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ABSTRACT 

In an earlier paper, the author employed the thesis that baryons are Yang-Mills magnetic monopoles and that proton and 
neutron binding energies are determined based on their up and down current quark masses to predict a relationship 
among the electron and up and down quark masses within experimental errors and to obtain a very accurate relationship 
for nuclear binding energies generally and for the binding of 56Fe in particular. The free proton and neutron were under- 
stood to each contain intrinsic binding energies which confine their quarks, wherein some or most (never all) of this 
energy is released for binding when they are fused into composite nuclides. The purpose of this paper is to further ad- 
vance this thesis by seeing whether it can explain the specific empirical binding energies of the light 1s nuclides, 
namely, 2H, 3H, 3He and 4He, with high precision. As the method to achieve this, we show how these 1s binding ener-
gies are in fact the components of inner and outer tensor products of Yang-Mills matrices which are implicit in the ex-
pressions for these intrinsic binding energies. The result is that the binding energies for the 4He, 3He and 3H nucleons 
are respectively, independently, explained to less than four parts in one million, four parts in 100,000, and seven parts in 
one million, all in AMU. Further, we are able to exactly relate the neutron minus proton mass difference to a function of 
the up and down current quark masses, which in turn enables us to explain the 2H binding energy most precisely of all, 
to just over 8 parts in ten million. These energies have never before been theoretically explained with such accuracy, 
which leads to the conclusion that the underlying thesis provides the strongest theoretical explanation to date of what 
baryons are, and of how protons and neutrons confine their quarks and bind together into composite nuclides. As is also 
reviewed in Section 9, these results may lay the foundation for more easily catalyzing nuclear fusion energy release. 
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1. Introduction: Summary Review of the 
Thesis that Baryons Are Yang-Mills 
Magnetic Monopoles with Binding 
Energies Based on Their Current Quark 
Masses 

In an earlier paper [1], the author developed the thesis 
that magnetic monopole densities which come into exis- 
tence in a non-Abelian Yang-Mills gauge theory of 
non-commuting vector gauge boson fiel Gds   are 
synonymous with baryon densities. That is, baryons, in- 
cluding the protons and neutrons which form the vast 
preponderance of matter in the universe, are Yang-Mills 
magnetic monopoles. Conversely, magnetic monopoles, 
long pursued since the time of Maxwell, have always 

been hiding in plain sight, in Yang-Mills incarnation, as 
baryons, and especially, as protons and neutrons. 

Maxwell’s equations themselves provide the theoreti- 
cal foundation for this thesis, because if one starts with 
the classical electric charge and magnetic monopole field 
equations (respectively, (2.1) and (2.2) of [1]): 

 
[ ]J F D G

g D D G

   
 

   
 

   

   

P F F F

          (1.1) 

                    (1.2) 

 D iG      and combines the magnetic charge 
Equation (1.2) with a Yang-Mills (non-Abelian) field 
strength tensor   is an N × N ma-  which, like GF
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trix for a simple gauge group SU(N) ((2.3) of [1]): 
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        (1.3) 

one immediately comes upon the non-vanishing mag-
netic monopole ((2.4) of [1]): 

 ,P i G

G G

   

  

     

   
      (1.4) 

The question then becomes whether such magnetic 
monopoles (1.4) actually do exist in the material universe, 
and if so, in what form. The thesis developed in [1] is not 
only that these magnetic monopoles do exist, but that 
they permeate the material universe in the form of bary- 
ons, especially as the protons and neutrons observed 
everywhere and anywhere that matter exists. 

Of course, t’Hooft [2] and Polyakov [3] realized sev- 
eral decades ago that non-Abelian gauge theories lead to 
non-vanishing magnetic monopoles. But their monopoles 
have very high energies which make them not suitable 
for being baryons such as protons and neutrons. Follow- 
ing t’Hooft, the author in [1] does make use of the 
t’Hooft monopole Lagrangian from (2.1) of [2] to calcu- 
late the energies of these magnetic monopoles (1.4). But 
whereas t’Hooft introduces an ansatz about the radial 
behavior of the gauge bosons  , the author instead 
makes use of a Gaussian ansatz borrowed from Equation 
(14) of Ohanian’s [4] for the radial behavior of fermions. 
Moreover, the fermions for which this ansatz is em- 
ployed enter on the very solid foundation of taking the 
inverse G I J 

   of Maxell’s charge Equation (1.1) 
(essentially calculating the configuration space inverse 



  1
D   

  g D
 ), and then combining this with the  

relationship J   
0J 

 that emerges from satisfying 
the charge conservation (continuity) equation    
in Dirac theory. Specifically, it was found that in the 
low-perturbation limit, magnetic monopoles (1.4) can be 
re-expressed as a three-fermion system ((3.12) of [1]): 
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    (1.5) 

Above,  i ; 1, 2,3i   are three distinct Dirac spinor 
wavefunctions which emerge following three distinct 
substitutions of G I  J I   

   " "i im

—which cap- 
tures the inverse of Maxwell’s charge Equation (1.1) 
combined with Dirac theory—into the (1.4) magnetic 
monopole which utilizes the Yang-Mills field strength 

(1.3) in combination with Maxwell’s magnetic monopole 
Equation (1.2). The detailed derivation of (1.5) from (1.4) 
also makes use of Sections 6.2, 6.14 and 5.5 of [5] per- 
taining to Compton scattering and the fermion com- 
pleteness relation, and carefully accounts for mass de- 
grees of freedom as between fermions and bosons. The 
quoted denominators    and “quasi commuta-  

tors” 
2

i     
   in the above make use of a   

compact notation developed and explained in Section 3 
of [1], see specifically (3.9) and (3.10) therein. 

