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ABSTRACT 

Based on the thesis that baryons including protons and neutrons are Yang-Mills magnetic monopoles which the author 
has previously developed and which has been confirmed by over half a dozen empirically-accurate predictions, we de- 
velop a GUT that is rooted in the SU(4) subgroups for the proton/electron and neutron/neutrino which were used as the 
basis for these predictions. The SU(8) GUT group so-developed leads following three stages of symmetry breaking to 
all known phenomenology including a neutrino that behaves differently from other fermions, lepto-quark separation, 
replication of fermions into exactly three generations, the Cabibbo mixing of those generations, weak interactions which 
are left-chiral, and all four of the gravitational, strong, weak, and electromagnetic interactions. The next steps based on 
this development will be to calculate the masses and energies associated with the vacuum terms of the Lagrangian, to 
see if additional empirical confirmations can be achieved, especially for the proton and neutron and the fermion masses. 
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1. Introduction 

In a recent paper [1], the author introduced the thesis that 
baryons, including protons and neutrons, are Yang-Mills 
magnetic monopoles. Based on this thesis, it was possi- 
ble to predict that the electron rest mass is related to the 
masses of the up and down quarks according to 

   
3

22πe d um m m   ((11.22) of [1]), with the factor  

of  
3

22π  emerging following a Gaussian integration  

over three space dimensions. Subsequent calculations 
showed that the best known values of the up and down 
masses in turn lead a binding energy of 7.667 MeV per 
the proton and 9.691 MeV per neutron yielding an aver- 
age binding energy of 8.679 MeV per nucleon ((12.6) 
through (12.8) of [1]), very much in accord with what is 
empirically observed, and to binding energies for 56Fe 
which were predicted to be extremely close to what is 
observed for that nuclide. Noting also that the deuteron 
binding energy is extremely close to what is known from 
best available data to be the mass of the up quark, we 
further hypothesized that these might be one and the 
same, which could be explained if the energies released  

during nuclear fusion are based on some form of “reso- 
nant cavity” analysis in which the discreet energies 
which are observed to be released are based on the 
masses of the quarks contained within the nucleons and 
nuclides. This led to a prediction that 56Fe has a latent 
available binding energy of 493.028394 MeV ((12.14) of 
[1]), which we then contrasted to the empirical binding 
energy of 492.253892 MeV. This small difference was 
understood as indicating that 99.8429093% of the avail- 
able binding energy predicted by this model of nucleons 
as Yang-Mills magnetic monopoles goes into binding 
together the 56Fe nucleus, and that the remaining 
0.1570907% goes into confining the quarks within the 
nucleons. This in turn, lead us by the conclusion of [1] to 
a deepened understanding of how quark confinement is 
intimately related to nuclear binding and fission and fu- 
sion and the peak in per nucleon binding energies at 56Fe, 
and perhaps to an understanding of the so-called First 
ECM effect (see [1], pp. 62 and 66). 

A second paper [2] extended this analysis, and showed 
that based on this same “resonant cavity” analysis, the 
binding energies of the remaining 1s nuclides, namely 3H, 
3He and 4He, can be predicted to at least parts per hun- 



J. R. YABLON 

Copyright © 2013 SciRes.                                                                                 JMP 

95

dred thousand and in most cases parts per million. This 
latter paper also showed that the observed neutron-pro- 
ton mass difference is predicted by the relationship 

      
3

23 2 3 2πu d d uM n M p m m m m m      

(in (7.2) of [2]) to better than 1 part per million. In Sec-
tion 10 of [2], we explained why this should be regarded 
as an exact relationship, and therefore modified our ear-
lier hypothesis that the deuteron binding energy is ex-
actly equal to the up quark mass, into one in which these 
energies are very close—to just over 8 parts in ten mil-
lion—but not exactly the same. In Section 9 of [2] we 
used these results to predict solar fusion energies solely 
from up and down quark masses, and found the results to 
also be in very tight accord with the observed data. 

The lesson taken from [1,2] together, is that empirical 
evidence strongly supports the thesis that Yang-Mills 
magnetic monopoles are in fact baryons on the basis of 
seven independent predictions which closely match the 
experimental data, specifically: 1) the electron mass in 
relation to the up and down masses, 2) the 56Fe binding 
energy specifically, and the per-nucleon binding energies 
on the order of 8.68 MeV in general, 3) the proton minus 
neutron mass difference, and 4-7) the four distinct nu- 
clide binding energies predicted for 4) 2H, 5) 3H, 6) 3He 
and 7) 4He. The study of solar fusion in Section 9 of [2] 
does not contain anything independent of the predictions 
1) through 7), but rather applies several of these predict- 
tions in combination, and underscores that a “resonant 
cavity” analysis of nucleons and nuclides does consis- 
tently lead to empirically-accurate binding energies, evi- 
denced by all of predictions 3) through 7) above. 

While the theoretical foundation for all of these suc- 
cessful predictions was laid throughout [1], it was the 
field strength tensors for the proton and neutron, (11.3) 
and (11.4) of [1], reproduced below: 

PTr
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" " " "
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when used to calculate the energy according to 

31
Tr d

2
E F F x

   

((11.7) of [1]), which formed the specific basis for the 
calculations that led to all of these predictions. These 
field strength tensors, in turn, emerged as stable magnetic 

monopoles following specification of the SU(4)P “pro- 
tium” and SU(4)N “neutrium” gauge groups in Section 7 
of [1], followed by breaking the symmetry of these 
groups using the baryon minus lepton number generator 
B − L via  GUTv B L    ((8.1) of [1]). So we take 
the thesis presented in Sections 7 and 8 of [1] that the 
protons and neutrons emerge following the B − L break-
ing of the SU(4)P and SU(4)N groups to be supported by 
the compelling evidence of predictions 1) through 7), and 
so regard SU(4)P and SU(4)N as subgroups that do de-
scribe the real physical universe, not just some arbitrary 
groups that may or may not appear in the natural world. 
In short, we take accurate empirical predictions 1) 
through 7) above as direct evidence of the physical real-
ity of SU(4)P and SU(4)N. 

Based on all of the foregoing, we shall in this paper 
take SU(4)P and SU(4)N as physically-validated, reliable 
building blocks for developing a “Grand Unified Theory” 
(GUT) based on the empirically-confirmed thesis that 
baryons, including protons and neutrons, are Yang-Mills 
magnetic monopoles. 

2. Unification and Grand Unification in 
Physical Science 

At least since the time when Isaac Newton hypothesized 
that the terrestrial “force” which caused an apple to fall 
from a tree was the same as the celestial “force” which 
guided the movements of the planets, unification has 
been a central objective of physical science. The pre- 
eminent scientist, entrepreneur and statesman Benjamin 
Franklin catapulted to fame when he realized that the 
terrestrial sparks he was creating in his laboratory were 
of a unified piece with the lightning from the heavens, 
and applied that understanding in a very practical way to 
develop lightning rods which cured an epidemic of mid- 
18th century electrocutions throughout Europe brought 
about by the superstition of sending church bellringers to 
steeples at the highest place in town to clang large metal- 
lic bells to ward off the anger of the Gods every time a 
lightning storm approached. James Clerk Maxwell in 
1873 elaborated what to that date was, and perhaps even 
to today’s date is, the preeminent physical unification 
and at least the very paradigm of unification, as he pulled 
together the disparate threads of Gauss, Faraday and 
Ampere into a unifying set of equations for electricity 
and magnetism. This was deepened a generation later 
with Einstein and Minkowski’s Lorentz-invariant unifi- 
cation of space and time. In these and similar endeavors 
the underlying theme has always been the same: to take 
what appear on their surface to be disparate natural phe- 
nomena, and acquire a deeper understanding which 
shows them to be governed by a single, common prince- 
ple. The success of past unifications leaves today’s gen- 
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eration of physicists with the firm conviction that further 
unifications can still be achieved, and that one day in the 
future, all of the laws of nature can and will be deduced 
from one common vantage point. After all, what is natu- 
ral science other than an endeavor to explain what is ob- 
served through our direct senses and the clever instru- 
mentation that extends our senses, by relating those ob- 
servations to mathematically precise laws of nature 
which apply consistently, uniformly and replicably, 
without exception, in the broadest possible range of cir- 
cumstances? 

So-called “Grand Unified Theories,” or GUTs, are part 
and parcel of this esteemed tradition, and are based spe- 
cifically on the advent of Yang-Mills gauge theories and 
the realization that these Yang-Mills theories have a re- 
markable capacity to explain what is observed in nature 
as evidenced though their already-successful application 
to weak and strong and electroweak interactions. The 
Georgi-Glashow SU(5) model [3] which was reviewed at 
some length in Section 8 of [1] was one of the first 
“GUTs” and is perhaps the best known. The basic idea of 
Georgi-Glashow and any other GUT is to be able to rep- 
resent all of the fermions which are observed in nature, 
and all of their interactions, using a single, simple gauge 
group with a symmetry which is then broken in one or 
more stages to arrive at the particle and interaction phe- 
nomenology observed in a laboratory setting. The fer- 
mions are the up and down quarks, the electron and neu- 
trino leptons, and ideally their higher-generational carbon 
copies distinguished from the first generation solely by 
larger mass. The generators of the gauge group represent 
“interactions” of which there are understood to be four: 
gravitational, strong, weak and electromagnetic. The ei- 
genvalues of the diagonalized generators of the gauge 
group, which are linearly related to discrete natural 

numbers such as 
2

3
 and 

1

3
  and 

1

2
  and −1 and 0, 

represent the “charges” of these fermions with respect to 
these interactions. A particular fermion may be associ- 
ated with a particular eigenstate (eigenvector) of a repre- 
sentation of the GUT gauge group if all of its eigenvalues 
for all of the generators match up with what are known to 
be the charges of that fermion with respect to all of these 
interactions. So, for example, an electron is by definition 
the fermion eigenstate for which the lepton number ei- 
genvalue L = 1, the baryon number eigenvalue B = 0, and 
the electric charge eigenvalue Q = −1. And the transi- 
tions/decays of a fermion from one eigenstate into an- 
other, or its interactions in a given eigenstate, lead to the 
mediating vector bosons of the theory. The trick in any 
GUT, is to characterize all of the interrelated charges of 
all of the fermions in the “simplest” way possible, to 
understand the stages and ways in which the symmetry of 
the group is broken starting at ultra-high energies and 

working down to energies which can be reached in a 
laboratory setting, and of course, to end up with some- 
thing that accurately comports with all observed empiri- 
cal data. 

With this in mind, and as used in the discussion here, 
we distinguish “GUTs” from “unified field theories” 
more generally, as that subset of unified field theories 
which is specifically centered on understanding fermions 
and their interactions via their discrete charges using 
Yang-Mills gauge groups, and on making whatever ob- 
servable predictions can be made based on such an un- 
derstanding. So, for example, Kaluza-Klein theory, 
which to this day represents an exceedingly elegant clas- 
sical unification of general relativity with Maxwell’s 
electrodynamics using a fifth spacetime dimension that 
from today’s vantage point is best understood as the 
“matter dimension” [4], is most certainly a form of “uni- 
fied field theory” (and one which in the view of this au- 
thor warrants more universal acceptance than it has at 
present, especially given that what we know of Yang- 
Mills gauge theory should permit both gravitation and 
electromagnetism in Kaluza-Klein form to be extended 
into non-Abelian domains). But Kaluza-Klein is not a 
GUT in the sense that GUTs are focused on the use of 
Yang-Mills gauge groups to represent fermions and their 
interactions, and Kaluza Klein, at least absent a Yang- 
Mills extension, has nothing to say about fermions. 
While one may define the term “GUT” more expansively 
to also include so-called “supersymmetric” theories, the 
foregoing defines by example, what we have in mind in 
this paper when referring to a “GUT”, as opposed to a 
“unified field theory” without the GUT qualifier. 

The Galilean foundation for all of modern science is 
that theory must be the confirmed by observation, and 
that the goal or at least an important by-product of theory 
is to systematically explain observation. For physical 
theorists, the pursuit is about systematically compre- 
hending nature and confirming that comprehension based 
on experimental data, or as Hawking and Einstein have 
more loftily put it, “reading the mind of God.” Because 
GUTs necessarily theorize about the behavior of nature 
at ultra-high energies such as 1015 GeV and even higher 
that are unlikely to ever be reached by human experi- 
mentation under any foreseeable circumstances (with the 
possible exception of what we can learn by peering back 
billions of years through astronomical telescopes), such 
GUT theories necessarily opine on physics that may for- 
ever be beyond the reach of direct experimental confir- 
mation. So the only way to discern the primacy of one 
GUT over another is indirectly, by virtue of what it pre- 
dicts about low energy phenomenology that we can or 
may soon be able to observe. So as we consider how to 
construct the “puzzle” which is a GUT and decide what 
“pieces” to use in that puzzle, we want to start with puz- 
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zle pieces that already are solidly-grounded in empirical 
observation. 

Based on the seven independent predictions enumer- 
ated in the last section which closely match the empirical 
nuclear binding and related data based on the thesis that 
baryons are Yang-Mills magnetic monopoles, the GUT 
that we develop here will start with the SU(4)P and 
SU(4)N gauge groups developed in Sections 7 and 8 of 
[1], knowing that these groups now have been validated 
by over half a dozen independent pieces of empirical data 
from nuclear and particle physics. Additionally, because 
we have shown in [1,2] how to connect these gauge 
groups to energy numbers which can be and indeed have 
been empirically confirmed, an important objective in 
developing a GUT on the basis of SU(4)P and SU(4)N is 
to lay the foundation for perhaps obtaining additional, 
similar, successful predictions of other known energies 
which have been crying out for theoretical understanding 
for decades, most particularly, and most importantly, the 
free proton and neutron masses, and the observed fer- 
mion masses. 

If it should be possible on the basis of a particular 
GUT to make accurate predictions of the proton and neu- 
tron and/or fermion masses, then even absent the ability 
to ever directly observe the 1015 GeV and higher energy 
phenomena which lead to these predictions, such predict- 
tions would certainly be solid evidence, albeit through 
indirect inference rather than direct observation, that 
such a GUT has also explained to us how nature behaves 
behind the veil of energies that we shall most certainly 
never get to directly observe (again, with possible astro- 
nomical caveat). 

