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ABSTRACT 

In the case of nonzero fermion mass, within a range of Ansätze for the full fermion-boson vertex, we show that 
Dyson-Schwinger equation for the fermion propagator in QED3 has two qualitatively distinct dynamical chiral symme-
try breaking solutions. As the fermion mass increases and reaches to a critical value mc, one solution disappears, and the 
dependence of mc on the number of fermion flavors is also given. 
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1. Introduction 

Nowadays, it is widely accepted that Quantum Chro- 
modynamics (QCD) in 3 + 1 dimensions is the funda- 
mental theory for strong interaction. Dynamical chiral 
symmetry breaking (DCSB) is of fundamental impor- 
tance for strong interaction physics. DCSB can be ex- 
plored via the gap equation, viz., the Dyson-Schwinger 
equation (DSE) for the dressed-fermion self-energy. As 
is well known, the gap equation has two solutions in the 
chiral limit, i.e. the Nambu-Goldstone (NG) solution 
which is characterized by DCSB, and the Wigner (WN) 
solution in which chiral symmetry is not dynamically 
broken. However, when the current quark mass m is 
nonzero, the quark gap equation has only one solution 
which corresponds to the NG phase and the solution cor- 
responding to the WN phase does not exist [1,2]. This 
conclusion is hard to understand and one will naturally 
ask why the Wigner solution of the quark gap equation 
only exists in the chiral limit and does not exist at finite 
current quark mass. The authors of Ref. [3] first discussed 
this problem and asked whether the quark gap equation 
has a Wigner solution in the case of nonzero current 
quark mass. Subsequently, the authors of Refs. [4-7] fur- 
ther investigated the problem of possible multi-solutions 
of the quark gap equation. As far as we know, partly due 
to the complexity of the non-Abelian character of QCD, 

this problem has not been solved satisfactorily in the lit- 
erature. In the present paper we try to propose a new ap- 
proach to investigate this problem in the framework of a 
relatively simple Abelian toy model of QCD, namely, 
quantum electrodynamics in 2 + 1 dimensions (QED3). 

As a field-theoretical model, QED3 has been exten- 
sively studied in recent years. It has many features simi- 
lar to QCD in 3 + 1 dimensions. This is because QED3 is 
known to have a phase where the chiral symmetry of the 
theory is spontaneously broken and the fermions are con- 
fined in this phase [8]. Moreover, QED3 is supernor- 
malizable, so it is not plagued with the ultraviolet diver- 
gences which are present in QED4. These are the basic 
reasons why QED3 is regarded as an interesting toy 
model: studying QED3 it might be possible to investigate 
confinement [8-10] and dynamical chiral symmetry 
breaking (DCSB) [11-16] within a theory which is struc- 
turally much simpler than QCD while sharing the same 
basic nonperturbative phenomena. Herein we try to use 
the DSEs for the fermion and photon propagators in 
QED3 to describe novel aspects of the interplay between 
explicit and dynamical chiral symmetry breaking. 

2. Dyson-Schwinger Equation for Fermion 
Propagator 

The Lagrangian of QED3 with N flavors of fermions in a 
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general covariant gauge in Euclidean space, ignoring the 
issues discuss in Ref. [15], can be written as ifications 
that anticipate your paper as one part of the entire jour- 
nals, and not as an independent document. Please do not 
revise any of the current designations. 
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where the 4 × 1 spinor j is the fermion field with 
 being the flavor indices. 

Based on Lorentz structure analysis, the inverse fer- 
mion propagator in the chiral limit can be written as 

 1S p i p              (2) 

One assumes that dressed fermion propagator at finite 
m  is analytic in the neighborhood of m = 0, 
so the  can be written as 
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Setting e2 = 1, the DSE for the fermion propagator can 
be written as 
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where  is the bare inverse fermion propagator 
and  is the full fermion-photon vertex. Sub- 
stituting Equation (3) into Equation (4), one can obtain 
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where q = p – k. The full photon propagator can be writ- 
ten as 
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with the vacuum polarization  defined by 
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The DSE satisfied by the photon vacuum polarization 
tensor reads 
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The boson polarization  has an ultraviolet  

divergence which is present only in the longitudinal part. 
By applying the projection operator 

2
3
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q
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one can remove this divergence and obtain a finite vac-  

 2,m q  [15]. uum polarization 

The DSEs for the photon and fermion propagators 
form a set of coupled integral equations for the three  

      2 2 2, and ,  E p F p m q

 ; ,m p k

 once  scalar functions 

the full fermion-photon-vertex   is known. 
Unfortunately, although several works attempts to re- 
solve the problem, none of them are completely satisfac- 
tory [17-23]. Thus, in phenomenological applications, 
one often proceed by adopting reasonable approximation 
for  ; ,m p k

     

 such that Equations (5), (6) and (9) are 
reduced to a closed system of equations which may be 
solved directly. In this letter, following Ref. [15], we 
choose the following AnsÄatzefor the full fermion-pho- 
ton vertex 

 2 2; , ,m p k f E p E k       (11)   

and the form of function f is: 1) 1; 2) 

   2 21

2
E p E k    2 2E p E k .   ; 3)  

The first one is the bare vertex. This structure plays the 
most dominant role in the full fermion-photon vertex in 
high energy region and the full fermion-photon vertex 
reduces to it in large momentum limit. The second form 
is inspired by the BC-vertex [18]. Previous works [15,24] 
show that the numerical results of DSEs employing this 
Ansatz is as good as that employing BC and CP vertex 
[19]. Since the numerical results obtained using the last 
Ansatze coincide very well with earlier investigation 
[15,25], we choose this one as a reasonable Ansatze to be 
used in this work. Using those AnsÄatzefor the full fer-
mion-photon vertex, the coupled DSEs for the fermion 
propagator and photon vacuum polarization reduce to the 
following form  