Then, via Fermi-Dirac Exclusion, the author employed 
the QCD color group SU(3)C to require that each of the 
three  i  be SU(3)C vectors in distinct quantum color 
eigenstates R, G, B, which then leads in (5.5) of [1] to a 
magnetic monopole: 
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
   

   

This is similar to (1.5) but for the emergence of the 
trace. Associating each color with the spacetime index in 
the related   operator, i.e., ,R G  B and   , 
and keeping in mind that Tr P

R G B

 is antisymmetric in 
all spacetime indexes, we express this antisymmetry with 
wedge products as       

P
. So the natu- 

ral antisymmetry of a magnetic monopole   leads 
straight to the required antisymmetric color singlet 
wavefunction      , , ,R G B G B R B R G 

P

 for a baryon. 
Indeed, in hindsight, this antisymmetry together with 
three vector indexes to accommodate three vector current 
densities and the three additive terms in the   of 
(1.2) should have been a tip-off that magnetic monopoles 
would naturally make good baryons. Further, upon inte- 
gration over a closed surface via Gauss’/Stokes’ theorem, 
magnetic monopole (1.6) is shown to emit and absorb 
color singlets with the symmetric color wavefunction 
RR  GG BB

logical stability of these magnetic monopoles was estab- 

 expected of a meson. And, in Section 1 
of [1], it was shown how magnetic monopoles naturally 
contain their gauge fields in non-Abelian gauge theory 
via the differential forms relationship dd = 0 for precisely 
the same reasons rooted in spacetime geometry that 
magnetic monopoles do not exist at all in Abelian gauge 
theory. Thus, QCD itself deductively emerges from the 
thesis that baryons are Yang-Mills magnetic monopoles, 
and we began to associate monopole (1.6) with a baryon. 

It was then shown in Sections 6 through 8 of [1] that 
these SU(3) monopoles may be made topologically stable 
by symmetry breaking from larger SU(4) gauge groups 
which yield the baryon and electric charge quantum 
numbers of a proton and neutron. Specifically, the topo- 
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lished in Sections 6 and 8 of [1] based on Cheng and Li 
[6] at 472-473 and Weinberg [7] at 442. The proton and 
neutron are developed as particular types of magnetic 
monopole in Section 7 of [1] making use of SU(4) gauge 
groups for baryon minus lepton number B L  based on 
Volovok’s [8], Section 12.2.2. The spon s symme- 
try breaking of these SU(4) gauge groups is then fash- 
ioned on Georgi-Glashow’s SU(5) GUT model [9] re- 
viewed in detail in Section 8 of [1]. 

By then employing the earlier-r

taneou

eferenced “Gaussian 
ansatz” from Ohanian’s [4], namely ((9.9) of [1]): 

       23 1 r r   02 4
2

π exp
2

r u p    
 
 

     (1.7) 

for the radial behavior of the fermion wavefunctions, 

 of [1], the author 
us

ner

together with the t’Hooft monopole Lagrangian from (2.1) 
of [2] (see (9.2) of [1]) it became possible to analytically 
calculate the energies of these Yang-Mills magnetic 
monopoles (1.6) following their development into topo- 
logically stable protons and neutrons. 

Specifically, in Sections 11 and 12
ed the pure gauge field terms gaugeL  of the t’Hooft 

monopole Lagrangian to specify the e gy of the Yang- 
Mills magnetic monopoles, exclusive of the vacuum  , 
via (11.7) of [1]: 

3
gauge

1
d T

2
E x   L 3r dF F x

 .    (1.8) 

We then made use in (1.8) of field strength tensors for 
protons and neutrons developed via Gauss’/Stokes’ the-
orem from (1.6) in (11.3) and (11.4) of [1], respectively: 
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uwhere  and d  are Dirac wavefunctions for up and 
uar  de

ectron mass 
is

   

down q ks, to duce three relationships which yielded 
remarkable concurrence with empirical data. 

First, we found in (11.22) of [1] that the el
 related to up and down quark masses according to: 

3

22πum ,  (1.11) 

wher visor  

0.510998928 MeV 3e dm m 

e the di
3

22π  results as a natural conse-  

dimenquence of the three- sional integration (1.8) when 
the Gaussian ansatz for fermions is specified as in (1.7), 

and where the wavelengths in (1.7) are taken to be re-
lated to the quark masses via the de Broglie relation 

mc  . 
 aSecond nd third, we found in (12.12) and (12.13) of 

[1] that if one postulates the current mass of the up quark 
to be equal to the deuteron (2H nucleus) binding energy 
based on 1) empirical concurrence within experimental 
errors and 2) regarding nucleons to be resonant cavities 
with binding energies determined in relation to their up 
and down current quark masses, then the proton and neu- 
tron each possess respective intrinsic, latent binding en- 
ergies B (i.e., energies intrinsically available for nuclear 
binding): 

   
3

2
PB 2 4 4 2π

7.640679 MeV

u d d u d um m m m m m    


  (1.12) 

   
3

2
NB 2 4 4 2π

9.812358 MeV

d u u u d dm m m m m m    


  (1.13) 

So for a nucleus with an equal number of protons and 
neutrons, the average binding energy per nucleon is pre- 
dicted to be 8.726519 MeV. Not only does this explain 
why a typical nucleus beyond the very lightest (which we 
shall be studying in detail here) has a binding energy in 
exactly this vicinity (see Figure 1 below), but when this 
is applied to 56Fe with 26 protons and 30 neutrons— 
which has the distinction of using a higher percentage of 
this available binding energy than any other nuclide—we 
see that the latent available binding energy is predicted 
to be ((12.14) of [1]): 

 56B Fe 2 6 7.640679 MeV

30 9.812358 MeV

493.028394 MeV



 


        (1.14) 

This contrasts remarkably with the observed 56Fe 
bi

 resonant 
ca

nding energy of 492.253892 MeV. That is, precisely 
99.8429093% of the available binding energy predicted 
by this model of nucleons as Yang-Mills magnetic mono- 
poles goes into binding together the 56Fe nucleus, with a 
small 0.1570907% balance reserved for confining quarks 
within each nucleon. This means while quarks are very 
much freer in the nucleons of 56Fe than in free nucleons 
(which also appears to explain the “first EMC effect” 
[10]), their confinement is never fully overcome. Con- 
finement bends but never breaks. Quarks step back from 
the brink of becoming de-confined in 56Fe as one moves 
to even heavier nuclides, and remain confined no matter 
what the nuclide. Iron-56 thus sits at the theoretical 
crossroads of fission, fusion and confinement. 

This thesis that protons and neutrons are
vities which emit and absorb energies that directly 

manifest their current quark masses will be central to the     
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Figure 1. The empirical binding energy per nucleon of various nuclides. 
 
evelopment of this paper. The foregoing (1.12) through 

ummation: with a non-Abelian Yang-Mills 
fie

d
(1.14) provide strong preliminary confirmation of this 
thesis, as well as of the underlying thesis that baryons are 
Yang-Mills magnetic monopoles. In this paper, we shall 
show how the observed binding energies of the 1s nu- 
clides, namely of 2H, 3H, 3He and 4He, as well as the ob- 
served neutron minus proton mass difference, provide 
further compelling confirmation of the thesis that bary- 
ons are Yang-Mills magnetic monopoles which bind at 
energies which directly reflect the current quark masses 
they contain. 