In other words, because a GUT, by its very nature, 
seeks to reach into energy domains that will likely be 
forever beyond human reach, it must fulfill the Galilean 
project by accurately explaining all of the masses and 
energies that we do observe through the instrumentation 
that does rest within our grasp, while at the same time 
teaching us about physics at energies that we shall likely 
never have the capacity to see directly. It is the prediction 
of the energies and masses we do observe, that gives us 
some measure of confidence that we are not being led 
astray by what the GUT tells us about the physics of un- 
reachable energies. To use a different metaphor, GUTs 
seek to teach us about an entire iceberg, most of which 
we shall never be able to observe. So what the GUT 
teaches us about the tip of that iceberg which we can see, 
must be solidly-confirmed by empirical data every step of 
the way for us to have some confidence in what it teaches 
us about the rest of the iceberg which will forever remain 
out of sight. 

Based on the foregoing, the purpose of this paper is to 
develop a GUT rooted in the thesis that baryons are 
Yang-Mills magnetic monopoles and the seven success- 

ful predictions which have already emanated from that 
thesis in [1,2], and to lay the foundation for additional 
mass and energy predictions, including those of the free 
proton and neutron and the fermion masses. 

3. Some Clues for Pursuing the Proton, 
Neutron and Fermion Masses 

Before we can make predictions of the proton and neu- 
tron and fermion masses, we must construct a reliable, 
empirically-grounded GUT, and we must know how to 
break its symmetry. Why do we say this? 

We have already shown in [2] how the nuclear binding 
energies in the 1s shell arise from using the field strength 
tensors (1.1) and (1.2) to calculate an energy 

3
gaugedE x L  via the pure gauge terms in the La-  

grangian (3.8) of [2]: 

 
3

2
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2 AB BA AA BBF F F F
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 

L ,    (3.1) 

together with components ,u dm m  and u dm m  of the  

outer product PABCDE  ((4.9) through (4.11) of [2]). But 
these binding energies are calculated using only the pure 
gauge field terms (3.1) of the Lagrangian developed in 
(3.12) of [2], written with the terms slightly regrouped: 
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L

(3.2) 

We have not yet even begun to develop these other 
terms at all, yet it is made very clear by the development 
in [1,2] that additional energy numbers can and will arise 
from complete development of these terms. So, we must 
develop these additional terms and we will look to them 
to perhaps lead us to the proton and neutron and fermion 
masses. But because all of these terms contain the vac-
uum  , the actual numeric energy values we obtain 
from these  -containing terms will depend upon the 
GUT gauge group we choose, and upon its vacua   
and how these vacua are used to break symmetry. (We 
use the plural vacua because we have in mind breaking 
symmetry in sequence using the Planck vacuum on the 
order of 1019 GeV, so called GUT vacuum on the order 
of 1015 GeV, and the Fermi vacuum vF = 246.219651 
GeV used to break electroweak interactions to electro-  
magnetic interactions via      2 1 1

W Y EM
SU U U  .) 

For example, given from (3.11) of [2] that: 
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   ,EFEF EF
D i G          ,      (3.3) 

we see that terms in (3.2) with   D D
   will mix  

gauge fields G  with vacuum fields  . So whereas 
the pure gauge terms (3.1) led to expressions such as (4.9) 
and (4.10) of [2], namely: 
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 (3.5) 

we should be alert to opportunities to develop mixed 
gauge field/vacuum terms where one of these matrices is 
replaced by a vev, especially the Fermi vev vF = 
246.219651 GeV, so we can develop an energy “tool-  

box” with such expressions as F uv m  and F dv m . 

Why the Fermi vev? And why these square root expres- 
sions? Because numerical inspection of the square roots 
of the three main masses in (4.11) of [2] used to calculate 
binding energies throughout [2], times the square root of 
the Fermi vev, shows that: 

739.960397 MeVuv m  ,        (3.6) 

1099.12211 MeVdv m  ,         (3.7) 

901.835259 MeVu dv m m  .     (3.8) 

These clearly are at exactly the right order of magni- 
tude to explain the free proton and neutron masses M(p) 
= 938.272046(21) MeV and M(n) = 939.565379(21) 
MeV, if and when we can put (3.6) through (3.8) and like 
expressions into the right context and obtain the right 
coefficients. And where do such coefficients come from? 
The generators of a GUT! (The author’s subsequent pa-
per in this same special issue of JMP starts with (3.8) to 
indeed successfully explain the free neutron and proton 
rest masses.) 

So the proton and neutron masses, via the order of 
magnitude analysis above, straddle right down the mid- 
dle of the Fermi vev and the masses of the quarks. One 
should therefore be on the lookout for ways to exploit 
this via the “mixed” gauge field vacuumG   terms in 
Lagrangian (3.2). And as noted at the end of Section 10 
of [2], one should keep in mind that relation 

      
3

23 2 3 2πu d d uM n M p m m m m m      

for the free neutron-proton mass difference now allows 
us to find the neutron and proton masses individually, so 
long as we can find sum expression which involves the 
sum of these masses. So it may well be that our target 
should be    M n M p  or some multiple thereof 
(perhaps the 4He alpha nucleus studied extensively in 
[2]?) rather than either of these masses individually. 

For another example, we go all the way back to (2.1) 
of [1], Maxwell’s charge equation: 
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    (3.9) 

with D iG     , and where in the final term we 
have hand-added a “Proca mass.” Based on (3.3), we can 
readily specify an analogous field equation: 
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  (3.10) 

for a Yang-Mills (non-commuting) scalar field   with 
a scalar source J. In fact, this is just the Klein-Gordon 
equation for a non-Abelian (non-commuting) Yang-Mills 
scalar field with a non-zero scalar source, into which we 
have hand-added a Proca mass in the usual way. The rea- 
son this is of interest is that a central step in Section 2 of 
[1] was to develop the inverse G I J 

   and then intro- 
duce fermion field wavefunctions   via J    , 
so that we went from G I J I 

     . But we 
can follow an analogous path with (3.10) by building 
scalar source J out of fermions via J  . Then we 
can develop an inverse via IJ   and follow the 
analogous progression IIJ    . Consequently, 
the terms of the Lagrangian (3.2) quadratic in the scalar 
field can be developed as 2 2 2I IJ   , and 
then we can follow the path of section 3 of [1] by em- 
ploying spin sums    2uu N m m     , with the 
full progression  

    

2 2 2

2 2

I I

I

J

N m m



  

 

   
 

Then, if we pursue the same course of development as 
in [1] from start to finish, when we finally reach the 
counterpart of (11.19) of [1] and collapse the propagators 
so that interactions occur essentially at a point, we will 
end up with a Lagrangian term of the schematic form: 

 

2 2

2 2

I I

I
f

J

N
m

m m



 

  

 


L

        (3.11) 

But this is the form of a Fermion mass term in a La- 
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grangian, with the mass of the fermion specifically iden- 
tified with  2 2Ifm N m m   . Concurrently, the vev 
v should also enter into this when we break symmetry 
with a generator G by setting vG  . So this is a pos-
sible prescription, using the   terms in (3.2), for 
revealing a fermion rest mass out a Lagrangian while 
preserving gauge symmetry and thus maintaining renor-
malizability! 

But because the specifics of all of this center around 
the vacua  , it becomes essential to have the right GUT 
gauge group, and to know how to break its symmetry in 
appropriate sequence. As noted above, to do this, we 
begin to develop a GUT gauge group using the SU(4)P 
and SU(4)N gauge groups developed in Sections 7 and 8 
of [1], knowing that these groups now have been vali- 
dated by over half a dozen independent pieces of empiri- 
cal evidence from nuclear and particle physics. We build 
upon these empirically-validated puzzle pieces in the 
hope that this run of positive empirical predictions will 
continue with the masses and energies predicted by the 
terms in (3.2) which include the vacua  . 

4. An Unbroken SU(8) GUT Group which 
Accommodates All Fermions and Left and 
Right-Chiral States, All Interactions, 
Three Generations, and an Idiosyncratic 
Neutrino, with Nothing Missing and 
Nothing Superfluous 

The proton and the neutron, of course, form an SU(2)  

weak isospin doublet  ,p n  with 3 1 1
,

2 2
I

    
 

, re- 

spectively. But both the proton and the neutron are com- 
posite entities comprising three quarks, and as we have 
argued and indeed supported with empirical nuclear 
binding data, they are Yang-Mills magnetic monopoles. 
So really, the proton/neutron doublet is a doublet of trip- 
lets,     , , , , ,d u u u d d . And the left-chiral weak iso- 
spin quantum numbers 3

LI  associated with this triplet  

doublet are 
1 1 1 1 1 1

, , , ,
2 2 2 2 2 2

        
   

. 

In Section 7 of [1], we demonstrated that at ultra-high 
GUT energies the proton was part of a larger gauge 
group which we dubbed the SU(4)P “protium” group 
which includes the proton and the electron, and that the 
neutron was similarly part of a larger gauge group we 
dubbed the SU(4)N “neutrium” group which includes the 
neutron and the neutrino. As we then showed in Section 8 
and specifically (8.1) of [1], these two groups are broken 
by a vacuum  GUTv B L    of a “baryon minus lep-  

ton number” generator 158

3
B L     such that a pro-  

ton triplet , ,R G Bd u u  is separated from the electron for 
SU(4)P and a neutron triplet , ,R G Bu d d  is separated 

from the neutron for SU(4)N, and each triplet becomes 
part of a topologically-stable magnetic monopole. It was 
on the basis of these proton and neutron triplets broken 
out from SU(4), that we successfully rendered the seven 
predictions summarized in Section 1, and also correctly 
derived the fusion energy released during the solar fis- 
sion cycle strictly as a function of the up, down and elec- 
tron fermion masses. So these triplets and the SU(4)P and 
SU(4)N groups in which they are embedded would appear 
to be very solid puzzle pieces for constructing a larger 
GUT which is well-grounded empirically. That is exactly 
what we shall do here. 

Normally, one works from the phenomenological 
gauge group      3 2 1

C W Y
SU SU U   and tries to 

find larger simple groups G which embed all of these and 
their associated fermions. The SU(5) model of Georgi- 
Glashow [3] reviewed at some length in Section 8 of [1] 
is a paradigmatic example. Here, we shall start with 
SU(4)P and SU(4)N which we know lead to accurate 
binding energy predictions, and seek to construct a larger 
simple gauge group which includes these two groups, 
and which also encompasses the usual phenomenological 
gauge group      3 2 1

C W Y
SU SU U  . The group we  

shall choose?      8 4 4
N P

SU SU SU  . This is a  

larger group than SU(5), but as we shall see, it brings 
with it numerous benefits including 1) the ability to ac- 
commodate a non-zero neutrino mass and thus right- 
handed chiral neutrinos which are omitted from SU(5); 2) 
the ability to accommodate all flavors and colors of fer- 
mion, as well as protons and neutrons, all in the funda- 
mental group representation (SU(5) splits the fermions 
into a fundamental 5 and a non-fundamental 10 repre- 
sentation while omitting the right-chiral neutrino); 3) the 
ability to accommodate different left and right-handed 
chiral projections with respect to weak hypercharge Y 
and weak isospin I3, for all fermions; 4) a solution, at 
long last, to the mystery of fermion replication into ex- 
actly three generations, and 5) interaction generators that 
may well be associated with gravitation based on the 
manner in which the elusive neutrino stands alone with 
respect to all other fermions by having an exceedingly 
tiny neutrino mass that is orders of magnitude smaller 
than the masses of the other fermions, and based on the 
ability to finally understand the origins of fermion gen- 
eration replication. 

We construct this SU(8) group by establishing a fun- 
damental representation containing the fermion octuplet 

    , , , , , , ,R G B R G Bu d d e d u u . The neutron triplet 
 , ,R G Bu d d  and proton triplet  , ,R G Bd u u  are design- 
nated in separate parenthesis for visual emphasis, and as 
we can see, the neutrium group  , , ,R G Bu d d  occupies 
the first four members of this octuplet and the protium 
group  , , ,R G Be d u u  occupies the last four members. 
Of course, what really counts are the quantum numbers, 
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so let’s now turn to those. 
In (7.1) of [1], we established that for the protium 

quadruplet, the electric charge generator could be speci- 

fied by  8 15 82 2
2

3 3
Q B L         . But in  

(7.3) of [1], we were required to use a different electric  

charge generator, namely 82

3
Q   for the neutrium  

quadruplet. This if OK when the proton and electron are 
treated separately from the neutron and neutrino, and this 
was good enough to get us over half a dozen good bind- 
ing energy predictions and other empirically-supported 
relationships. But once we put all these fermions to- 
gether into one octuplet representation of a unifying 
group this is no longer OK, and we need to define a new 
electric charge generator that works uniformly for all of 
the fermions in the group. 

So let us now see exactly how we can put these two 
groups together and what this implies for the nature of 
the GUT that does so. SU(8) of course contains seven 
diagonalized 8 × 8 generator matrices, so rather than take 
up visual space with seven 8 8  matrices in which all 
but the diagonal elements are zero, let us construct this 
group using the tables below which convey the same 
information more compactly in an easier-to-follow form. 

First, as just noted, the electric charge generator is 

 8 15 82 2
2

3 3
Q B L          

for SU(4)P, while it is 82

3
Q   for SU(4)N. So if we  

lay out the eight fermions of this octuplet in a vertical 
column and show the three generators 15 8 3, ,    of 
SU(4) in the first three columns (we actually show  

158

3
B L     which is merely a linear multiple of  

15 ), and then show generators for electric charge Q, 
right-chiral weak hypercharge 2RY Q , left chiral weak 
hypercharge LY B L  , and right-chiral weak isospin 

3 0RI  , which are all linear combinations of one or more 
of the three generators 15 8 3, ,   , we end up with Ta- 
ble 1 below. 

In Table 1 below, we have segregated the SU(4)P and  

SU(4)N generators  15 8 33
, ,

8
B L      from the  

remaining generators, so that we can clearly see that 
there are three linearly-independent degrees of freedom. 
The remaining generators for Q, YR, YL, are all linear 
combinations of the first three generators, and so provide 
no additional degrees of freedom, while 3 0RI   can be 
trivially obtained from any other generator using the co- 
efficient 0. We shall wish, in the course of our analysis, 
to maintain a focus on the independent degrees of free- 
dom. What makes the upper neutrium quadruplet not 
unified with the lower protium quadruplet is the fact, as 
mentioned above, that although all the other generators 
have the same form (i.e., are invariant) as between the  

 
Table 1. Fermions and generators of SU(4)N and SU(4)P. 