Copyright © 2013 SciRes.                                                                                 JMP 



H. X. ZHU  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JMP 

153

 

     
     

2 2

21

f q

q

3
2

2 3 2 2 2 2 2 2

2 d
1

(2π)

E k pq kqk
E p

p q E k k F k
 

       
                        (12) 

 

 
 

 
     

23
2

3 2 2 2 2 2 2

d
2

2π

F k fk
F p m

q E k k F k
 

21 q       
                         (13) 

 

 
 

       

       

2 2

2 2

2 2 2
3

2
2 3 2 2 2 2 2 2 2 2

2 34 d

2π

E k E p k kqN k
q

q E k k F k E p

  
 
 


kq q f

p F p

 


   

   2 2E p A p    2 2

                      (14) 

 
where the Landau gauge has been chosen. In the chira 
limit,  and F p B p

2  2B p

2

 2B p

 2 0B p

.  From 
Equations (12)-(14), it is not difficult to find that the 
above coupled equations have one Wigner solution 

 and two dynamical symmetry breaking solu-   2 0B p 

B ptions:  and . As was point-     2 0B p  

ed out in Ref. [4], if  is a solution of the gap 
equation in the chiral limit, then so is . While 
these two solutions are distinct, the chiral symmetry en-
tails that each yields the same pressure. In the chiral limit, 
the two dynamical symmetry breaking solutions are 
symmetric about the Wigner solution 

B p

 . 
However, just as will be shown below, this might be 
changed when the fermion mass is not zero. 

3. Numerical Results 

Our next task is to solve for the two scalar functions 
 and  2,E m p  2,F m p . These two functions can be 

obtained by numerically solving the three coupled inte- 
gral Equations (12)-(14). Starting from E = 1, F = 1 and 
П = 1, we iterate the three coupled integral equations 
until all the three functions converge to a stable solution 
which is plotted in Figure 1 (solid line). 

From Figure 1, it is easy to find that all the three sca- 
lar functions in the DCSB phase (N = 1) are constant in 
the infrared region, while in the ultraviolet region the 
vector function behaves as  2 1A p 

 
 and the photon 

vacuum polarization behaves as 2 1q q . Never- 
theless, in contrast to the case of massless QED3 [15], in 
the large momentum region, the fermion self-energy re- 
duces to the bare mass m in Equation (6). Since all the 
three functions are positive in the whole range of p2, we 
define them as the “+” solution. 

If we do interation starting from F = −1, E = 1 and П = 
1, we can obtain another stable solution. The typical be- 
haviors of the three functions in the DCSB phase for a 
fixed mass and number of fermion flavors are also plot- 
ted in Figure 1 (the dotted line). From Figure 1, we see 
that the DSEs for the fermion propagator has two distinct 
nonzero solutions. Especially, the infrared value of the 
fermion self-energy is negative, so we define it as the “−” 

solution. In the low energy region, each of the three 
functions in the second solution is also almost constant, 
but it is different from the corresponding one in the “+” 
solution. As p2 or q2 increases, each function of the “−” 
solution approach to the corresponding one of the “+” 
solution. 

To reveal the difference between these two solutions, 
we consider m as a continuous parameter in the DSEs. 
We plot the infrared value of E, F, П in Figure 2. When 
m = 0, from DSEs one obtains one E and П, but two F 
which are symmetric about F = 0 in Figure 2 for each 
vertex ansatze. For the “+” solution of DSEs, as m in-
creases, E(0) and F(0) increases while П(0) decreases. 
However, the three infrared values in the “−” solution 
show a different trend as m increases. When m reaches its 
critical value, we obtain only one solution for DSEs. In 
addition, from Figure 2, it can be seen that the critical 
mass exists for any truncated scheme of DSEs used in 
this work. 

Furthermore, we investigate the influence of the num- 
ber of fermion flavors on the critical mass. By employing 
ansatze 2, we can obtain the relation between the critical 
mass and the number of fermion flavors and it is plotted 
in Figure 3. We observe that the critical mass decreases 
as N increases and it vanishes at N = Nc, which is similar 
to the critical number of fermion flavors for DCSB in the 
chiral limit [16]. 

4. Conclusion 

To summarize, in this paper, working in the framework 
of Dyson-Schwinger equations and employing a range of 
ansatze for the full fermion-photon vertex of QED3, 
westudy the interplay between explicit and dynamical 
chiral symmetry breaking in QED3. In the case of non- 
zero fermion mass, it is found that, besides the ordinary 
solution, the fermions gap equation has another solution 
which has not been reported in the previous work of 
QED3. In the low energy region, one observes that these 
two solutions are apparently different, but in the high 
energy region they coincide with each other. In addition, 
it is found that this solution exists only when the mass is  
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Figure 2. The infrared value of E; F; П at N = 1 as a func-
tion of m (S > 0 represents the “+” solution and S < 0 repre-
sents the “−” solution). 
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smaller than a critical value. The critical mass decreases 
apparently with the rise of the number of fermion flavors 
and vanishes at a critical value Nc, which corresponds to 
the critical number of fermion flavors of QED3 in the 
chiral limit. It is an interesting phenomena which deserve 
further investigations. 
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