In simple s
ld strength (1.3), Yang Mills magnetic monopole 

baryons result from simply combining Maxwell’s classi- 
cal electric (1.1) and magnetic (1.2) charge equations 
together into a single equation, making use of Dirac’s 
J     based on charge continuity, and imposing 

 SU(3)C Exclusion on the fermions of the 
resulting three-fermion monopole system. No further 
ingredients or assumptions are required, and all of these 
ingredients being so-combined in novel fashion are 
among the undisputed, uncontroversial bedrock founda- 
tions of modern physics. The Gaussian ansatz (1.7) en- 
ables the energy (1.8) to be analytically calculated, the 
mass relation (1.11) naturally emerges, and once we fur- 
ther apply the resonant cavity thesis, the resulting ener- 

binding energies. 
In even simpler summation: Maxwell’s Equations (1.1), 

(1.2) themselves, 

Fermi-Dirac

gies turn out to match up remarkably well with nuclear 

combined together into one equation 
us

g 
w

utline of the Contents of This 

tio .12) through (1.14) there is an aspect of (1.8) 

ing non-Abelian gauge fields (1.3), taken together with 
Dirac theory and Fermi-Dirac Exclusion, are the gov- 
erning equations of nuclear physics, insofar as nuclear 
physics centers around the study of protons and neutrons 
and how they bind and interact, and given that we were 
able to show in [1] that protons and neutrons are particu- 
lar types of Yang-Mills magnetic monopoles. This theory 
is thus extremely conservative, based on combining to-
gether unquestionable foundational physics principles. 

In essence, the purpose of this paper is to further de- 
velop the results from [1] into a theory of nuclear bindin

hich we confirm by predicting the binding energies of 
the 1s nuclides as well as the neutron minus proton mass 
difference with very high precision, each on the order of 
parts per million. 

2. Structured O
Paper 

In deriving the empirically-accurate binding energy rela- 
nships (1

which, when carefully considered, requires us to amend 
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the Lagrangian in (1.8) in a slight but important way. 
This amendment, developed in Section 3, will reveal that 
the latent binding energies (1.12) and (1.13) actually em- 
ploy the inner and outer tensor products of two 3 × 3 
SU(3) matrices, one for protons, and one for neutrons. 
These matrices, and their inner and outer products, will 
be critical to the methodological development thereafter. 

In section 4 we lay the foundation for being able to de- 
rive the binding energies of the 1s nuclides using the 
ea

or the 4He alpha 
bi

 parts in one million 
A

ss excess rather 
th

how these can be combined to ex- 

pr

 not only the
accuracy of the re

ical, because the 
po

e results for 3H, 3He and 
4H

y in Figure 11, 
in

 

rlier-discussed postulate that the mass of the up quark 
is equal to the deuteron (2H nucleus) binding energy, and 
the thesis extrapolated from this that the binding energies 
of nuclides generally are direct functions of the current 
quark masses which their nucleons contain. Specifically, 
in (4.9) through (4.11) infra, we develop two tensor outer 
products and their components which will be critical in- 
gredients for expressing 1s binding energies as functions 
of up and down current quark masses. 

Section 5 shows how this binding energy thesis leads 
directly to a theoretical expression f

nding energy which matches empirical data to less than 
3 parts in 1 million AMU. Exploring the meaning of this 
result, we see that this binding energy together with that 
of the 2H deuteron are actually components of a (3 × 3) × 
(3 × 3) fourth rank Yang Mills tensor of which the 2H 
and 4He binding energies merely two samples. Thus, we 
are motivated to think about binding energies generally 
as components of Yang-Mills tensors. So the method for 
characterizing binding energies is one of trying to match 
up empirical binding energies with various expressions 
which emerge from, or are components of, these Yang- 
Mills tensors. In Section 6, we similarly obtain a theo-
retical expression for 3He helion binding to just under 4 
parts in 100,000 AMU as well as its characterization in 
terms of these Yang-Mills tensors. 

Developing a similar expression for the 3H triton to 
what ends up being just over three

MU turns out to be less straightforward than for any of 
2H, 3He and 4He, and requires us to work with mass ex- 
cess rather than binding energy. However, a bonus is that 
in the process, we are also motivated to derive an expres- 
sion for the neutron minus proton mass difference accu- 
rate to just over 7 parts in ten million AMU. To maintain 
clarity and focus on the underlying research ideas, these 
results are summarized in Section 7, while their detailed 
derivation is presented in the Appendix. 

Section 8 aggregates the results of Sections 5 through 
7, and couches them all in terms of ma

an binding energy. In this form, it becomes more 
straightforward to study nuclear fusion processes involv-
ing these 1s nuclides. 

Section 9 makes use of the mass excess results from 
Section 8, and shows 

ess the approximately 26.73 MeV of energy known to 
be released during the solar fusion cycle 1

14 H 2e    
4
2 He 2 Energy   entirely in terms of the up, down and 
electron fermion masses. This highlights  

sults for 2H, 3H, 3He and 4He binding 
energies and the neutron minus proton mass difference, 
but it establishes the approach one would use to do the 
same for other types of nuclear fusion, and for fission 
reactions. And, it vividly confirms the thesis that fusion 
and fission and binding energies are directly based on the 
masses of the quarks which are contained in protons and 
neutrons, regarded as resonant cavities. 

But perhaps the most important consequence of the 
development in Section 9 is technolog

ssibility is developed via this “resonant cavity” analy- 
sis that by bathing a store of hydrogen in gamma radia- 
tion at certain specified, discrete frequencies which are 
also defined functions of the up and down quark masses, 
one can catalyze nuclear fusion and perhaps develop 
more effective ways to practically exploit the promise of 
nuclear fusion energy release. 

In Section 10, we take a closer look at experimental 
errors that still do reside in th

e binding and the neutron minus proton mass differ- 
ence, generally at parts per 105, 106 or 107 AMU. We 
explain why the original postulate identifying the up 
quark mass exactly with the 2H deuteron binding energy 
should be modified into the substitute postulate that the 
theoretical neutron minus proton mass difference is an 
exact relationship, and why the equality of the up quark 
mass and the deuteron binding energy is simply a very 
close approximation (to just over 8 parts in ten million) 
rather than an exact relationship. We then are required to 
adjust (recalibrate) all of the prior numeric mass and en- 
ergy calculations accordingly, by about parts per million. 
As a by-product, the up and down quark masses become 
known with the same degree of experimental precision as 
the electron rest mass and the neutron minus proton mass 
difference, to ten decimal places in AMU. 