 Linearly Independent Degrees of Freedom Linear Combinations 

 158

3
B L     8  3  

82

3
Q   2RY Q  LY B L   3

RI  

ν 1  0  0  0  0  1  0  

uR 
1

3
 

1

3
 0  

2

3
 

4

3
 

1

3
 0  

dG 
1

3
 

1

2 3
  

1

2
 

1

3
  

2

3
  

1

3
 0  

dB 
1

3
 

1

2 3
  

1

2
  

1

3
  

2

3
  

1

3
 0  

 " " " 82

3
Q B L     " " " 

e 1  0  0  1  2  1  0  

dR 
1

3
 

1

3
 0  

1

3
  

2

3
  

1

3
 0  

uG 
1

3
 

1

2 3
  

1

2
 

2

3
 

4

3
 

1

3
 0  

uB 
1

3
 

1

2 3
  

1

2
  

2

3
 

4

3
 

1

3
 0  
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upper and lower quadruplets as denoted by the “dittos”, 
the electric charge generators are defined by different 
linear combinations. So electric charge Q is not an in- 
variant as between these two quadruplets. It is worth not- 
ing that for all of these fermions, LY B L  , so LY  is 
not itself a linearly-independent generator from 15 . 

The one generator that we do not see explicitly repre-  

sented in the above, of course, is the generator 3 1

2LI    

of left-chiral weak interaction, and this is related very 
intimately to the different Q generators as highlighted 
above. So, let us now a) introduce 3

LI  and b) use this 
3
LI  in combination with YL which happens to be equal in 

all cases to B L , to specify 32L LQ Y I   as is ordi-
narily done in electroweak theory. Then, having Q in 
hand, and given 3 0RI  , we may further specify 

2RY Q  if we insist on the chiral-invariant relationship 
3 32 2L L R RQ Y I Y I    . 

So we now take Table 1 above, introduce all seven of 
the SU(8) diagonalized generators with the normalization  

 2 1
Tr

2i  , and specify suitable linear combinations of  

these. Then, we review not only how this accommodates 
the fermions and generators in Table 1 above, but also 
the new interaction generators that are introduced and 
their possible physical significance. 

Aesthetically, is very simple and natural for the eight 
fundamental flavors and colors of fermion 
 , , , , , , ,R G B R G Bu d d e d u u  to each be made a member 
of the fundamental representation of SU(8). And, be-  

cause one does have eight fermions in nature (per gen- 
eration), a natural question is, why not use SU(8)? Some- 
times, what appears to be the simplest approach really is 
the simplest approach, and leads to the best results, and 
we don’t have to try to unnaturally “squish” eight fer- 
mions into a smaller group like SU(5) and then lose the 
right-chiral neutrino and split the representations. 

In this regard, the question we shall explore largely 
throughout the rest of this paper—which is one of the 
reasons why one might not use SU(8)—is whether SU(8) 
is simply too large and can or ought to be made smaller. 
(We shall answer this question, “no”!) By “too large,” we 
refer not to aesthetics, but to superfluity: does this group 
introduce any extra, superfluous particles or interactions 
which simply do not appear anywhere in the natural 
world. Put concisely, the underlying question is this: is 
SU(8) sufficient, and is everything in SU(8) necessary? 
Does it yield everything, and not one iota more? (We 
shall answer these questions, “yes”!) 

Specifically, in going from two disjoint SU(4) groups 
in Table 1 to one unified SU(8) group in Table 2, we 
have gone from three independent generators 15 8 3, ,    
to seven. Out of these four new generators, we have left 
three of these, 63 48 35, ,   , in their “native” form with- 
out alteration, pending further exploration of these gen- 
erators below. The fourth new generator, 24 , we do not 
show explicitly. Rather, we use the degree of freedom 
provided by 24 to introduce the left-chiral weak isospin 
generator 3

LI , which we define as a linear combination 
of six of the seven “native” generators according to: 

 
Table 2. Fermions and generators of SU(8). 

 Linearly Independent Degrees of Freedom Linear Combinations 

 63  48  35  
3

LI  B L  8  3  LY  Q  RY  3

RI  

ν 
1

7
2 28

  0  0  
1

2
 1  0  0  1  0  0  0  

uR 
1

2 28
  

1
6

2 21
  0  

1

2
 

1

3
 

1

3
 0  

1

3
 

2

3
 

4

3
 0  

dG 
1

2 28
  

1

2 21
  

1
5

2 15
  

1

2
  

1

3
 

1

2 3
  

1

2
 

1

3
 

1

3
  

2

3
  0  

dB 
1

2 28
  

1

2 21
  

1

2 15
  1

2
  

1

3
 

1

2 3
  1

2
  

1

3
 

1

3
  

2

3
  0  

e 
1

2 28
  

1

2 21
  

1

2 15
  

1

2
  1  0  0  1  1  2  0  

dR 
1

2 28
  

1

2 21
  

1

2 15
  1

2
  

1

3
 

1

3
 0  

1

3
 

1

3
  

2

3
  0  

uG 
1

2 28
  

1

2 21
  

1

2 15
  

1

2
 

1

3
 

1

2 3
  

1

2
 

1

3
 

2

3
 

4

3
 0  

uB 
1

2 28
  

1

2 21
  

1

2 15
  

1

2
 

1

3
 

1

2 3
  

1

2
  

1

3
 

2

3
 

4

3
 0  
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3 63 48 35

24 15 8

2 4 2

7 21 15

2 2 2
.

5 3 3

LI   

  

  

  

        (4.1) 

One can readily check that  

 3 1 1 1 1 1 1 1 1
diag , , , , , , ,

2 2 2 2 2 2 2 2LI
      
 

 

as in Table 2. 
Now, for the bottom quadruplet with  , , ,R G Be d u u ,  

we have 152
2

3
B L     as before. But this relation-  

ship needs to be replicated out of the native generators 
for the top quadruplet  , , ,R G Bu d d  as well. This is 
realized by the following linear combination of native 
generators: 

63 48 35

24 15

4 4 4 3

9 57 3 21

2 2 2
2

3 5 3

B L   

 

    

 

   (4.2) 

So we use (4.1) and (4.2) above to account for the two 
linearly-independent degrees of freedom in 24  and 

15 . It is easy to check as in Table 2, that  

  1 1 1 1 1 1
diag 1, , , , 1, , ,

3 3 3 3 3 3
B L

     
 

. 

Similarly, we cannot use 8  alone, but must dupli- 
cate this as well for the top quadruplet  , , ,R G Bu d d . 
This is achieved by defining a 8  generator: 

8 48 35 24 87 2 2

3 153 5
         .     (4.3) 

As required from Table 2, a check finds that  

 8diag

1 1 1 1 1 1
0, , , ,0, , ,

3 2 3 2 3 3 2 3 2 3



      
 

 

Finally, and similarly, we need to define a 3  ac-
cording to: 

3 35 24 33 2

5 5
       .          (4.4) 

This yields 

 3 1 1 1 1
diag 0,0, , ,0,0, ,

2 2 2 2
      

 
 

as in Table 2. The foregoing, (4.1) through (4.4), account 
for four of the seven linearly-independent degrees of 
freedom in SU(8). We have yet to explore the three na- 
tive-form generators 63 48 35, ,   . 

From here, we define several other generators which 
are linear combinations of (4.1) through (4.4). First, via 
(4.2), we define: 

63 48

35 24 15

4 4

7 3 21

4 3 2 2 8

9 5 3 5 3

LY B L  

  

    

  

        (4.5) 

which happens to be exactly equal to B L  in (4.2) and 
so is not linearly independent. But LY  is non-chiral, i.e., 
it only applies to left-chiral projections. Next, we use 
(4.5) and (4.1) to define the electric charge generator in 
the usual manner, via: 

 3 3 3

48 35 24

15 8

1 1

2 2

2 7 4 2 2

3 3 3 53 15

2 2
2

3 3

L L L RQ Y I B L I I

  

 

     

  

 

      (4.6) 

One can check to see that  

  2 1 1 1 2 2
diag 0, , , , 1, , ,

3 3 3 3 3 3
Q

      
 

, 

as required by Table 2. In the third expression we make 
use of 3 0RI  , to show by way of contrast that Volo- 
vok’s Equation (12.8) in [5] also leads via a different  

route to the exact same   3 31

2 L RQ B L I I    . 

Next, we formally specify that the right-chiral genera- 
tor 

3 0RI                      (4.7) 

is to be zero for all the fermions so that only left-chiral 
particles will interact weakly. At the same time we insist 
that the electric charge generator 

3 31 1

2 2L L R RQ Y I Y I               (4.8) 

is to be defined as chiral symmetric for all fermions. This 
chiral insistence together with (4.6) and (4.7) finally 
leads to: 

48 35 24

15 8

4 7 8 4 2
2

3 3 3 53 15

2 4
4

3 3

RY Q   

 

   

 

  (4.9) 

So at this point, all of the known quantum numbers of 
the fermions are fully specified, including the left and 
right chiral projections for Y and I3. The fermions all re- 
side in the fundamental representation of SU(8), and the 
proton and neutron are represented as well in the way 
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that we have ordered the fundamental representation. 
And, while all of the foregoing certainly accounts for the 
observed fermions and their quantum numbers, we still 
have three extra linearly-independent degrees of freedom, 
which we can and do choose to associate with the gen- 
erators 63 48 35, ,    we have left in their native state. 

Now we return to the critical question: With these 
three apparently superfluous degrees of freedom, does 
SU(8) provide too much freedom? Does SU(8) provide 
more than what is necessary? Might we find some way, 
in the spirit of Georgi Glashow SU(5), to “squish” these 
fermions into a smaller group and take away some of this 
apparently-superfluous freedom? The answer is, no! And 
the reason is that this extra freedom is not superfluous, 
but is actually fully accounted for in the known particle 
phenomenology, and particularly, in the odd quirks of the 
neutrino and in the replication of fermion generations. 
Let us see how. 

First, the neutrino. One of the very perplexing features 
of the neutrino is that it has almost no mass, and is mad- 
deningly-elusive. While the electron and the quarks do 
have different masses from one another, the neutrinos are 
in a league of their own, by orders of magnitude. The 
neutrino mass is almost zero, which means that it travels 
at very close to the speed of light. Because of the 
equivalence of gravitational and inertial mass, the fact 
that the mass of the neutrino is so very different from that 
of all the other fermions means that in some rough man- 
ner of speaking, it is gravitating differently as well. For 
example, the mass of the electron’s neutrino is less than 2 
eV [6], while the electron itself has a mass of about 511 
KeV, which is over 250,000 times as large. This is of a 
totally different nature, involving completely different 
orders of magnitude, than 4 351853369u em m .  and 

9 601723351d em m .  which are the relationships be- 
tween the quark masses and the electron masses based on 
the quark masses arrived at in (10.3) and (10.4) of [2]. 
This appears to make the neutrino qualitatively different 
from all the other fermions, and we need to pinpoint the 
origins of this difference. 

Now consider the 63  in Table 2 and the fact that  

63 1

4 7
    for all of the up and down quarks and the  

electron, but that 63 7

4 7
    has a completely differ-  

ent value for the neutrino. Moreover, not only is the 
magnitude different by 7 to 1, but even more importantly, 
the sign is different. Indeed, that is why we chose to 
place the neutrino as the very top member of the SU(8) 
fermion octuplet. That means that the neutrino will in- 
teract completely differently under the interaction asso- 
ciated with 63 —whatever that interaction may be— 
from any other fermion. But if there is any interaction 

under which the neutrino behaves differently than all the 
other fermions, it is the gravitational interaction, because 
the most pronounced way in which the neutrino differs 
from the other fermions is via its ghostly mass and thus 
its ghostly way of gravitating. Further, we know on gen- 
eral principles that for any Yang-Mills gauge group 
which unifies gravitation with the other three interactions, 
there will have to be at least one degree of freedom given 
to the gravitational interaction. The only question is 
where and how this appears. 

So, we now make a preliminary association of the 
63  generator with a degree of freedom for a gravita- 

tional interaction, and we do so in a way that bakes in for 
the neutrino, an entirely different way of gravitating and 
thus displaying its mass, than any other fermion. 

So, now we have accounted at least in a general way 
(which we shall seek to deepen in the upcoming discus- 
sion) for all four of the known interactions, but we still 
have two more degrees of freedom unaccounted for, 
namely, those provided by 48 35,  . What are we to 
make of these? This brings us again to the question: does 
this not give us too much freedom? And again, the an- 
swer is, no! 

We still have to account for the replication of fermions 
into three generations, which is another oddity of the 
material world almost as mysterious as the oddities of the 
neutrino just discussed. Let’s ask the question directly: 
even if 63  is related to gravitation and can explain why 
the neutrino behaves so differently from all the other 
fermions, 48 35,   still give us two apparently super- 
fluous degrees of freedom. What does this mean? What 
can we do with those extra two degrees of freedom? And 
specifically, might they be origin of generation replica- 
tion? 

Any time we have two degrees of freedom such as are 
provided by 48 35,  , it is possible to construct three 
eigenstates out of those degrees of freedom. So, let us do 
just that, and label these states , ,e    as in Figure 1 
below. 

We use “primes” in these generators, because if they 
do represent degrees of freedom associated with genera- 
tion replication, they do not act in same way as the re- 
maining generators 63 24 15 8 3, , , ,      in Table 2. 
These other five generators represent a “vertical” sym- 
metry wherein each of the eight fermions is distin- 
guished from one another by different quantum numbers. 
But the appearance of three generations in which the 
quantum numbers are identical from one generation to 
the next, and in which for a given fermion, generation is 
distinguished exclusively by rest mass, is a horizontal 
symmetry. And it is for and to this horizontal symmetry, 
that we shall develop and devote the generators 

48 35,   . 
Now, in the forthcoming discussion, we shall seek to 

uncover in detail, the particular mechanism by which 
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these two generators 48 35,   separate themselves from 
the remaining vertical generators 63 3 8 3, , , ,I B L     
to situate themselves horizontally. The only point being 
made at the moment, is that two extra generators in 
Yang-Mills theory, such as 48 35,  , provide enough 
freedom to support three distinct states as in Figure 1. 
And these three states will come equipped with their own 
3 × 3 unitary matrices U to mix these states. And, if we 
are asking ourselves whether the extra two generators 

48 35,   provide too much freedom at the same time that 
we are seeking an explanation of the three fermion gen- 
erations, and given that those two extra generators pro- 
vide precisely the freedom needed to allow each particle 
to exist in one of three additional horizontal generational 
states, then perhaps these are not superfluous after all, 

but are instead the source of the generations. In that case, 
SU(8) becomes a perfect fit, large enough to accommo- 
date all that is observed including the idiosyncratic be- 
havior of the neutrino and the replication of fermion 
generations, and not one bit larger so as to contain any- 
thing superfluous that is not observed. 

