OQ AOQ  . Thus, 

sin sinTQ OQ AOQ TAQ   . 

Let,  and d TQ max p Pr p O . Thus we obtain 

sin sin

π π
sin sin sin .

2 2

d OQ TAQ AOQ

OQ AOQ r
k

  

  
 

It follows that the minimum distance  directly 
depends on  which is denoted as function 

d
k  d k

E
. 

Thus, the upper bound of approximation error  is 
 sin π 2r k . If  approaches to infinity, the k  CHk P  

converges to .   PCH

  π
lim lim sin 0.

2k k
d k r

k 
   

For instance, when k approaches to a large value, the area 
approximation error of the circle is reducing exponen- 
tially as shown in Figure 4. Therefore, this algorithm is 
more optimize than the KKZ algorithm [14] with respect 
to error bound as shown in Figure 5. 

6. Correctness 

Theorem 1. The approximation algorithm produces the 
convex hull from a set of points in  correctly within 
the prescribed error bound.  

2

Proof. Since, Melkman’s algorithm can construct the 
convex hull correctly for points on a simple polygonal 
chain, it suffices to prove that the sequence of points  
denotes a simple polygonal chain. (Melkman [11] pub- 
lished the on-line algorithm of convex hull with formal 
proof of correctness in 1987). 

V

 

 

Figure 4. The graph showing approximation error of a 
circle area with respect to error control parameter  

where the number of input points is  lying on a 
circle of radius 4 units. 

k

 n 316 10

 

 

Figure 5. The graph representing the relation between the 
error control parameter  and upper bound of error k E . 

The upper error bounds  r kn si  and 

    ,r k r kmax tan 2 sin   are calculated in this article 

and in [14] (i.e., KKZ Algorithm) respectively where  is 
unit in the graph. 

r

 
Suppose that, the plane  is partitioned into  

vertical sector pairs which correspond to the sequence 

2 k

0 1 2 1, , , kS s s s    of 2k ple sectors. The sequence 

S  of sect

 sim

ors is ordered according to the angle measured 
anticlockwise. If ih  is a half-line (denoting the set of 
points on the half-l e) from the origin in the direction of in
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the unit vector of the sector is , then the sequence 

0 1 2 1, , , kH h h h    represents all the half-lines corre- 

lated with the sequence S . According to the algorithm 
all the points of V  must be distinct (as referred in steps 
9-10) and lying  some of the half-lines of on H . The 
sequence of half-lines H H   where each contained at 
least one point from V , is 

:i iH h H   h

ai

V    

 
Each half-line can cont n at most two points 

of
ih H   

 V . Let, ,iv v V  are points on each half- i ih 

 that line   suchih i iv O v O  . If a half-line h 
i  

contai s only one  length of virtu l n point of e a V , th

i iv v  is zero with iv  and vi
  refer to the same point 

 (e.g., 2ih   co ains on one point in the Figure 
6). t i jh h notes the angle from ih  to 
of V

Le
nt ly 

 de jh  where 

ih  and jh  
ee

are half-lines from the orig the an- 
 betw n two consecutive half-lines 

in. Since 
gle 1 πi ih h k    
and O V  (because 0t   for our assumptions O P  
and  in the alg m), no two line seg  2k orith ments

i iv v  and j jv v  intersect each other, for all i j . 
ver, th e segment Howe e lin 1i iv v


  could cros  

polygonal chain 0 0 1 1v v v v     if the angle 

1 πi ih h   . The equ 1  (derived using 
sines and basic pr f triangle) also 

illustrates this fact mathematically for 1i iOv v

s the

iv v
Ov

opert

i


i v

ies
ation of i



 othe law of 

   (as 
shown in the Figure 6). 

1 1
1 1

arccot cot .
sin

i
i i i i

i i O
i

Ov
Ov v v Ov

Ov v v


 

 
 


    

 
 

 
 

 



 

Figure 6. The proof of correctness of the algorithm that 
consider both the simple and non-simple variation of 
polygonal chain      i i i i i i i iv v v v v v v v1 1 1 1 2 2

        with   i ih h 1   

and   i ih h 1  . 

Th  wie solution th minimum magnitude of the above 
equation is negative for 1π 2πi iv Ov

   , even if 

1i iOv Ov
  . Thus the line segment 1iiv v


  could 

 the edges of the polygonal only if 

1 πi iv Ov


intersect with chain 
  . If the maximum angle between two con- 

ines is 1i ih h secutive half-l    for some i , then anglex 
function returns the i 1  that ensures the con- 
struction a simple polygonal ch 1 1 2 2i i i i i m i mv v v v v v  

         
where 

ndex i
ain 

m H   and all the indi
Thus t nce of points V  represents a sim  
polygonal chain. (It is possible to prove the algorithm 
obtained by interchanging the steps 14 and 15, using a 
similar method).   

Theorem 2. If  

ces are modulo m . 
plehe seque

 is the number of input points and n
f vk

ru
 is the number o ertical sector pairs in 2 , then the 
nning time of the proposed algorithm is O n k  .  
Proof. Let us estimate the running time f art oo  pr each f 

the algorithm to prove that the algorithm compute the 
approximate convex hull in  O n k  time. It is clear 
that, the initialization steps 2-  k  time. Since, 
the next loop of steps 6-10 iterates for point p P

5 take O
 each  , 

thus it takes  O n  time considering constant time for 
floor function ording to the description of anglex 
function in Section 4, the function can be implemented in 

. Acc

 O k  time because it requires 2k  iterations to com- 
he index. The loop of step 13-15 takes pute t s  O k  

time and Melkman’s [11] algorithm runs in linear  
Steps 1 and 11 require constant time. Thus the running 
time of the algorithm is 

time.

 O n k .  

7. Conclusion 

Geometric algorithms are frequently formulated under 
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Appendix 

The article describes a near approximation algorithm for 
convex hull however it is possible to extend the concept 
for inner as well as outer approximation algorithms for 
convex hull. An illustration of inner approximate convex 
hull algorithm is shown in Figure 7. 
 

 Inner-Approximate-Convex-Hull ,P k  

 01. π k   

 02. for  to  0i  1k 
 03.        cos 2 ,sin 2iU i i       

 04.     i k iU U  
 05.      0,0i k iQ Q  
 06.     i k iM M   
 07. for each p P  do 

 08.     atan 2i p      

 09.    ,it U p  

 10.    if iM t  then    , ,i iQ M p t 
 11.    else if i kM t    then   Q M , ,i k i k p t    
 12. V   

 13.  anglexf M  

 14. for  to  i f 2 1f k 
 15.    if  then 0,iM   iT Q  else T   

 16.    if  then  ,0i kM     i kT T Q    

 17.      sortV V T 

 18. return  Melkman-Convex-Hull V  

Figure 7. The proposed algorithm to compute an inner ap- 
proximate convex hull in  O n k  time from inputs P  

and  where  is a set of  points in the plane 
and  is the number of vertical sector pair partitioning 
the plane. 

k
k

P  2 n
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