Section 11 concludes by summarizing and consolidate- 
ing these results, laying out most compactl

fra, how the thesis that baryons are Yang-Mills mag-
netic monopoles which fuse at binding energies reflective 
of their current quark masses can be used to predict the 
binding energies of the 4He alpha to less than four parts 
in one million, of the 3He helion to less than four parts in 
100,000, and of the 3H triton to less than seven parts in 
one million, all in AMU. And of special import, by ex-
actly relating the neutron minus proton mass difference 
to a function of the up and down quark masses, we are 
enabled to predict the binding energy for the 2H deuteron 
most precisely of all, to just over 8 parts in ten million. 

What renders this work novel is 1) that the 1s light   
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in (1.8), 
because of suppression of the Yang-Mills matrix indexes,  

nuclide binding energies and the neutron minus proton actually has an ambiguous mathematical meaning, and 
can be either an ordinary (inner product) matrix multi- 
plication, or a tensor (outer) product. The outer product is 
the most general bilinear operation that can be performed 
on 

mass difference do not appear to have ever before been 
theoretically explained with such accuracy; 2) the degree 
to which this accuracy confirms that baryons are Yang- 
Mills magnetic monopoles with binding energies which 
are components of a Yang-Mills tensor and which are 
directly related to current quark masses contained in 
these baryons; 3) the finding that nuclear physics appears 
to be grounded in unquestionable conservative physics 
principles, governed by simply combining Maxwell’s two 
classical equations into one equation using Yang-Mills 
gauge fields in view of Dirac theory and Fermi-Dirac Ex- 
clusion for fermions; and 4) the prospect of perhaps im- 
proving nuclear fusion technology by applying suita- 
bly-chosen resonances of gamma radiation for catalysis. 

3. The Lagrangian of Nuclear Binding 
Energies 

F F 
 , while the inner product represents a con- 

traction of the outer product which reduces the Yang- 
Mills rank by 2. When carefully considered, this provides 
an opportunity for developing a nuclear Lagrangian 
based on the t’Hooft’s original development [2] of Yang- 
Mills magnetic monopoles. 

Copyright 

The t’Hooft magnetic monopole Lagrangian used 

If we know that 
1 1

4 2a aF F F F 
   as we do 

from the terms in (11.7) of [1] omitted from (1.8) above,  

and given that 
1

2
i j ijT TTr 

, , , 1, 2,3A B C D

, then with explicit in-  

dexes   for the 3 × 3 Yang-Mills ma-  

 3
C

SU   isospin-modified color group  trices of the 

developed in Section 8 of [1], an explicit appearance of 
Yang-Mills indexes would cause (1.8) to be written as: 

 

3
gauge

1
d TrE x F   L 3 3

3 3

1
d Tr d

2 2

1 1
Tr d d

2 2

AB BD

AB BD AB BA

F x F F x

F F x F F x

 
 

   



 
                   (3.1) 

 
where F F F F 

   suppresses spacetime indexes to 
cus attention on contractions of Yang-Mills indexes. In 

rth and fifth te

 

write Tr AB BD AB BAF F F F    via a second “A” index 

contraction. 
point this out because (

match empirical nuclear binding data, em-  
bo

fo
the fou rms above, there is a contraction 
over the inner “B” index, which means that AB BDF F  is 
an inner product formed with ordinary matrix multiplica- 
tion, and is a contraction over inner indexes of rth 
rank (3 × 3 × 3 × 3) outer product F F 



We 1.12) through (1.14) which 
successfully 

dy not only (3.1), but also an outer product AB CDF F , 

that is, (carefully contrast Yang-Mills indexes between 

  the fou
   

AB CDF F  down to rank two. In the sixth, final term, we the final terms in (3.1), (3.2)): 
 

3
gauge

1
d TrE x F   L 3 31

d Tr dAB CDF x F F x 
 

3 3

2 2
1 1

Tr d d
2 2AB CD AA BBF F x F F x



    
                 (3.2) 

 
here, in the final terms, we use Tr AB CD AA BBF F F F   ,  
s opposed to Tra AB BD AB BAF F F F   . This highlights the  

st

notational ambiguity in (1.8) as   well as the difference
ter   and inner matr

ircum- 

between the ou ix products. 
Now, in general, the trace of a product of two square 

matrices is not the product of traces. The only c
ance in which “trace of a product” equals “product of 

traces” is when one forms a tensor outer product using: 

     Tr Tr TrA B A B  .         (3.3) 

Specifically, to obtain the terms 4 4u d um m m    dm

and 4 4u u d dm m m m   in (1.13) (and also  

(12.4) and (12.5) of [1] which erroneously applied (3.2),  
(3.3) rather than (3.1) because of this ambiguity), we 

dm  and 2 d um mst use (3.2), while to obtain 2 um mu   
.13), we instead must uin (1.12) and (1

(1.13) are 
se (3.1). So (1.12) 

formed b

se match e binding

gian to match the empirical data. 

and y a linear combination of both 
inner and outer products. And because (1.12) and (1.13) 
predict binding energies per nucleon in the range of 8.7 
MeV and yield an extremely clo  to 56F  
energies, nature herself appears to be telling us that we 
need to combine inner and outer products in this way in 
order to match up with empirical data. This, in turn, gives 
us important feedback for how to construct our Lagran- 

(1.12) and 
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To see this most vividly, we start with (11.8) and (11.9) from [1]: 
 

3

"

u d d u u           
         

P

1
2

2 " " "

d d u
E

m m

         

 
 

       
   

 2 d
" " " "d d u u d d u u

x
m m



 

 
    

      (3.4) 

 

31
2 2 d

"

u u d d u u d d

d d

E x
m

   
                  


   

                        
  

       (3.5) 

 

ment in Section 11 and (12.12) and (12.13) of [1], we can 
produce Equations (1.12) and (1.13) for the empiri- 

cally-accurate latent binding energies of 
neutron using linear combinations of inner and outer 
Yang-Mills matrix products, respectively, as follows: 

 

N 2 " " " " " " "u u d d u um m m        


Using these in (3.1) and (3.2) following the develop- 

re

a proton and 

   

 
 

 

3 3

2 2
P P P P P P P P P P P

1 1
B Tr 2π d Tr 2π d

2 2
μν μν

μν μν AB BD AB CDΣE E F F F F F F F F x
              
   