So in Table 3 below, we shall use the schematic sym- 
bol   to denote a visual shorthand for Figure 1 below: 
a condensed symbol that represents two degrees of free- 
dom which are used to provide three distinct states 

, ,e    which appear in Figure 1. And, let us replace the 
generators 48 35,   with this schematic to represent the 
horizontal symmetry of generation replication. Thus, we 
now rewrite Table 2 in the form of Table 3 as shown 
below. 

 

 

Figure 1. Three generation eigenstates constructed from 48  and 35 . 
 

Table 3. Fermions and generators of SU(8), with generation replication. 

 Linearly Independent Degrees of Freedom Linear Combinations 

 63  48 35,   3

LI  B L  8  3  LY  Q  RY  3

RI  

ν 
1

7
2 28

    
1

2
 1  0  0  1  0  0  0  

uR 
1

2 28
    

1

2
 

1

3
 

1

3
 0  

1

3
 

2

3
 

4

3
 0  

dG 
1

2 28
    

1

2
  

1

3
 

1

2 3
  

1

2
 

1

3
 

1

3
  

2

3
  0  

dB 
1

2 28
    

1

2
  

1

3
 

1

2 3
  

1

2
  

1

3
 

1

3
  

2

3
  0  

e 
1

2 28
    

1

2
  1  0  0  1  1  2  0  

dR 
1

2 28
    

1

2
  

1

3
 

1

3
 0  

1

3
 

1

3
  

2

3
  0  

uG 
1

2 28
    

1

2
 

1

3
 

1

2 3
  

1

2
 

1

3
 

2

3
 

4

3
 0  

uB 
1

2 28
    

1

2
 

1

3
 

1

2 3
  

1

2
  

1

3
 

2

3
 

4

3
 0  



J. R. YABLON 

Copyright © 2013 SciRes.                                                                                 JMP 

105

 
Now, in Table 3, SU(8) has nothing superfluous, all 

eight fermions are represented with both left and 
right-chiral states, and each can exist in one of the three 

, ,e    horizontal generation eigenstates. We see that 
there are now four vertical interactions: 1) the strong 
QCD interaction with three color states and two genera- 
tor degrees of freedom 8 3,   ; 2) the weak isospin in- 
teraction represented by 3

LI ; 3) a B L  interaction to 
which the electromagnetic interaction of (4.6) is linearly  

related by  3 31 1

2 2L L LQ Y I B L I     ; and 4) a final  

63  providing a degree of freedom for a gravitational 
interaction, under which all fermions except the neutrino 
interact in one way, and under which the neutrino acts in 
a very different way, in a league by itself. This is the 
unbroken GUT group that seems best situated to fully 
accommodate not only all the known fermions and inter- 
actions and their key phenomenological properties, but 
the Yang-Mills magnetic monopoles which we now 
know are baryons, and which are very naturally grouped 
in this way of representing SU(8). 

5. Spontaneous Symmetry Breaking of SU(8) 
at the Planck and GUT Energy Scales, 
and the Emergence of Fermion 
Generations and Fermion Mass Degrees of 
Freedom 

In Section 8 of [1], we reviewed spontaneous symmetry 
breaking in the Georgi-Glashow SU(5) model, to provide 
a backdrop for breaking the protium group via  

     4 3 1
P PC B L

SU SU U 
   and the neutrium group 

via      4 3 1
N NC B L

SU SU U 
  . This of course led 

to stable protons and neutrons and later to the several 
accurate empirical binding energy predictions already 
noted. Here, we review a similar symmetry breaking 
based on the SU(8) group developed in the previous sec-
tion. Specifically, we review three symmetry breaking 
operations: a first symmetry breaking operation using the 
contemplated “gravitational” generator 63  at or near 
the Planck scale; a second symmetry breaking operation 
using the LY B L   generator at an ultra-high GUT 
energy perhaps in the 1015 GeV vicinity, and a third 
break of the electroweak symmetry at the Fermi scale 
using the electric charge generator Q. It is this third 
symmetry breaking that we hope to use to accurately 
predict the proton and neutron masses as discussed in 
Section 3 and highlighted in (3.6) to (3.8). But to set the 
context, let us start with the first two high-energy sym- 
metry breaking operations using 63  and LY B L  . 

If 63  is indeed a gravitational generator, then its 
mass scale will be at or near (within an order of magni- 
tude of) the Planck mass which is defined by 2

PGM c  , 
where G is the gravitational constant and c  contains 

the Planck constant and the speed of light. In terms of 
energies that we have been discussing here, 

191 221 10PM .  GeV is nineteen orders of magnitude 
larger than the proton mass. It is theorized that at this 
energy, there is a violent sea of vacuum perturbations, 
and two of the best references to review this understand- 
ing are [7,8]. We shall examine all of this more closely 
here as well, in the next section. 

Without yet going through all the details in this pass, if 
we employ the Lagrangian (3.2) and specify a Planck 
vacuum ; 1, ,63i

P Pi i     , we may break symme- 
try at or near P Pv M  using the 63  generator such 
that: 

   
 

63 , . .,diag diag

1
7, 1, 1, , 1, 1, 1, 1, 1

2 28

i
P P P Pi

P

v i e

v

     

       
   (5.1) 

with 0; 1, ,62Pi i     otherwise. (Again, we are not 
concerned here with the exact relationship which why we 
use   rather than =, but rather an order of magnitude 
examination of the qualitative features of this symmetry 
breaking.) This would immediately set the neutrino 
which is the top member of the elementary fermion octu- 
plet  , , , , , , ,R G B R G Bu d d e d u u  on a course to behave 
differently from all the other particles. If 63  is indeed 
a gravitational degree of freedom which notion we began 
to entertain in the last section, then it makes sense to re- 
gard the degree of freedom that 63  provides to be a 
freedom associated with the rest mass of the fermion, i.e., 
to be a vertical mass degree of freedom. So with symme- 
try breaking of the neutrino from all the other fermions at 
the Planck scale, right below the Planck scale all of the 
fermions except the neutrino would have one mass, and 
the neutrino would have a different mass. Most notably, 
the neutrino would have an oppositely-signed generator 
from all of the other seven fermions, which we shall re- 
visit in the next section. Thus, the neutrino can be ex- 
pected right from the start, to behave very uniquely as 
regards its mass, and as regards to how it gravitates. This 
could be a root cause of why the quark mass to electron 
mass ratios are  

4 351853369, 9 601723351u e d em m . m m .  , 

while 250,000em m  . One can envision that masses 
which are equal at the Planck scale might separate so that 
they differ from one another by factors of 4.35 to 1 or 
9.60 to 1 at observable energies. But for a ratio 

250,000em m   we expect this to be more than just 
“screening adjustments” as we go from high to low ener- 
gies. We expect this to be “baked in” to the underlying 
structure of the GUT gauge group right from the start. 

Moving on, we now venture down to the vicinity of a 
second 1510 GeVGUTv  , where we break the symmetry 
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with LY B L  . Again, we are simply for the moment 
talking about orders of magnitude for this energy scale. 
In fact, we have already discussed B L  symmetry 
breaking at some length in Section 8 of [1]. But in that 
earlier discussion, we regarded  4

P
SU  and  4

N
SU  

as disjoint groups each breaking down via  

     
     
4 3 1 ,

4 3 1
P PC B L

N NC B L

SU SU U

SU SU U
 

 

 

 
 

to produce a  

        1 1 1π 3 π 1 π 1
C B B

SU U U      

homotopy group with stable magnetic monopoles, essen- 
tially based on the disjointed groups of Table 1. Now, in 
contrast, we have conjoined these groups into SU(8) as 
represented by Table 2 above. So the symmetry breaking 
we are about to explore is a “wholesale” breaking of 

 4
P

SU  and  4
N

SU  together at once in SU(8), ver- 
sus the parallel, but “retail” symmetry breaking of 

 4
P

SU  and  4
N

SU  conducted in Section 8 of [1]. 
It is also worth noting as reviewed in Section 8 of [1], 

that Georgi and Glashow also break symmetry using the 
Y generator, albeit such that  

    1 1 1 1 1
diag diag , , , ,

3 3 3 2 2
i

i GUTT v        
 

 

for a right-chiral quintuplet  , , , ,R G B C C R
d d d e v  of 

fermions. So here, we are doing exact same thing as 
Georgi and Glashow insofar as using a Y generator to 
break the GUT symmetry circa 1015 GeV, but we are 
merely using a different group SU(8) versus SU(5), with 
all the fermions in the fundamental representation as 
shown in Table 2. Now let’s proceed. 

The group is now SU(8). Exactly as in (8.1) of [1], the 
vacuum we use is: 

 GUT GUT GUT Lv B L v Y             (5.2) 

Here, however, because of the SU(8) group, we have: 

 

 
  L

diag

1 1 1 1 1 1
diag 1, , , , 1, , ,

3 3 3 3 3 3

diag diag

GUT

i
i GUT

GUT GUT

T v

v B L v Y





     
 

  

  (5.3) 

Unlike Section 8 of [1], we no longer have 

158

3
B L     from which we set 15

2
2

3 GUTv     

and so obtain the Clebsch-Gordon coefficient via  

2 2 2 2
15

8

3 GUT GUTv C v   . 

Rather, here we have a B L  specified in (4.2) 
which is a linear combination of five generators. Thus, to 

break symmetry here, picking off the coefficients in (4.2), 
we now must set: 

63 48 35

24 15

4 4 4 3
; ; ;

9 57 3 21

2 2 2
; 2

3 5 3

GUT GUT GUT

GUT GUT

v v v

v v

  

 

   

  

 (5.4) 

with all the remaining 0i  . The invariant scalar: 
2 2 2 2 2
63 48 35 24 15

2

2 2 2

16 16 16 3 4 2 4 2

7 9 21 81 5 9 5 3

80

21

GUT

GUT GUT

v

v C v

       

           

 

   (5.5) 

yields a Clebsch-Gordon coefficient 2 80

21
C   (Note the 

2 8

3
C   from the earlier 158

3
B L     included in  

the calculation of the above). One may then employ the 
procedure such as is outlined in (11.5) and (11.6) of [1] 
to obtain gauge bosons masses in the usual way, and 
these will have masses on the order of GUTv . 

But our interest here is in what happens at lower ener- 
gies, after this symmetry has been broken, because that 
brings us into energy ranges with are experimentally ob- 
servable. 

First, by breaking symmetry via  

 GUT GUT Lv B L v Y    , 

which for which the generator eigenvalues are  

1 1 1 1 1 1
1, , , , 1, , ,

3 3 3 3 3 3
   
 

, 

we “fracture” the eight fermions in Tables 2 and 3 into a 
1LY B L     hypercharge doublet of leptons  ,e   

and a 
1

3LY B L    hypercharge sextuplet of quarks  

   , , , ,R G B R G Bd u u u d d . Of course, we know that  

 , ,R G Bd u u  is a proton and  , ,R G Bu d d  is a neutron, 
so this sextuplet may also be viewed as a 1LY B L    
proton/neutron doublet  ,p n . Referring to Tables 2 
and 3, the weak isospin for each doublet    , , ,e p n  is  

given by 3 1 1
,

2 2
I

   
 

. Of course for the proton this is 

arrived at by adding 3 1 1 1 1

2 2 2 2
I       for its three  

quarks, and for the neutron similarly via  

3 1 1 1 1

2 2 2 2
I      . 
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Note also that by virtue of how the triplets in 
   , , , ,R G B R G Bd u u u d d  are ordered, each entry in 
 , ,R G Bd u u  forms a weak isospin doublet with respect 
to its corresponding same-colored entry in  , ,R G Bu d d . 
Each of the three quarks also enjoys two color degrees of 
freedom R, G, B associated with the SU(3)C’ generators 

8 3,   , see (4.3) and (4.4). So the group arrived at fol- 
lowing B L  symmetry breaking is schematically rep- 
resented by: 

     
     

8 6 2

3 2 1
L

B L

C W Y B L

SU SU SU

SU SU U  

 

  
     (5.6) 

The  GUT GUT Lv B L v Y     symmetry breaking 
has fractured the quarks from the leptons into a sextuplet  

of quarks each with 
1

3
B   and a doublet of leptons  

each with 1L  . Just as in Georgi/Glashow, this breaks 
a lepto-quark symmetry. This is the origin of the 

   6 2
B L

SU SU  factor. But the quarks are grouped  

into a proton and neutron doublet with 3 1 1
,

2 2
I

   
 

,  

and of course the two members of the lepton doublet also  

both have 3 1 1
,

2 2
I

   
 

. This is the well-known “iso-  

spin redundancy” that exists and between quarks/baryons 
and leptons and leads some to consider “preon” models 
such as that discussed in Section 12 of [5]. For 
quarks/baryons, we use      3 2 1

LC W Y B L
SU SU  

   
to represent their status following LY B L   symmetry 
breaking. That is, the proton and neutron each containing 
an  3

C
SU   color triplet of quarks, form an  2

W
SU  

weak doublet        , 3 2 1
LC W Y B L

p n SU SU  
    

with every single fermion containing an identical 
1

3LY B L   , hence the  1
LY B L

U
 

 factor. For lep-  

tons, the neutrino and electron form an  2
W

SU  weak 
doublet      , 2 1

LW Y B L
e SU

 
   with each contain-  

ing an identical 1LY B L    , hence the  1
LY B L

U
 

  

factor, albeit for a different value of LY B L   than 
that of the quarks/baryons. Overall, with the detailed 
interrelationships just noted, we reproduce the pheno- 
menological product group      3 2 1

C W Y
SU SU U  . 