 3 3

3
32

P P P P 3

2

1 1
2π d 2 4 4

2 2π

0 0 0 0

Tr 0 0 0 0

0 0 0 0

AB BA AA BB u d d u d u

d d

u u

u u

x

F F F F x m m m m m m

m m

m m

m m

          
 

  
  
  
 
 
  



 
3

2

0 0 0 0
1

0 0 0 0
2π 0 0 0 0

9.356376 MeV 1.715697 MeV 7.640679 MeV

d d

u u

u u

m m

m m

m m

    
    
     
     

         
  

   (3.6) 

 

   

 
 

 

3 3
3 32 2

N N N N N N N N N N N

3
32

N N N N 3

2

1 1
B Tr 2π d Tr 2π d

2 2

1 1
2π d 2 4 4

2 2π

0 0 0 0

μν μν
μν μν AB BD AB CD

AB BA AA BB d u u u d d

E E F F F F x F F F F x

F F F F x m m m m m m

m m

               
   

          
 

  

 



Tr 0 0 0 0

0 0 0 0

u u

d d

d d

m m

m m

  
  
 
 
  

 
3

2

1
0 0

2π 0 0

12.039054 MeV 2.226696 MeV 9.812358 MeV

u u  
   
    

     
  

 
These now provide matrix expressions for intrinsic, 

latent binding energies of the proton and neutron, con- 

0 0 0 0

0 0

0 0

d d

d d

m m

m m

m m

    
 
 

 

  (3.7) 

acted down to scalar energy numbers which specify 
th

ing nuclear binding energies in general. 
Contrasting (3.6) and (3.7) with (3.1) and (3.2), we see 

that in order to match up with the empirical data, the 
tent binding en- 

er

tr
ese binding energies and match the empirical data very 

well. And it is from these, that we learn how to amend 
the Lagrangian in (1.8) to lay a foundation for consider- 

general form of a Lagrangian for the la

 

gy of a nucleon, rather than (1.8), needs to be: 

     
3 3

2 2
binding

1 1
Tr 2π Tr 2π

2 2
μν μν

μν μνF F F F
       
  

L
3

2
1

2πBD AB CD AB BA AA BBF F F F F F F
        2ABF




  
  (3.8) 

Using this, we now start to amend the t’Hooft Lagrangian (9.2) of [1], reproduced below: 
 

 

 221 1 1 1a a a aF F D D            L                               (3.9) 
4 2 2 8a a a a 
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First, we apply 
1

Tr ,
2

i j ij i
iT FT T F     and a

aT    to rewrite (3.9) in the Yang-Mills matrix form: 

 

       

           

     

2

22

22

1 1
Tr Tr Tr

2 2
1 1

Tr Tr Tr Tr
2 2
1 1

2 2

AB BD AB BD AB BDAB BD

AB BA AB BA AB BAAB BA

F F D D

F F D D

F F D D


 

 
 

 
 



 

 

   

          

          

         (3.10) 

 

with (9.4) of [1] also written in compacted matrix form: 

 ,G    .     (3.11) 

Now, we compare (3.10) closely with (3.8), especially  

2
Tr     L

 
3

2
1

2π
2 AB BA AA BBF F F F
    
 

 the pure gauge Lagran-  

gian term, because we know from (3.6) and (3.7) that this 
yields latent binding energies
those empirically observed in nuclear physics. Thus, we  

  ABD i    
AB AB

comparing 
1

AB BA2
F F 
  in (3.10) with  

3

2
1

2π AB B2
F F A  

in
 the pure ga y the latent nu
ng energies, that ake

 (3.8). Based on this, we reconstruct the t’Hooft La- 
grangian so uge terms specif - 
clear bindi is, we choose to m   

 very much in accord with 

take (3.10), introduce a factor of  
3

22π  in front of all  

the ordinary matrix products, subtract off a term AA BBF F , 
introduce similarly-contracted te ywhere else, 
and so fashion the Lagrangian: 

rms ever

 

       

     221 1
  

2 2AA BB AA BB AA BBAA BB
F F D D



 
   




         

             (3.12) 

 

It is readily seen ure gauge terms 

3

2
1

2π
2 AB BA AB

F F D D
 

  
L

22 1

2AB BA AB BABA
        

F F that the p 
  in 

the above are identical to (3.8), which means these terms 
ow represent the empirically tent nuclear 

bi is Lag

this understanding to the vacuum terms. 
The benefit of all of this can be seen by now consider- 

ing a nucleus with Z protons and N neutrons, which 
 (3.6) and (3.7), 

w  

n -observed la
nding energies. However, in constructing th ran-  

gian, we carry the same index structure and  
3

22π  co-  

efficients forward to all remaining terms and thus extend 
 

therefore has A = Z + N nucleons. With
e may write the intrinsic, available, latent binding en- 

ergy BA
Z  of any such nuclide as: 

   
3 3

3 32 d
2

7.640679 MeV 9.812358 MeV

BB
2

P P P PB 2π d
2Z AB BA AA BB

2
N N N Nπ AB BA AA

1 1A Z F F F F x      
  N F F F F    x

Z N

 
 
 

   
       (3.13) 

 

This simply restates th  in Sections 11 
and 12 of [1] in more form t ties formal 

eoretical expressions based on a Lagrangian 

 

e results found
al terms. But, i

th

 1
Tr

2
F F  L  and an energy 3dE x L  to a 

very practical formula for deriving real, numeric, em- 
pirically-accurate ergies. A goo
ample is (1.14) for B , the latent binding energy of 

B) via (3.13), but also the observed binding ener- 
gi

the 3H triton, 3
2 0B  for the 3He helion, an

tantly given that it is a fundamental building block of the 
larger nuclei and many decay process, 4 B  for the 4He 

ta. 

rtaking 
tail, how 

which 
monop nuclei 

nuclear binding en d ex- 
56
26

56Fe. 
On the foregoing basis, we now show how to derive 

not only the latent, available binding energies (design- 
nated 

es (which will be designated throughout as 0B  with a 
“0” subscript) for several basic light nuclides. Specifi- 
cally, we now lay the foundation for deriving 3