Given that we have used  GUT GUT Lv B L v Y     
for symmetry breaking at GUTv , all that we have just 
described should be readily apparent from Tables 2 and 
3. But a bonus that we obtain here, which is not obtained 
in Georgi-Glashow SU(5), is the fermion generation rep- 
lication. This is how: 

In SU(5) which is broken using GUTv Y  , there are 
four degrees of freedom based on the linearly-indepen- 
dent generators 24 15 8 3, , ,T T T T . After symmetry break- 

ing there are still four degrees of freedom; they are 
merelyreshuffled into 8 3,   for   33 ,

C
SU I  for 

 2
W

SU , and Y for  1
Y

U . None of these degrees of 
freedom disappear after symmetry breaking; they simply 
sit across one another in several “irregular” linear com- 
binations. 

Here, however, in going from  

     8 6 2
B L

SU SU SU  , 

two “vertical” degrees of freedom “disappear”, because 
SU(8) has seven diagonalized generators while SU(6) has 
only five, and the separate B and L subscripts in 

     8 6 2
B L

SU SU SU   are all part of a single de- 
gree of freedom represented by LY B L  . But this 
reduction-by-two in the degrees of freedom cannot van- 
ish into thin air; it must show up in some other way. That 
is, following symmetry breaking using 

 GUT GUT Lv B L v Y    , there are two-free floating 
degrees of freedom from 48 35,   that have become 
decoupled from the remaining five vertical degrees of 
freedom. But, as shown in Figure 1, these free-floating 
degrees of freedom have precisely the properties needed 
to create a new horizontal freedom with exactly three 
states. So we label these three states , ,e    as in Figure 
1, we associate this with the fermion generation replica- 
tion, and we therefore make a carbon copy of each fer- 
mion in triplicate, using the conventional symbols 

, , , , ,u d c s t b  for the quarks, , ,e    for the electrons, 
and , ,e      for the neutrinos. The vertical quantum 
numbers associated with each type of fermion , , ;u c t  

, , ; , ,d s b e    and , ,e      are identical for each triplet. 
The fermions across generations are distinguished only 
by the mass values, and so apparently, it is the free- 
floating generators 48 35,   which provide the horizon- 
tal fermion mass degrees of freedom to enable each fer- 
mion of a given type to take on one of three mass values. 
Thus we may formulate Table 4 below. 

Studying Table 4 and the above comments about the 
generational mass freedom, we now can better develop 
our understanding of the so-called gravitational degree of 
freedom 63  which we discussed a short while ago in 
relation to (5.1). Whereas 48 35,   provide freedom for 
the fermions of any given type to take on one of three 
mass values, we also need a degree of freedom for each 
of the four basic fermion “prototypes” , , ,e u d  to have 
different masses within a single generation, as is also 
clearly observed. This, in fact, is the role of 63 . While 
the neutrino is set on a different mass trajectory at the 
outset at the Planck scale because its 63  generator ei-  

genvalue is 
1

7
2 28

  while that for all of the other 

fermions is the oppositely signed 
1

2 28
  with 1/7 the  
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Table 4. Quarks and leptons with generation replication following B − L = YL GUT symmetry breaking. 

 Linearly Independent Degrees of Freedom  Linear Combinations 

 63  
3

LI  B L  8  3   LY  Q  RY  3

RI  

Quarks 

1

2 28
  

1

2
 

1

3
 

1

3
 0   

1

3
 

2

3
 

4

3
 0  

1

2 28
  

1

2
  

1

3
 

1

2 3
  

1

2
  

1

3
 

1

3
  

2

3
  0  

 
 
 

, ,

, ,

, ,

R

G

B

u c t

n d s b

d s b

 
 
 
   

 

1

2 28
  

1

2
  

1

3
 

1

2 3
  

1

2
   

1

3
 

1

3
  

2

3
  0  

1

2 28
  

1

2
  

1

3
 

1

3
 0   

1

3
 

1

3
  

2

3
  0  

1

2 28
  

1

2
 

1

3
 

1

2 3
  

1

2
  

1

3
 

2

3
 

4

3
 0  

 
 
 

, ,

, ,

, ,

R

G

B

d s b

p u c t

u c t

 
 
 
   

 

1

2 28
  

1

2
 

1

3
 

1

2 3
  

1

2
   

1

3
 

2

3
 

4

3
 0  

Leptons 

 , ,ev v v   
1

7
2 28

  
1

2
 1  0  0   1  0  0  0  

 , ,e    
1

2 28
  

1

2
  1  0  0   1  1  2  0  

 
magnitude, the fact that all fermions but the neutrino 
have the same 63  tells us that at the Planck scale all of 
the , ,e u d  have the same mass, and that the differences 
among these masses that we detect at observable energies 
stems from the differences introduced by the other verti-
cal generators 3 , ,LI B L Q . So we now see that collec-
tively speaking, the three generators 63 48 35, ,    are all 
responsible for providing the mass degrees of freedom to 
the fermions, with 63  providing a vertical freedom to 
differentiate among , , , ,e u d  and with 48 35,   pro-
viding two more horizontal degrees of freedom to dif-
ferentiate the mass spectrum for a given fermion type 
into three permitted generational values. To the extent 
that one regards the quantum degrees of freedom that 
lead to discrete fermion masses as related to gravitational 
interactions given that mass and gravitation are inextri-
cably linked, we now conclude that all three of 

63 48 35, ,    are the quantum generators of gravita-
tional interactions, similarly to how 8 3,   generate 
strong interactions. But these 63 48 35, ,    act differ-
ently from 8 3,   insofar as 1) 63  acts vertically 
while 48 35,   act horizontally, and 2) 48 35,   only 
start to act horizontally after they decouple from the 
other vertical generators at GUTv  as a consequence of 
the lepto-quark symmetry breaking using the vacuum 

 GUTv B L   . This is examined further in Table 5 
below. 

Finally, what this tells us is that in order to ascertain 
an answer to the question “why do the fermions have the 
masses they have?”, the theoretical answer is this: follow 

the 63 48 35, ,    generators, understand how 48 35,   
separate out and start to act horizontally at vP and GUTv , 
and understand how the masses evolve as one moves 
downward in energy from there toward the masses we do 
observe in the laboratory. In this regard, if 63  is used 
to break symmetry at or near the Planck scale as in (5.1), 
then we immediately see a break via    8 7SU SU  

 1U  with the neutrino fractured from all the other 
fermions. So, we already lose one vertical generator, 
which we take to be 48 , which decouples and becomes 
horizontal. Thus, below the Planck scale but above the 
GUT scale, we would expect to see two fermion genera- 
tions. Then, as we pass downward through the GUT scale 
and break the lepto-quark symmetry as in (5.2), we drop 
down to    6 2

B L
SU SU  and now two of the gen- 

erators have decoupled from vertical to horizontal giving 
rise to a third generation. It would therefore make sense 
to believe that the observed substantial variation from 
first to second generation masses, and then again from 
second to third generation, has it origin in this sequential 
breaking of symmetry that starts with one generation at 
the Planck scale, turns into two generations between the 
Planck scale and the GUT lepto-quark scale, and turns 
into three generations below the GUT scale. At each 
scale as one “cools down,” the masses become “frozen” 
in a manner of thinking. And it would seem to make 
sense due to their relatively larger masses that the high 
mass fermions, namely the , , ,t b  , are the ones that 
already exist in precursor form at the Planck scale, that 
the , , ,c s   arise between the Planck scale and the   
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Table 5. Mass degrees of freedom afforded by the gravitational interaction, below GUT energy. 

 48 351
, 0

3
     48 351 1

,
22 3

      48 351 1
,

22 3
       

1
7

2 28
G     νe νμ ντ 

1

2 28
G   uR cR tR 

1

2 28
G   dG sG bG 

1

2 28
G   dB sB bB 

1

2 28
G   e μ τ 

1

2 28
G   dR sR bR 

1

2 28
G   uG cG tG 

1

2 28
G   uB cB tB 

 
GUT scale, and that the , , ,e e u d  which predominate 
and are the ground states at observable energies are the 
last generation to emerge, below the 15~ 10 GeV  scale 
at which the lepto-quark symmetry is broken and the 

48 35,   decouple from other generators. Perhaps what 
happens at each symmetry breaking stage is that the one 
(or two) generations which exist before symmetry 
breaking “spin off” a portion of their mass to make two 
(or three) fermions when the generators decouple. That is, 
for example, what is “one electron” above the Planck 
scale has to become “two electrons” below the Planck 
scale, and these then have to further turn into three elec- 
trons below the GUT scale, at the same time that the 
generators are decoupled. 

One final point before concluding this section pertains 
to chiral symmetry. Because the left-chiral generator 

LY B L   for all fermions, at the same time that we 
break symmetry at the GUT energy using (5.2) and (5.3), 
we have also forced a breaking of chiral symmetry. That 
is, the weak interactions start to become chiral non- 
symmetric at the GUT scale, as part and parcel of the 

LY B L   symmetry breaking. As discussed briefly at 
the end of Section 5 of [1], baryon and meson physics is 
endemically, organically non-chiral, which is consistent 
with what is experimentally observed, all with  

5 0 1 2 3i      being the mainspring. Via what may be 
thought of as Dirac’s “quinternian” progression  

5 0 1 2 3i      from Hamilton’s quaternion 2 2i j   
2 1k ijk   , any time one has what looks like a “vec- 

tor” object from one viewpoint, one can use 

5 0 1 2 3i      to create an “axial” object from another 
“dual” viewpoint, and “vector” and “axial” turn out to 
have a duality relationship that is integral to the Dirac 
algebra, all using “duality” based on the work of Reinich 
[9] later elaborated by Wheeler [10] which uses the 
Levi-Civita formalism (see [11] at pages 87-89). So 
given the degree to which baryon physics is fundamen- 
tally non-chiral courtesy of a Dirac algebra for which 

5 0 1 2 3i      is as integral to fermion physics as 
1ijk   is to spatial rotations, it makes perfect sense that 

as soon as protons and neutrons are crystalized into being 
as stable magnetic monopoles by LY B L   symmetry 
breaking, we also bring about the non-chiral nature of the 
weak and weak hypercharge interactions. 

6. The Geometrodynamic Planck Vacuum, 
and What Makes the Neutrino Different 
(or, Let’s Finally Catch that Mischievous 
Neutrino) 

With all that we have learned in Section 5, let us make a 
second pass through the Planck scale, and to see what 
else we may be able to learn. 

It has long been believed, and experimentally given 
credence by the Lamb-Retherford shift in electromag- 
netic phenomenon, that near the Planck length,  

351.61624 10  meters, and over Planck time scales of 
445.39121 10  sec, there is a violent sea of vacuum 

perturbations near the Planck energy 1.221 × 1019 GeV, 
see the earlier referenced [7,8] where this is developed in 
detail. It is also well-understood that energy fluctuations 
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of this magnitude on such a small scale do have the effect 
of topologically creating microscopic black holes, also 
called wormholes, with a Schwarzschild radius at or near 
the Planck length. Let us now take a closer look at ex- 
actly what is believed to occur at this scale. Again, along 
the lines discussed in Section 2, it is unlikely that humans 
will ever be able to directly observe physics at the Planck 
length, but the development of such physics in the con- 
text of a GUT may lead us to low energy mass and en- 
ergy predictions which—if they accord with empirical 
data—could then give us some confidence that the GUT 
which leads to such accord is also describing the 
Planck-length physics “behind the veil” with some sem- 
blance of accuracy. 

When Wheeler talks in his seminal work [8] about the 
geometrodynamic Planck vacuum, the vacuum he envi- 
sions is constructed from a series of simple algebraic 
calculations with which it is important to be familiar. So 
let us review those here. First, Newton’s law of gravita- 
tion 2

1 2F Gm m r   contains a numerator 1 2Gm m  
which has the same dimensions as the natural constant 

c . So the Planck mass 2
PM  is defined as the unique, 

natural mass unit formed out of the Newtonian numerator 
from G,   and c, namely: 

2
PGM c  .                 (6.1) 

The above means that PM c G   so that the  

Planck energy 2 5
P PE M c c G   . The Fermi vev 

energy vF is similarly defined using the Fermi constant via 
2 42 F FG v c c  , with the 2  having historical origins 

based on how FG  was first defined before electroweak 
interactions were well-understood. Comparing “apples to 
apples” the correspondence is 2 FG G . 

The reduced Compton wavelength of a Planck mass 
(6.1) is easily calculated to be: 

3P P

G
M c

c
 

  .            (6.2) 

Now we consider a large collection of Planck masses 

PM  separated from one another by P , in what would 
be a natural state of resonance. The negative gravitational 
potential energy EG between any two PM  separated by 

P  is easily calculated to be: 

2 5
P

G P
P P

GM c c
E E

G
       

 
 

.    (6.3) 

But this is simply the negative of the Planck energy! 
So as Wheeler first surmised, a collection of Planck mass 
fluctuations (on average) separated by the Planck length 
(on average) averages out to be a vacuum because the 
negative gravitational energy precisely cancels the posi- 
tive Planck energies which are posited in the first place, 
on average. Nonetheless, in very localized regions on the 

order of P , there are very violent fluctuations of very 
high energy occurring. This is the so-called “geometro- 
dynamic vacuum.” 

It is also important to note that the Schwarzschild 
“black hole” radius for a (non-rotating) Planck mass may 
be calculated to be: 

2 2 3

2 2
2 2P

S P

GM G c G
r

Gc c c
   

 
.     (6.4) 

Because the black hole radius is twice as large as the 
Planck length, this means that all of these fluctuations are 
occurring out of sight, behind a black hole horizon. 

On top of this, Hawking [12] teaches seventeen years 
after Wheeler’s initial elaboration of the geometrody- 
namic vacuum, based on general relativistic gravitational 
theory, that black holes emit a blackbody radiation spec- 
trum. So if we recognize that the Planck vacuum is a 
vacuum in which the masses on average are Planck 
masses separated on average by the Planck length, and 
then like any good student of statistics we ask the natural 
follow up question “what is the actual statistical distribu- 
tion of these energies about the average?” Hawking pro- 
vides a clear answer: because these fluctuations are oc- 
curring behind an event horizon, the distribution is ob- 
served externally to the event horizon as a thermody- 
namic, blackbody spectrum. It would also make sense, 
therefore, to consider the prospect that when we observe 
blackbody radiation in the natural world, we are in fact 
observing a gravitational phenomenon from the Planck 
vacuum screened through over twenty orders of magni- 
tude, which would render the blackbody spectrum that 
kicked off the quantum revolution in 1901 [13], a cones- 
quence of gravitational theory. So much for disunion 
between gravitational theory and quantum theory! 