1 0B  for 

2 0

alpha, all extremely closely to the empirical da

4. Foundation for Deriving Observed 
Binding Energies of the 1s Nuclides 

Our goal is to derive the observed, empirical binding 
energies for all nuclides with 2; 2Z N   on a totally 
theoretical basis. We thereby embark on the unde

d most impor- 

set forth at the end of [1], to understand in de
collections of Yang-Mills magnetic monopoles—

ole collections we now understand to be 
when the monopoles are protons and neutrons—organize 
and structure themselves. 
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The empirical nuclear weights (masses A
Z M ) of the 1s 

nuclides are set forth below in Figure 2 (again, A = Z + 
N). Because we wish to do very precise calculations, and 
because nuclide masses are known much more precisely 
in u (atomic mass units, AMU) than in MeV due to the 
“relatively poorly known electronic charge” [11], we 
shall work in AMU. When helpful for illustration, we 
shall convert over to MeV via 1u = 931.494061(21) 
MeV/c2, but only after a calculation is complete. The 
data for these nuclides (and the electron mass below) is 
from [11] and/or [12], and is generally known to ten-digit 
precision in AMU with experimental errors at the elev- 
enth and twelfth digits. For other nuclides not listed at 
these sources, we make use of a very helpful online 
compilation of atomic weights and isotopes at [13]. Ver- 
tical columns list isotopes, horizontal rows list isotones, 
and diagonal lines link isobars of like-A. The nuclides 
with border frames are stable nuclides. The mass of the  

neutron is   1
0 1 008664916000M n M . u   and the  

mass of the proton is   1
1 1 007276466812M p M . u  . 

The observed binding energies B0 are readily calcu-  

lated from the above via 1 1
0 1 0BA A

Z ZZ M N M M       

using the proton and neutron masses   1
1M p M  and  

  1
0M n M , a e 3 below nd are summarized in Figur

nding energies will be denoted 

 energies denoted simply

already show
(12.9) of [1]

(again, the observed bi
throughout as 0B  with a “0” subscript, while latent, 
theoretically-available binding  
B will omit this subscript). 

Now let’s get down to business. We ed in 
 and discussed in the introduction here, that 

by identifying the mass of the up quark with the deuteron  
binding energy via the postulate that  2

0B Hum    

2.224566 MeV , we not only can establish very precise  

masses for the up and down quarks but also can explain 
the confluence of confinement and fission and fusion at 
56Fe in a very profound way, wherein 99.8429093% of 
the available binding energy goes into binding the 56Fe 
nucleus and only the remaining 0.1570907% is unused 
for nucleon binding and so instead confines quarks. And, 
we extrapolated this to the thesis to be further confirmed 
here, that nucleons in general are resonant cavities fusing 
at energies reflective of their current quark masses. 

So we now write this postulate identifying (defining) 
the up quark mass u  with the observed deuteron 
binding energy , in notations to be employed here, 
in AMU, as: 

m
2
1 0B

2
1 0B 0 002388170100um . u 

0 000548579909em . u

.      (4.1) 
In AMU, the electron mass, which we shall also need, 

is: 
.            (4.2) 

We then use (1.11) (see also (12.10) of [1]) with (4.1) 
and (4.2) to obtain the down quark mass: 

 
3

22π 3 0 005268143299d e um m m . u   .  (4.3) 

It will also be helpful in the discussion following to 
use: 

0 003547001876u dm m . u          (4.4) 

see, e.g., (1.12) and (1.13) in which this first arises. 
We then use the foregoing in (1.12) and (1.13) to cal- 

culate the latent, available binding energy of the proton 
and neutron, designated B without the “0” subscript: 

 

   

1
1

3

2

B B 2

4 4 2π

0 008202607332

u d

d u d u

p m m

m m m m

. u

  

  


 

       (4.5) 

 

Figure 2. Empirical nuclear weights  A
Z M  of 1s nuclides (AMU). 

 

 

Figure 3. Empirical binding energies  A
Z 0B  of 1s nuclides (AMU). 
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 

   

1
0B B 2

4 4

0 010534000622

d u

u u

n m

m m m

. u

  

 



3

22πd d

m

m         (4.6) 

Via (3.13), (4.5) and (4.6) may then be used to calcu- 
late generally, the latent, available binding energy: 

 

 

3

2

4 4
B 2

2π

4 4
2

0 008202607332 0 010534000622

d u d uA
Z u d

u u d d

m m m m
Z m m

m m m m
N m m

3

22π
d u

Z . u N . u

        


      

   

(4.7) 

for any nuclide of given Z, N. For the nuclides in Figures 
2 and 3, this theoretically-available, latent binding en- 
ergy B, is predicted to be: see Figure 4. 

Taking the ratio of the empirical values in Figure 3 
over the theoretical values in Figure 4 and expre
these as percentages then yields: see Figure 5. 

So we see, for example, that the 4He alpha nucleus 
uses about 81.06% of its total available latent binding 

sus released for nuclear binding dependent on the par- 
ticular nuclide in question. 

As a point of comparison, we return to 56Fe which has 
the highest percentage of used-to-available binding en- 
ergy of any nuclide. Its nuclear weight  
56
26 55 92067442M



. u  (cf. Figure 2), its empirical, ob-  

rved 0 52846119. u  (cf. Figure 

ailable percentage 

  
 

ssing 

energy to bind itself together, with the remaining 18.94% 
retained to confine the quarks inside each nucleon. The 
deuteron releases about 12.74% of it latent binding en-
ergy for nuclear binding, while the isobars with A = 3 
release about 31% of this latent energy for nuclear bind- 
ing with the balance reserved for quark confinement. The 
free proton and neutron, of course, retain 100% of this 
latent energy to bind their quarks and release nothing. So 
one may think of the latent binding energy as an energy 
that “see-saws” between confining quarks and binding 
together nucleons into nuclides, with the exact percent- 
age of latent energy reserved for quark confinement ver-  

se binding energy 56
26 0B 

3), its latent binding energy 56
26 B 0 52928781. u  (cf. 

Figure 4), and its used-to-av

 56  

eon, its used-to- 
available percentage 

tively weights the n

56
26 0 26B B 99 843825% . %  (cf. Figure 5). No nuclide 

has a higher such percentage than 56Fe. While 62Ni has a 
larger empirical binding energy per-nucl

is lower, because the calculation in 
(4.7) literally and figura eutrons more 
heavily than the protons by a ratio of: 

 
 

1
0
1

B B 0 010534000622

B 0 008202607332B

n . u

p . u
 

  
1

2% lar e proton, neutrons 
will in general find it easier to bind into a he
by a factor of 28.42%. Simply put: neutrons
available binding energy to the table than protons and so 
ar

 

1 284225880325.