But returning to GUTs, the Wheeler vacuum also 
teaches us something about the generator 63  with 

   63 1
diag 7, 1, 1, 1, 1, 1, 1, 1

2 28
           

which we are associating on a preliminary basis with 
gravitation, which is this: One may look at the Planck 
vacuum in one of two entirely equivalent ways: First, one 
can say that there are a tremendous number of fluctua- 
tions with positive energy PE  on average, separated 
by P  on average, thus giving rise to an equal amount 
of negative gravitational energies PE  on average, thus 
resulting in a vacuum on average, which has a gravita- 
tional blackbody distribution of energy when viewed 
from outside the event horizon, and which is redshifted 
as our observational perch recedes to that from which 
Planck first characterized this distribution. Second, one 
can start with negative energy fluctuations, separate them 
by P , and they will gravitate to produce positive en- 
ergy fluctuations. Each way of looking at this is equally 
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valid. It is a “chicken and the egg” question. One can 
develop an equally sensible description of the exact same 
physics no matter where one starts: positive Planck 
masses producing negative gravitational energies, or 
negative Planck masses producing positive gravitational 
energies. It does not matter. These are two alternative 
descriptions of exactly the same thing. 

Now, let’s talk about specific fermions, such as the 
 , , , , , , ,R G B R G Bu d d e d u u  of our SU(8) GUT group. 
How do these actually take root in the vacuum? How are 
they “conceived” and “born”? Through the lens of 1957, 
referring to electromagnetic charge Q, Wheeler says in [8] 
that “classical charge appears as the flux of lines of force 
trapped in a multiply connected metric ... trapped by the 
topology of the space.” In other words, charge gets 
“trapped” in the black hole wormholes. Updating this 
with all that we have learned in the intervening half cen- 
tury especially about Yang-Mills gauge theories and how 
charges such as the electric charge arise from the gen- 
erators of Yang-Mills theory, we might say that these 
Planck-mass fluctuations “trap” the Yang-Mills internal 
symmetries (which include the electric charge), and that 
this is how particles are “born.” Or, in parlance we in- 
troduce here, the physical fermions  , , , , , ,R G B Ru d d e d  

,G Bu u  arise when a Planck-scale fluctuation is “fertile- 
ized” by the Yang-Mills generators of internal symmetry. 
So a neutrino   is conceived when a fluctuation with 
Planck mass magnitude is fertilized by the generator ei- 
genvalues in Table 2 corresponding to the neutrino. The 
same holds true for the up quark (in three colors), the 
down quark (in three colors) and the electron. Then, as 
Wheeler points out, the particles we observe from 20 
orders of magnitude lower, have had all but the most 
miniscule portion of their original ~MP masses can- 
celled/averaged out by the positive and negative energy 
fluctuations of the vacuum, leaving behind only a small 
mass residue which results from the trapping of the field 
lines, i.e., from the fertilization. Those are the particles 
and masses we observe. 

But if the Planck vacuum raises a chicken and the egg 
question, the next question is this: how does nature de- 
cide whether the egg comes first or the chicken comes 
first? Does nature fertilize the positive energy fluctua- 
tions into observed particles, or the negative energy ones? 
Or, might she fertilize both? And what would a fertilized 
positive energy fluctuation look like, versus a fertilized 
negative energy fluctuation? And, fundamentally, how is 
this precisely-balanced positive versus negative energy 
symmetry in the Planck vacuum broken, in favor of the 
very miniscule (relative to the Planck vacuum) prepon- 
derance of positive energy over negative energy that we 
observe in the material universe? 

Now our 

   63 1
diag 7, 1, 1, 1, 1, 1, 1, 1

2 28
           

generator provides the critical clue: If this is a gravita- 
tional generator as we have begun to surmise, and if this 
generator is actually used to break symmetry at or near 
the Planck energy as in (5.1), and given that this is the 
energy at which gravitation is dominant as is clear from 
(6.1) through (6.4), then this generator will have a great 
deal to do with how the Planck vacuum first gets fertile- 
ized to produce what we observe. So the gravitational 
charge of the neutrino being of opposite sign from the 
gravitational charges of all the other fermions suggests 
that perhaps neutrinos are fertilized negative energy 
Planck vacuum fluctuations and the up and down quarks 
and the electron are all fertilized positive energy Planck 
vacuum fluctuations. Not only would this neatly resolve 
the chicken and egg problem, but it would explain many 
other things as well, especially about the ever-elusive 
neutrino. 

First, this would truly place neutrinos in a class by 
themselves. They would be born of negative energy 
Planck scale fluctuations, brought about via the gravita- 
tional interactions of positive energy Planck scale fluc- 
tuations. Other fermions are rooted in “Planck matter”; 
neutrinos are rooted in “Planck gravitation.” Second, 
above the Planck energy, behind the event horizon, we 
would expect there to be a complete symmetry among all 
of the octuplet members  , , , , , , ,R G B R G Bu d d e d u u . 
Any one fermion can readily decay into any other, and all 
would exist in equal numbers as part of an octuplet set. 
Thus, any time there is a neutrino, there are also seven 
other fermions to go along with that neutrino. Then, after 
we break the symmetry and the neutrino hooks up with 
negative energy fluctuations and the other seven fer- 
mions hook up with positive energy fluctuations, we 
would have a seven-to-one ratio of fermions which are 
rooted in positive energy fluctuations over fermions 
rooted in negative energy fluctuations. So as we reached 
lower and lower energies, there would be a net domi- 
nance of positive energy-rooted fermions over negative 
energy-rooted fermions. As such, this could help to ex- 
plain how the positive versus negative energy symmetry 
of the Planck vacuum becomes broken. This is especially 
so given the fact that at low energies the neutrino masses 
become so very much smaller than all the other fermion 
masses. 

Third, while we conventionally hold to the view that 
all matter gravitates the same way as all other matter, this 
would tell us that this conventional wisdom holds true for 
all matter except the neutrino. Below the Planck scale, 
the neutrino would fundamentally be a fermion rooted in 
negative energy fluctuations, while all of the other fer- 
mions would be rooted in positive energy fluctuations. 
This could certainly provide some degree of confidence 
that as we start to trace the development of the fermions 
from the Planck scale down to the laboratory scale, we 
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may come to understand why 4 351853369u em m .  
and 9 601723351d em m . , while 250,000em m  . 
The neutrino would start off in the Planck vacuum with a 
negative energy ~ PM    where   represents the 
alteration in energy due to the fertilization of the negative 
energy gravitational fluctuation, while all the other fer- 
mions f would start off with a positive energy 
~ P fM    rooted in the matter fluctuations. Then, 
after screening of twenty orders of magnitude, the neu- 
trino mass would end up very close to, and slightly larger 
than zero, and the rest of the fermion masses would end 
up more substantially above zero, with the observed 
masses between 52.5 10  and 62.5 10  times as large 
as what is observed for the neutrino. 

Further, if the neutrino gravitates differently from 
every other fermion (which we shall explore even further 
in the next section), then its elusive, idiosyncratic be- 
haveiors may be much better understood. From a tech- 
nology viewpoint, this also suggests that if one ever 
hopes to develop technologies to “shield” gravitation or 
overcome gravitational attraction other than by the brute 
force of rocket propulsion, the neutrino would be central 
to that undertaking. Harvesting and controlling the elu- 
sive neutrino, however, would be the core technology 
challenge. And, since neutrinos do exist throughout the 
universe as elusive as they may be, this would also mean 
that cosmological theories based on the supposition that 
all matter gravitates in relation to all other matter in 
exactly the same way would have to be modified to rec- 
ognize that the neutrino defies this supposition. 

As a consequence of the forgoing, let us now choose a 
negative gravitational charge for the neutrino to go with 
the negative energy fluctuations, as a matter of conven- 
tion. Then, let us introduce the hypothesis—which needs 
to be borne out through detailed calculation of its cones- 
quences—that the neutrinos are in fact conceived at or 
near the Planck scale when negative energy gravitational 
fluctuations in the Planck vacuum become fertilized with 
the negative gravitational charge of the neutrino 

63 1
7

2 28
      , and that quarks and electrons  

are born at or near the Planck scale when positive energy 
gravitational fluctuations in the Planck vacuum become 
fertilized with the positive gravitational charge of a quark  

or an electron 63 1
, ,

2 28
u d e     . 

And in this regard, choosing the convention of a nega-
tive gravitational charge for the neutrino to go with the 
negative Planck energy fluctuations, we now explicitly 
define a gravitational interaction generator: 

   63 1
;diag 7,1,1,1,1,1,1,1

2 28
G G     .  (6.5) 

We may find occasion to adjust this coefficient  
1

2 28
 as we calculate from this point forward, but this  

sign reversal, and the identification of 63  with a 
gravitational generator G, makes clear 1) that the neu- 
trino is understood to gravitate differently than all the 
other fermions as we shall further examine in a moment, 
and 2) that the neutrino is rooted in negative energy 
Planck fluctuations while all the other fermions are rooted 
in positive fluctuations. Or, as Wheeler might say, the neu- 
trino lines of force are trapped in negative energy topo-
logical wormholes, and the quark and electron lines of 
force are trapped in positive energy topological wormholes. 

7. Spontaneous Symmetry Breaking, 
Fermion and Generator Fractures, and 
Intergenerational Cabibbo Mixing of 
Left-Chiral Hypercharge Doublets 

As we now return to spontaneous symmetry breaking, it 
will be important to develop an understanding of what 
we shall call “fermion fractures” and “generator frac- 
tures.” While the fermion fracturing we are about to de- 
scribe may already be implicitly understood as a feature a 
spontaneous symmetry breaking, it is important to make 
this understanding explicit, as this will play a crucial role 
in understanding generation replication, and especially, 
the Cabibbo mixing which for leptons leads to so-called 
neutrino oscillations (which have been largely response- 
ble for demonstrating that the neutrino does have some 
tiny mass, contrary to what may have been believed two 
or three decades ago). 

When a gauge group has not been broken at all, and 
assuming that fermions have been assigned to the fun- 
damental representation of that gauge group, then any 
one fermion is completely free to decay into any other 
fermion. SU(3)QCD provides a good example of this. As 
we can see from Table 1, or as will be understood in any 
event, there are three color eigenstates 

8 3 8 31 1 1
, 0 , ,

23 2 3
R G          , 

8 31 1
,

22 3
B       . 

The symmetry is not broken, so any of these eigen- 
states may freely decay into any other one of these ei- 
genstates, even though their quantum numbers are dif- 
ferent. For example, all three color states R, G, B have  

completely different 3 , namely, 3 1 1
0, ,

2 2
   , yet  

they freely transition among themselves, which is central 
to QCD interactions. Similarly, as just discussed, above 
the Planck scale any fermion may transition into any 
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other fermion. 
Once a symmetry is broken, however, some fermions 

become “fractured” from some other fermions, and they 
are forbidden from decaying into one another except un- 
der very limited conditions. It is these limited conditions 
which are of central interest in the discussion following. 

Let us first break the symmetry of SU(8) at the Planck 
scale using (5.1), which we recast in light of (6.5) as: 

   
 

, . ., 

diag diag

1
7,1,1, ,1,1,1,1,1

2 28

P P

i
P Pi

P

v G i e

v

 

 

 

 

      (7.1) 

What then happens? Of course, similarly to what was 
discussed in Section 8 of [1], the vacuum commutes such  

that , 0, 1, , 48i
P i      . 

It also self-commutes with G, that is, 
   , , 0P PG v G G   . 

But our real interest here is to look at the fermions 
themselves. 

The neutrino, with 
1

7
2 28

G     ,becomes 

fractured from all the other fermions with 
1

2 28
G  ,  

and can no longer decay into any of these other states via 
the generator G that was used to break the symmetry. It 
would be as if the red quarks in QCD were suddenly for- 
bidden from decaying into green or blue quarks—but of 
course they can do so because the QCD symmetry is 
never broken. If G is a gravitational generator, then the 
neutrino can no longer undergo a gravitational decay 
through G into any other fermion. What does that mean? 
The neutrino will no longer gravitate with any other fer- 
mion except for another neutrino! But—and this is criti- 
cal—it may still undergo other types of decay through 
the generators of other interactions. Let’s elaborate: 

If the neutrino is to decay into any other fermion after 
the symmetry is broken via (7.1), it must decay into a 
fermion via an interaction governed by an interaction 
generator other than 63  gravitation such that the fer-
mion has the same charge value under that other inter-
action generator as that of the neutrino. Referring to 
Table 2 to make this clear, this means that the neutrino 
still can undergo a 35  decay into a Ru  quark because 
each has 35 0  . And it can still undergo a 3

LI  decay  
into any up quark, because these and the neutrino all 

have 3 1

2
LI  . Most importantly, as will become central 

in the discussion be- low, the neutrino can still undergo 

LB L Y   decay into an electron because both the neu-
trino and the electron have the same 1LB L Y     

and so form a doublet under LB L Y  . This latter abil-
ity for the neutrino and the electron to decay into one 
another as like-charge members of a 1LB L Y     
doublet, lasts until the electroweak symmetry is finally 
broken at much lower (Fermi vev) energies into the elec-
tromagnetic interaction. 

Now let’s look at the remaining seven fermions. Even 
after the symmetry breaking (7.1), these fermions are 
completely free to decay into one another via the gravi- 
tational generator G, because they are all like-valued  

1

2 28
G   eigenstates of G. They all continue to  

gravitate with one another, while the neutrino steps aside 
and stops gravitating with them. Indeed, starting at the 
Planck scale, and until one drops down to GUT energies 
on the order of 1015 GeV, these seven other fermions 
remain part of an SU(7) septuplet. Since all of these fer- 
mions are united by the common characteristic that they 
are born through the fertilization of positive (+) energy 
vacuum fluctuations, we shall refer to this group as 
SU(7)+. Thus, between the Planck scale and the GUT 
scale, the gauge group is    7 1

G
SU U


 , and the 

topologically-stable SU(7) magnetic monopoles with all 
the fermions of a 2H atom are  

     1 1 1π (7) π (1) π (1)G GSU U U     . The  1
G

U  
emanates from the commutation of  
   , , 0P PG v G G   , and is based on a neutrino 

singlet 
1

7
2 28

G      plus a septuplet of the 

remaining fermions all of which are in 
1

2 28
G    

states. Again, importantly, the neutrino can no longer 

interact gravitationally via 63  with any of the remain- 
ing seven fermions. If it is to interact with them, it must 
do so via other non-gravitational interactions. 