The above ratio explains the long-observed phenome- 
non why heavier nuclides tend to have a greater number 
of neutrons than protons: For heavier nuclides, because 
the neutrons carry an energy available for binding which 
is about 28.4 ger than that of th

    (4.8) 

avy nucleus 
 bring more 

e more welcome at the table. The nuclides running 
from 31Ga to 48Cd tend to have stable isotopes with neu- 
tron-to-proton number ratios (N/Z) roughly in the range 
of (4.8). Additionally, and likely for the same reason, this 
is the range in which, beginning with 41Nb and 42Mo, and 
as the N/Z ratio grows even larger than (4.8), one begins 
to see nuclides which become theoretically unstable with 
regard to spontaneous fission. 

 

nergies Figure 4. Theoretically available binding  A
Z B  of 1s nuclides (AM e U). 

 

 

  %A A
Z Z0B B  of 1s nuclides (%). Figure 5. Used-to-available binding energies 
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Next, we subtract Figure 3 from Figure 4, to obtain 

the unused (U) b 0
A A A
Z Z ZU B B   for each 

nuclide. Thes nergies represent the 
amount of the latent binding energies reserved for and 
channeled into intra-nucleon quark confinement, rather 
than released and used for inter-nucleon binding. Of 
course, for the proton and neutron, all of this energy is 
unused; it is fully re

e quarks. These unu
gi

inding energy 
e unused binding e

served and channeled into confining 
sed, reserved-for-confinement ener- th

es are: see Figure 6. 
Finally, to lay the groundwork for predicting the 

observed binding energies B0 in Figure 3, let us refer to 
(3.6) and (3.7), remove the trace, and specify two (3 × 3) 
× (3 × 3) outer product matrices, one for the proton, 

P ABCDE , and one for the neutron, N ABCDE , according to: 

   
3 3

32 2
P P P

1
2π 2π d

2

0 0

ABCD AB CDE F F x

m

 




0 0

0 0 0 0

0 0 0 0

d d

u u

u u

m

m m

m m

   
    
   
   
   

  (4.9)   

   
3 3

2 2
N N

3
N2π 2π d

2

0 0 0 0

0 0 0 0

0 0 0 0

ABCD AB CD

u u

d d

d d

E F F x

m m

m m

m m

 

    
    
    
    
        



(4.10) 

From the above, one can readily obtain the eighteen 
non-zero diagonal outer product components (nine for the 
proton and nine for th P NABCD ABCDE E

1



e neutron), with   
0  otherwise: 

 

 

 

N1111 P2222 P

P3322

P1111 N2222 N

3333 P2233

3

2

N1122 N1133 N2211

3

2
N3311

2π

2π

u

u d

E E E E

E m

E E E E

E E E

E m m

 

 

  



 

This is why (4.1), (4.3) and (4.4) will be of interest in 
the development following. With the “toolkit” (4.9) to 
(4.11) we now have all ingredients needed to closely 
deduce the empirical binding energies in Figure 3 on 
totally theoretical grounds. We start with the alpha, 4He. 

5. Prediction of the Alpha Nuclide Binding 
Energy to 3 Parts in One Million, and 

 
ia 
d- 

ing
a is 

4
2U ing over the toolkit (4.11),  

3333 N2233

3

2
N3322

P1122 P1133 P2211 P3311

2πdE m

E E E E

 

  

 

       (4.11) 



How Binding Energies Are Yang-Mills 
Tensor Components 

The alpha particle is the 4He nucleus. It is highly stable, 
with fully saturated 1s shells for protons and neutrons, 
and is central to many aspects of nuclear physics includ-
ing the decay of nuclides into more stable states v
so-called alpha decay. In this way, it is a bedrock buil

 block of nuclear physics. 
The unused binding energy in Figure 6 for the alph

0 007096629409. u . Look

we see 2 0 007094003752u dm m . u , so 4
2U  is very 

close to being twice the value of 

 

u dm m  in (4.4). In 
fact, these energies are equal to about 2.26 parts per mil- 
lion! Might this be an indication that the alpha uses all its  

latent binding energy less 2 u dm m  for nuclear binding, 

wi

 

th the 2 u dm m  balance reserved on the other side of 

e quarks within each of its four 

 

the “see saw” to confin
 First, let’s look at the numb en

ke sense

less 

nucleons? ers, th  examine 
theoretical reasons why this may ma . 

If in fact this numerical coincidence is not just a coin- 
cidence but has real physical meaning, this would mean 
the empirical binding energy 4

2 0B  of the alpha is pre-  

dicted to be (4.7) for 4
2 B , 2 mu dm , that is: 

 

 

4
2 0Predicted 3

2

4 4
B 2 2

2π

d u d u
u d

m m m m
m m

 

3

2

4 4
2 2

2π

u u d d
d u

m m m m
m m

       
 

        
 (5.1) 

 

2 0.030379212155u dm m u 

where we calculate using ,u dm m from (4.1), (4.3), and  
 

 

Figure 6. Unused latent binding energies  A
Z U  of 1s nuclides (AMU). 
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u dm m  from (4.4). In contrast, irical 4
2 0B the emp    

0.030376586499u  in Figure 3. The difference: 

0379212155

0376586499

0002625656

u

u

u

       (5.2) 

is extremely small, with these two values, as noted just 
above for the reserved energy, differing from one another 

 less than 3 parts in 1 
.1) to ng en-

ergy to  theo
retical reasons why

In [1], a key postulate was to identify the mass of the 
down quark with the deuteron binding ener
here in which we again reviewed that iden
yond the numerical concurrence, a theoretical explana- 

4 4
2 0Predicted 2 0B B 0.03

0.03

0.00

 




by million AMU! So, let us regard 
(5 be a correct prediction of the alpha bindi  

3 parts per million. Now, let’s discuss the - 
 this makes sense. 

gy, see (4.1) 
tification. Be- 

tion is that in some fashion the nucleons are resonant 
cavities, so the energies they release (or reserve) during 
fusion will be very closely tied to the masses/wave- 
lengths of the contents of these cavities. But, of course, 
these “cavities” contain up quarks and down quarks, and 
their masses are given in (4.1) and (4.3) together with the 

u dm m  construct in (4.4), and so these will specify 
preferred “harmonics” to determine the precise energies 
which these cavities resonantly release for nuclear bind- 
ing, or hold in reserve for quark confinement. 