Now let’s progress down the energy scale and break 
symmetry with LB L Y   in the vicinity of  

15~ 10 GeVGUTv  using (5.2). The residual gauge groups 
are now those shown and discussed in (5.6), but let’s 
again look closely at how the fermions are fractured, and 
let’s also look at the loss of two generators going from 

   8 6SU SU . 
Referring now to Table 4, the 48 35,   generators are 

no longer in play as vertical generators, because two gen- 
erators are lost going from SU(8) to SU(6). These do not 
disappear entirely, but become horizontal as already dis- 
cussed, in a manner we shall momentarily develop fur- 
ther. As to the remaining five linearly-independent verti- 
cal generators in Table 4, the electrons and the quarks 
still remain a gravitational septuplet and so can still in- 
teract gravitationally with one another (while the neu- 
trino does not)! Following the rule that after symmetry 
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breaking the only decays which are permitted are decays 
under a given generator for which the decaying fermions 
have a like-charge, the remaining decays options are as 
among members of the quark sextuplet of fermions with  

1

3
B L  , and between the lepton doublet of fermions  

with 1B L   . The former decays among fermions in  

the 
1

3
B L   sextuplet, consist of QCD strong interact-  

tions decays among the R, G, B color eigenstates based 
on the 8 3,    generators, and weak decays between  

states with 31 1
,

3 2
LLY I    due to the common 

1

3LY  . The latter decays between the two fermions in  

the 1B L    lepton doublet, consist of weak decays 
between the neutrino and the electron with  

3 1
1,

2
LLY I     due to the common 1LY   . 

Now, however, most importantly, the quarks have be- 
come fully fractured from the leptons, and there is no 
more decay permitted between quarks and leptons. This 
is because, referring to Table 4, there is not a single ver- 
tical generator other than 63  for which any quark 
shares the same charge as any lepton, so hereafter, the 
only way for a quark to interact with a lepton is gravita- 
tionally. And the neutrino—the odd man out—does not 
interact gravitationally with any other fermions besides 
another neutrino, because its gravitational charge is dif- 
ferent from that of all the other fermions and that gravi- 
tational generator was used to break the Planck symmetry. 

Further, as was developed in detail in Section 8 of [1], 
the breaking of B L  also creates stable magnetic 
monopoles         1 1 1π 3 π 1 π 1

C B B
SU U U      

which manifest as protons and neutrons forming  ,p n  
doublets with 1B  . So this is also the symmetry break 
at which protons and neutrons are born. And, with 

LB L Y  , as noted at the end of Section 5, the weak 
interaction becomes non-chiral to go along the with 
chiral non-symmetry of baryon interactions as discussed 
in Section 5 of [1]. 

So the B L  symmetry breaking is responsible for 
several interrelated phenomena: it brings about the three 
generations observed at low energy, it brings about pro- 
tons and neutrons, it forecloses lepto-quark decays, and 
because LB L Y  , it brings about the broken chiral 
symmetry of the weak interactions. 

Now, at some level, everything discussed so far in this 
section about fermion fracturing due to symmetry break- 
ing restates what is likely obvious, because it is known 
that one of the very basic consequences of symmetry 
breaking is that it forecloses certain decays which are 

permitted to occur in the higher state of symmetry before 
the symmetry is broken. From a thermodynamic view, it 
“freezes out” certain transitions below a certain critical 
temperature (recognizing too that some symmetries are 
not broken but are actually restored on the opposite end 
of the scale, near absolute zero, where electrons are su- 
perconducted freely without any apparent friction from 
the protons and neutrons from which they separate at 
GUT energies, which suggests that superconductivity 
may well be a phenomenon at which the SU(7) symmetry 
between electrons and quarks is restored so electrons can 
flow through rather than around protons and neutrons). 
But the reason for focusing on fermion fracturing in this 
way, is because we will now venture into the not-obvious 
realm of generation replication and apply these observa-
tions to understand what happens there as well. 

If the rule is that after symmetry breaking fermions 
can only decay into other fermions with like-charges 
under some interaction that was not used to break the 
symmetry, then what happens to the horizontal genera- 
tors 48 35,  after LB L Y   symmetry breaking? Not 
only have quarks become fractured from leptons, but 

48 35,   have themselves become fractured from the 
other generators! So we not only have fermion fracturing, 
we have generator fracturing. If we follow suit, then it 
would seem that a similar set of rules may well apply. 
Let’s explore. 

First, referring to Table 2, 

   48 1
diag 0,6, 1, 1, 1, 1, 1, 1

2 21
         

and 

   35 1
diag 0,0,5, 1, 1, 1, 1, 1

2 15
        

are the two fractured generators. Because these no longer 
differentiate an observable vertical symmetry, but still do 
provide two degrees of freedom as illustrated in Figure 1 
in section 5, let us transform these two generators into 

48 35,    with the eigenvalues shown in Figure 1. No 
new calculation is required: we simply use (4.3) and (4.4) 
but without 8  and 3 , and so redefine 48 35,    

48 35,    according to: 

48 48 35 247 2 2

3 153 5
       ,     (7.2) 

35 35 243 2

5 5
     .              (7.3) 

It is readily seen that  

   48 1
diag 0, 2, 1, 1,0,0,0,0

2 3
     

and 

   35 1
diag 0,0,1, 1,0,0,0,0

2
   . 
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So these generators now do yield the SU(3) configure- 
tion shown in Figure 1, albeit with eight eigenstates, five 
of which are all zero-valued and trivial, and three of 
which are not. We can now label these three non-trivial 
eigenstates as: 

48 351
, 0

3
e      ,           (7.4) 

48 351 1
,

22 3
       ,        (7.5) 

48 351 1
,

22 3
        ,       (7.6) 

just as illustrated in Figure 1. However, these are now 
free-floating generators once the LB L Y   symmetry 
is broken, so they no longer provide vertical symmetry 
quantum numbers for any of the fermions, as illustrated 
in Tables 3 and 4. Rather, they appear to provide a repli- 
cation of each fermion into three generations. But if this 
is the case, then they should lead to other facets of gen- 
eration replication as well, including Cabibbo-type mix- 
ing, and to the observation that the only way a particle 
from one generation can transform into a particle of an- 
other generation is via left-chiral weak interaction decays 
from one weak isospin to a different weak isospin, and 
not directly. As we shall now see, this is a consequence 
of the fermion and generator fracturing highlighted above 
and the “freezing” restrictions that come into play after 
symmetry breaking. 

Because the generators 48 35,    have become frac- 
tured from the other generators, and given what we know 
about the fermion generations from experimental obser- 
vations, it appears that each of the , ,e    eigenstates is 
fractured from one another so that it is now forbidden for 
a direct transition to take place between any of the three 
states (7.4), (7.5), (7.6), i.e., no decays may take place 
any longer via the 48 35,    (or 48 35,  ) interaction 
generators. Symbolically, e     . Any decays that 
do take place, must occur via another generator for 
which the charges are the same as among the fermions 
involved in the decay. The fermion has to find a “loop- 
hole.” This is exactly like the discussion we had at the 
beginning of this section about the neutrino in relation to 
the remaining fermions from which it becomes fractured 
at Pv , or the fracturing of the quarks from the leptons at 

GUTv . In order to undergo decay into a different fermion, 
a fermion must find a different generator and a different 
fermion which has the same charge as the original fer- 
mion with respect to that different generator. 

So referring to Table 4, if a first-generation e fermion 
is to decay into a second generation μ fermion or a 
third-generation τ fermion, it must to do so via a genera- 
tor other than 48 35,   , into a fermion for which it 
shares an identical charge for that other generator. For 

the leptons, this is straightforward: the electron and the 
neutrino share a common charge 1LB L Y    , and 
so for a first generation electron to become a second 
generation electron, it must go from e     or 

ee    , all of which have the same LB L Y   
1  . This is the only remaining “decay loophole.” 

Again this is exactly what was discussed earlier with 
regard to fermion fracturing. And so, for the first time, 
we see Cabibbo mixing and neutrino oscillations, be- 
cause that is exactly how these work as well. This also 
explains flavor non-conservation as regards the genera- 
tions: at the end of e     or ee    , what 
started as a first generation electron is now a second 
generation electron and neither 48  nor 35  is con- 
served, and this is because the generators are fractured. 

For the quarks it is a little more complicated, because 
this transition rule needs to be strengthened due to strong 
interactions. In particular, if a fermion can undergo a 
e     transition by decay through at least one 
generator that is the same for both, then, for example, 
referring to Table 4, one could observe a R Gu c  
transition, because both the Ru  and the Gc  have the  

same 
1

3LB L Y   . This would imply that Cabibbo  

mixing can occur not only via weak but also via strong 
interactions, and the latter, of course, is not observed. 

So for horizontal symmetry transitions, it appears that 
we have to tighten the rules even further. Specifically, it 
appears that for a horizontal transition to be permitted, 
not just one, but all of the vertical degrees of freedom in 
Tables 3 and 4 must be the same as between the two fer- 
mions involved in the decay. Table 3 actually illustrates 
this rule the best, because this rule says that a horizontal 
e     transition must occur either as a transition 
between the first and fifth, second and sixth, third and 
seventh, or fourth and eighth fermions in Table 3. These 
are the fermion doublets which share a common: 

  8 3, 1, 0, 0, 1Le B L Y           ,     (7.7) 

  8 31 1 1
, , , 0,

3 33
R R Lu d B L Y        ,  (7.8) 

 
8 3

,

1 1 1 1
, , , ,

3 2 32 3

G G

L

u d

B L Y        
      (7.9) 

 
8 3

,

1 1 1 1
, , , .

3 2 32 3

B B

L

u d

B L Y         
   (7.10) 

So in sum, one can have neither e    , nor 

e      , nor u c t  , nor d s b   tran- 
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sitions, because each of these has different 48 35,    
eigenvalues. These states are all fractured from one an- 
other. One cannot have intergenerational transitions be- 
tween  ,e  and any of the quark doublets because 
these have been fractured from one another by B L  
breaking. One cannot have intergenerational R G  

B  transitions among (7.8), (7.9) and (7.10) because 
although QCD is never broken, the QCD generators are 
different as among red, green and blue states. If any ver- 
tical generators, or any horizontal generators are dif- 
ferent as between two fermions, then based on what we 
observe, the apparent rule is that the horizontal transi- 
tion is not permitted. So all that is permitted—the only  
“loophole” left for decay—are the e  , ,R R Gu d u   

Gd  and B Bu d  transitions, because these are the 
only transitions for which all of the generators listed are 
the same for both fermions. And here, because of the 
tightened rules when it comes to horizontal transitions 
based on fractured generators, even the right-chiral gen- 
erator RY  is excluded, because this too is not the same 
as between the members of each of the above doublets. 
This is why we show LY  in the above but not RY . This 
means only the left-chiral states may participate in tran- 
sitions among the e     states in (7.4) to (7.6). 
Observationally, we know that this is also a characteristic 
of left-chiral weak generational interactions. 

These stronger rules for the horizontal generators may 
at first seem arbitrary, but they are not. They may be un- 
derstood because for the horizontal generators, not only 
are some fermions fractured from other fermions, but the 
horizontal generators themselves are fractured from the 
vertical generators. It is the fracturing of both generators 
and fermions which leads to such stringency. So for a 
vertical generator that breaks symmetry but is not itself 
fractured from the other vertical generators, transitions 
are permitted so long as at least one other vertical gen- 
erator provides the same charge as between the two tran- 
sition states. But for a generator which has itself been 
fractured from the other generators, the rule is even more 
restrictive. Now, transitions are permitted only if all of 
the involved vertical generators provide the same charge 
as between the two transition states. 

Now, the astute reader may notice that the electric 
charge Q and left-chiral weak isospin 3

LI  are also not 
the same as between the two fermions in any of the dou-  
blets in (7.7) through (7.10) above.    , 0, 1Q e     

and   2 1
, ,

3 3
Q u d

   
 

 as between the members of 

these doublets, as well as  3 1 1
, ,

2 2LI e    
 

 and 

 3 1 1
, ,

2 2LI u d
   
 

. And so, the question might be  

asked, why are even these interactions permitted? After 
all, this changes the generators also, so by these rules, 
shouldn’t this be forbidden also? But further reflection 
makes this answer clear: the electric charge does not 
emerge as a physically-preclusive generator until it is 
used to break the electroweak symmetry at much lower 
energies determined by the Fermi vacuum Fv    
246.219651 GeV . This is the same way in which B L  
is not a preclusive generator until its breaks symmetry at 
GUT energies. So indeed, once we break electroweak 
symmetry, no transitions are permitted between genera- 
tions. But at the same time, neiter will e   or 
u d  be permitted, but this is because weak interact- 
tions are no longer permitted either (in the historical 
sense that the weak interaction becomes “weak”). So 
what we learn from this, is that the ability of fermions to 
change generations will wax and wane in lock step with 
the weak interaction itself and the breaking of elec- 
troweak symmetry, just as is observed! 

By imposing the more stringent rule that once the 
48 35,   interaction generators have become fractured  

from the other generators by B L  symmetry breaking 
at 15~ 10 GeVGUTv , no horizontal transitions are permit- 
ted among the (7.4) to (7.6) states unless all of the re- 
maining vertical generators—chiral symmetric or not— 
are the same as between the fermions involved in the 
transition, we arrive at precisely the type of mixing that 
is observed in nature as among the three generations. 
This makes generation mixing part and parcel of weak 
interactions, while excluding the strong interactions and 
even the right-chiral states from participation in genera- 
tional mixing. 

So, now we take the final, formal steps to mathemati- 
cally represent all of these decay restrictions. Referring 
to Section 12.12 of [14], the two generators 48 35,    
introduce two degrees of freedom and so define three- 
non-trivial horizontal eigenstates , ,e    in (7.4) through 
(7.6) and Figure 1, representing eigenstates of SU(3), 
which states are precluded from direct transformation 
into one another according to the rules just outlined be-
cause they are fractured generators. SU(3) can be used to 
form unitary matrices U with 9 3 3   components. 
Because the only permitted transitions are (7.7) through 
(7.10), we can alter the phase of any of the 2 3 6   
quark states which we designate  ,u d    
 , , , , ,u c t d s b  following Table 3, without altering the 

physics. Similarly for leptons. But one may omit an 
overall phase change which still leaves the physics in- 
variant. This means that U must be a function of 
9 3 3   minus 6 2 3   plus 1 parameters, i.e., 4 pa- 
rameters. But an orthogonal 3 3  matrix only has 
 3, 2 3C   real parameters, which leaves one residual 

phase. So for the leptons l, we may choose to form this 
matrix in the representation:     
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1 1 1 1 3 1 3

2 2 1 1 3 3 1 2 1 2 3 2 3 1 2 3 2 3

2 2 3 3 1 2 1 2 3 2 3 1 2 3 2 3

1 0 0 0 1 0 0

0 0 0 e e

0 0 0 e 0 e e

iδ iδ
l

i iδ iδ

l l

c s c s c s s

U c s s c c s s c c c c s s c c s s c

s c s c s s c s c c s c s s c c

     
               

               

      (7.11) 

 

and for the quarks q we form the analogous: 
 

1 1 1 1 3 1 3

2 2 1 1 3 3 1 2 1 2 3 2 3 1 2 3 2 3
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iδ iδ
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q q
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s c s c s s c s c c s c s s c c

     
               

               

    (7.12) 

 

To implement the lepton mixing, we keep in mind  
from (7.7) that for a e     transition to take  

place which alters the quantum numbers in (7.4) through  
(7.6), we cannot go directly from e    , but must  

engage in a vertical transition between the states  ,e  

in which all of the generators 81, 0,B L       
3 0, 1LY     do not change. The only permitted tran-  

sition is e  . Now, one can always apply (7.11) to 
both of  ,e , but then one of them can always be 
transformed into a pure state while the other is similarly 
transformed, without changing the physics. In other 
words, all that is observable is the relative transition as 
between  ,e . So following the usual conventions, we 
use (7.11) to transform the lower members of the  ,e  
doublet, that is, we define: 

 

1 1 3 1 3

1 2 1 2 3 2 3 1 2 3 2 3

1 2 1 2 3 2 3 1 2 3 2 3

e e

e e

iδ iδ
i l i
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l
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 
 

     
              

            
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Similarly for the quarks of each color C = R, G, B, we define: 
 

1 1 3 1 3

1 2 1 2 3 2 3 1 2 3 2 3

1 2 1 2 3 2 3 1 2 3 2 3

e e

e e

C C
iδ iδ

Ci C C q Ci
iδ iδ

C Cq

d c s c s s d

d s s c c c c s s c c s s c s U d

b s s c s c c s c s s c c b

     
                
              

             (7.14) 

 

Because RY  is not the same as between the members  

of each of the (7.7) through (7.10) doublets, right-chiral 
transitions are also precluded, and the only permitted 
transitions are for left-chiral states. So these will be pro-  

jected with  51
1

2
 . Further, because 8 3,    are not  

the same except as between members of the four distinct  

doublets in (7.7) through (7.10), the only permitted tran- 
sitions will be between one lepton and another lepton, 
and between a first quark of a given color and a second 
quark of the same color , ,C R G B . This keeps the 
strong QCD interaction out of generation-changing tran- 
sitions (and also out of any CP violation), and makes this 
an exclusively weak, left-handed chiral phenomenon. So 
for leptons, the transition currents will be: 
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        
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            (7.14) 

 

And for quarks of each color , ,C R G B , they will be: 
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This is exactly what the phenomenology demonstrates! 
So, returning to the question posed at the very outset 

of the discussion following Table 2, not only does SU(8) 
not provide too much freedom, but upon careful consid- 
eration and development, it provides exactly the right 
amount of freedom to explain the precisely observed 
fermion phenomenology of three generations. Further, by 
applying the rule that fermions which are fractured from 
one another after symmetry breaking cannot decay into 
one another except by a vertical interaction other than the 
vertical interaction that was used to break symmetry, and 
that decay with regards to a fractured generator which 
thereafter becomes a free-floating horizontal degree of 
freedom is only permitted between fermion eigenstates 
for which all of the surviving vertical generators are the 
same, we can use SU(8) to explain everything that we 
know about the qualitative features of the interactions we 
observe, from generation replication to weak chiral 
non-symmetry to Cabibbo mixing to the fact that this 
mixing occurs only via weak isospin decays between 
left-handed states. And in the process we have perhaps 
found that neutrinos do not gravitate with any fermions 
aside from other neutrinos, which is likely to be of tre- 
mendous consequence as this is better developed and 
understood and especially if it can ever be exploited. 

Before concluding this section, let us now return to the 
first three generators 63 48 35, ,    of SU(8). Based on 
the earlier review of how 63  breaks symmetry near the 
gravitational Planck scale and sets the neutrino on a tra- 
jectory to have a mass orders of magnitude smaller than 
that of any other fermion; given how the 48 35,   frac- 
ture from the other vertical generators and form the basis 
for two horizontal degrees of freedom that underlie three 
fermion generations in which one fermion is distin- 
guished from one another solely by mass and not by any 
other quantum numbers from a vertical degree of free- 
dom, and given that mass and gravitation are inextricably 
linked such that gravitation is the “mass interaction,” we 
now formally associate these three generators 63 48, ,   

35  with the gravitational interaction, at the elementary 
particle level, below the GUT energy. Using (7.4) to (7.6) 
and (6.5), we highlight this connection in Table 5 of 
Section 5. 

The horizontal degrees of freedom from 48 35,   
which to enable the fermions in each generation to have 
distinct masses in relation to their counterparts in the 
other two generations are shown horizontally, while the 
vertical degree of freedom G enabling each fermion 
within a generation to have a distinct mass is shown ver- 
tically. Of course, with SU(3)C remaining unbroken, dif- 
ferent colors of the same flavor of quark within one gen- 
eration have the same mass. As noted earlier, using the 
  notation, the vertical gravitational generator G does 
not distinguish the , ,u d e    masses from one an- 

other within a generation. So at high energies, as noted, 
the fermions (other than neutrinos) within a generation 
all have the same mass. It is only through the stages of 
symmetry breaking and the remaining generators 

LB L Y  , 3
LI  and Q, that the mass spectrum within a 

generation separates. This may be thought of as mass/ 
energy differences emanating from strong, weak, and 
electromagnetic interactions, i.e., one may regard quark 
masses to differ from electron masses because they are 
quarks not leptons, and up and down quark masses to 
differ because their weak isospins and electric charges 
are different. Gravitational generators provide the free- 
dom for these differences to occur. 

As to interactions, after all symmetry breaking in- 
cludeing electroweak symmetry breaking is completed, 
the seven generators of SU(3) now are allocated as fol- 
lows: three degrees of freedom go to gravitation in the 
form of 63 48 35, ,    , two degrees of freedom go to 
strong QCD interactions via 8 3,   , one degree of 
freedom goes to left-chiral weak interactions via 3

LI , and 
the final degree of freedom goes to electromagnetic in- 
teractions via Q. Seven linearly-independent degrees of 
freedom, and eight vertical fermion eigenstates, thus ac- 
count perfectly, with nothing missing and nothing super- 
fluous, for the observed phenomenology of the fermions 
and their interactions, including generation replication 
and Cabibbo mixing, left-chiral weak interactions, and 
the elusive and perhaps gravitationally-defiant behavior 
of the neutrino. 

8. Summary and Conclusion 

We have in the foregoing focused on the breaking of 
symmetry at the Planck scale and the GUT scale, which, 
astronomical observation aside, is many orders of mag- 
nitude beyond what we may ever hope to observe di- 
rectly. The final stage of symmetry breaking is elec- 
troweak symmetry breaking at the Fermi vev Fv   
246.219651 GeV . This is in the realm of observation, 
and the generator used to break this symmetry is the 
electric charge generator Q. This final symmetry break 
gives rise to the electromagnetic interaction which 
dominates atomic and chemical structure and much of 
what is most directly observed in the natural world be- 
yond gravitational interactions. That is, beyond objects 
falling to earth and planets wandering the heavens along 
prescribed trajectories, electromagnetic phenomena in 
electromagnetic and chemical and atomic form are our 
first line of direct experience of the natural world. Our 
experience of nuclear phenomena—based on the protons 
and neutrons which come to life as stable magnetic 
monopoles at the GUT scale as has been reviewed here 
and in [1]—comes to us through the laboratory instru- 
mentation that we used to extend the range of our physi- 
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cal senses, and gives rise to the vast preponderance of the 
matter that populates and animates the universe. 

When we break the electroweak symmetry we make 
use of the electric charge generator (4.6), and analo- 
gously to (5.1) through (5.3), employ the Fermi vacuum: 

i
F i F Fv Q    ,               (8.1) 

which specifically means that: 

   diag diag

2 1 1 1 2 2
0, , , , 1, , , diag

3 3 3 3 3 3

i
F i F

F F

T

v v Q

 

       
 

  (8.2) 

Picking off the coefficients from the generators in 
(4.6), for each non-zero component of the vacuum we 
then have: 

48 35 24

15 8

2 7 4 2 2
; ; ;

3 3 3 53 15

2 2
2 ;

3 3

F F F F F F

F F F F

v v v

v v

  

 

    

   

 (8.3) 

which leads to: 

         2 2 2 2 248 35 24 15 8

2

2 2 2

4 7 16 4 2 8 4

9 3 9 15 9 5 3 3

16

3

F F F F F

F

F F

v

v C v
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          

 

    (8.4) 

and consequently an electroweak Clebsch-Gordon coef- 
ficient: 

4

3
C  .                 (8.5) 

This is how the electroweak symmetry is broken for 
the SU(8) group that we have developed throughout this 
paper. This final symmetry break fractures all fermions 
of different electric charges from one another, and so 
precludes their decay into one another. Referring to Ta- 
ble 4, weak isospin transitions between up and down  

quarks with differing charges   2 1
, ,

3 3
Q u d

   
 

 are 

now precluded, as are similar transitions between elec- 
trons and neutrinos with    , 0, 1Q e   . This shuts 
down the weak interaction (in the historical view, renders 
it “weak”; in hindsight it is probably better called the 
“faint” interaction), and because weak isospin decays as 
reviewed in the last section are the only avenues permit- 
ted for generation-changing transitions, generational 
transitions also are turned off in lock step. The only tran- 
sitions still permitted after electroweak symmetry break- 
ing, given that Q is a vertical symmetry generator and so 
not subject to the very stringent rules laid out in the last 

section for horizontal transitions, are the vertical, color- 
changing R, G, B transitions of QCD, which are still al-
lowed to occur because the quarks involved in these 

interactions are part of a triplet in which 
1

3
B L   is  

the same for each, and the QCD symmetry remains un-
broken. That is, the only permitted decays once elec- 
troweak symmetry is broken, are decays along the 
B L  generator for particles of like B L  with un- 
broken 8 3,    generators, which, of course, are strong 
QCD interactions. With the exception of the R G  

B  transitions of QCD, no fermion may transform 
into any other different type of fermion. 

Now, following three stages of symmetry breaking—at 
the Planck scale, the GUT scale and the Fermi scale—all 
of the fermions have become fractured from one another, 
generation transitions cease, and the particles are frozen 
into the configurations of our everyday experience. The 
SU(8) symmetry with seven generator degrees of free- 
dom that we started with in Table 2 still does exist, but it 
has become hidden and distorted behind twenty orders of 
magnitude of vacuum screening and three stages of 
symmetry breaking that have fractured neutrinos from 
the other fermions and broken off their gravitational 
communication, broken the Planck symmetry between 
positive and negative energy fluctuations, fractured 
quarks from leptons, fractured two generators from the 
remaining five to provide horizontal generational replica- 
tion, brought about Cabibbo-type mixing among these 
generations for left-handed chiral projections only, and 
finally, fractured the upper and lower members of the 
like-hypercharge YL (weak isospin) doublets from one 
another, turned off the weak interactions, and frozen the 
particles in place so that all we observe at the lowest en- 
ergies are electromagnetic and strong interactions, as 
well as the bulk interaction of gravitating masses which 
is eluded by the neutrino. 

This GUT, which is based on the hypothesis that bary- 
ons are Yang-Mills magnetic monopoles and is rooted in 
the SU(4)P and SU(4)N subgroups developed in Section 7 
of [1] which yielded over half a dozen accurate predict- 
tions in [1,2] as reviewed in Section 1 here, leads system- 
atically to all of the qualitative particle and interaction 
phenomenology which we are able to observe with our 
senses and the extension of our senses through experi- 
mental apparatus. But the confirmation of the particular 
GUT proposed here, versus other possible GUTs which 
reproduce similar phenomenally, needs to come through 
mass and energy predictions which continue the suc- 
cessful empirical matches developed in [1,2]. As dis- 
cussed in Section 3, one would expect that these energy 
predictions should come about by developing the re- 
maining  -containing terms in the Lagrangian density 
(3.2) which we have not yet developed, and then making 
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use of these to calculate various energies 3dE x L  
to be matched up with empirical data. Along the way, the 
development should proceed on a parallel course to that 
of Sections 2 through 11 of [1], making use of the 
non-Abelian Klein-Gordon Equation (3.10), representing 
scalar sources as J  , employing the same sort spin 
sums and the same Gaussian ansatz modeling of fer- 
mions that was developed respectively in Sections 3 and 
9 of [1], and keeping in mind the clues we have elabo- 
rated in (3.6) through (3.8) and (3.11) here, all while em- 
ploying the GUT and symmetry breaking that has been 
elaborated here. 

It is clear from [1,2] that it will be possible via this ap-
proach to calculate and predict definitive mass and en-
ergy values, just as has been done previously in [1] and 
[2]. It will then be left to interpret those values as we did 
in Sections 11 and 12 of [1] and throughout [2], and to 
compare them with experimental data to try to ascertain 
the meaning of those calculations and predictions to ob- 
tain sensible numerical matches to observed energy data. 
That is, we clearly will be able to calculate energies. The 
question will be whether the energies we are able to cal- 
culate will match and make sense in relation to the em- 
pirical data as well as they did in [1,2]. 

Success in this endeavor, if it should arrive, would 
validate that this particular GUT may indeed be the one 
that nature has selected to govern the phenomenology of 
the material universe, and would provide some confi- 
dence that the development elaborated here does reach 
“behind the veil” to explain how nature really does oper- 
ate in energy domains likely to forever remain beyond 
the reach of our direct senses and the extension of our 
senses gained through experimental devices and meth- 
ods. 
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