We also see that components of the outer products 

 

 

 
3 3

32 2
1

2π 2π d
2ABCD AB CDE F F x   in (4.9) and (4.10)  

take on one of three non-zero values: ,u dm m , or 

u dm m , see (4.11). So, in trying to make a theoretical fit 
to empirical binding data we require that empirical bind- 
ing energies be calculated only from these outer products  

31
d

2ABCD AB CDE F F x   (4.9), (4.10) using only some  

combination of 1) the components of these outer products 
d 2) index contractions of these outer products. So the an

ingredients we shall use to do this nu
be restricted to 1) the latent nuclide binding energies 

s um

merical fitting will 

calculated from (4.7); 2) the three energie , dm , 

u dm m   of (4.11) and quantized multiples thereof; and 3) 

any of the foregoing with a  
3

22π  coefficient or divisor,  

as suitable; we also permit 4) the rest mass of the elec- 
 to the up and down masses via tron em  which is related

act, re
itten

(5.1) ca

product 31
d

2ABCD AB CDE F F x   as just discussed, as: 

 

 

   

(1.11). The method of this fitting is trial and error, at 
least for now, and involves essentially poring over the 
empirical nuclear binding energy data and seeing if it can 
be arrived at closely using only the foregoing ingredients. 

For the alpha, (5.1) meets all these criteria. In f - 
wr  with (3.6), (3.7) and (4.9) through (4.11), we find 

n be expressed entirely in terms of the outer  

 

 

3
4 2
2 0Predicted P P

3

2
N N

3

2
1122

B 2 2π

2 2π

2π

4 4

ABBA AABB

ABBA AABB

d

E E

E E

E E

m m m m

    
 
    
 

 

   (5.3) 

.
tually the 11 22 componen

outer product ABCDE , in linear combination with traces 
of ABCDE . That is, this binding energy is a component of 
a Yang-Mills tensor! 

This is reminiscent, for example, of the Maxwell Ten-  

sor 

P1122 N

 

32 2 u d u
u dm m     

2

3

2

2π

4 4
2 2

2π

2

u u d d
d u

u d

m m m m
m m

m m

 
 
        
 



This totally theoretical Yang-Mills tensor expression 
yields the alpha binding energy to 2.26 parts per million. 

In this form, (5 3) tells us that the alpha binding en- 
ergy is ac t of a (3 × 3) × (3 × 3) 

1
4π

4
T F F F F    

    , which provides a  

suitable analogy. The on-diagonal components of the 
Maxwell tensor contain both a component term and a 
trace term just like (5.3). For example, for the 00 term  

00 0 0 1
4π

4
T F F F F 

    , we analogize 0 0FF   to  

the 1122E  and F F
  to the  

3

22π ABBA AABBE E  in  

(5.3). The off-diagonal components of the Maxwell ten- 
sor, however, do not include a trace term. For example, 
for the 01 term in Maxwell, if we consider 014πT    

0 1 01 0 11
F F   0

4
F F F F     , the Minkowski met-  

ric   filters out the trace. This latter, off-diagonal 
an

 

alogy allows us to represent (4.1) for the deuteron as a 
tensor component without a trace term, for example, as 
(see (4.11)): 

3
2
1 0PredictedB 2

N11112π 0um E   .       (5.4) 

r binding energies as compone
So we now start to think about individual observed nu- 

clea nts of a fourth rank 
Yang Mills tensor of which (5.3) and (5.4) are merely 
two samples. Thus, as we proceed to examine many dif- 
ferent nuclides, we will want to see what patterns may be 
discerned for how each nuclide fits into this tensor. 
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Physically, the alpha parti otons 
two neutrons, in terms of q nd

 quarks enter (5.3) in 
lete metric relative to the do

cle contains two pr and 
uarks, six up quarks a  six 

down quarks. It is seen that the up a 
comp ly sym fashion wn 
quarks, i.e., that (5.3) is invariant under the interchange 

u dm m . The factor of 2 in front of u dm m  of course 
means that two components of the outer produc  t are also
involved. So we have preliminarily associated 2 u dm m   

n pair and the proton P1122E E  so that t
 ea

N1122

ch c
he neutro

pair ontribute 1 u dm m  to (5.3), and (5.3) thereby 
remains absolutely symmetric not only under u d , 
but also under p n  interchange. 

We do note that there is some flexibility in these as- 
signments of energy numbers to tensor components, be- 

u d , cause each of ,m m u dm m  in the (4
ral different components of the outer 

l nu- 
cl

is such a ng energ

per million. C
atter deu

d the
m wo to bind the proton 

473215908 , an

.11) toolkit is 
associated
pr

 with seve
oduct. So the choice of 1122E  in (5.3) (while requiring 

p n  symmetry) and of N1111E  in (5.4) is flexible 
versus the other available possibilities in (4.11), and 
should be revisited once we study other nuclides not yet 
considered and seek to understand the more general 
Yang-Mills tensor structure of which the individua

ide binding energies are components. 
One other physical observation is also very noteworthy, 

and to facilitate this discussion we include the well- 
known “per-nucleon” binding graph as Figure 1 above. 
One perplexing mystery of nuclear physics is why there 

large “chasm” between bindi ies for the 
2H, 3H and 3He nuclides, and the biding energy of the 
4He nuclide which we have now predicted to within parts 

ontrasting (5.3) for 4He with (5.4) for 2H, 
we see that for the l teron, we “start at the bot- 
tom” with 1

1 0B 0  for 1H (the free proton), an n 
“add” 2 B 0 rth of energy 1 0 u

d the neutron together into 2H. Conversely, for the al- 
pha we “start at the top” with the total latent binding en- 
ergy 4

2 B 0 037. u d then subtract off  

an

2 u dm m , to match the empirical data with  
4 037473215908 2. u m . But as we learned 
in Section 12 of [1] and have reiterated here, any time we 
do not use some of the latent energy for nuclear binding, 
that unused energy remains behind in reserve to confine 
the quarks in a type of nuclear see-saw. 

So what we learn is that for the alpha particle, a total 
of

2 0B 0 u dm

 2 0 007094004u dm m . u is held in reserve to con- 
fine the quarks, while the majority balance is released to 
bind the nucleons to one another. In contrast, for the 
deuteron, a total of 2

1 0B 0 002388170100um . u   is 
released for inter-nucleon binding while the majority 
balance is held in reserve to confine the quarks. 

Now to the point: for some nuclides (e.g. the deuteron) 
the question is: how much energy is released from quark 
confinement to bind nucleons? This is a “bottom to top” 

nuclide. For uclides (e.g., the alpha) the question 
is: how gy is reserved out of the theoretical 
maximum available, to confine quarks. This is a “top to 
bottom” nuclide. For top to bottom nuclides, there is a 
scalar ls tensors. For bottom to

other n
 much ener

 trace in the Yang-Mil  top 
nuclides or analogy, 
one may suppose that somewhere 

there is not. Using the Maxwell tens
there is a Kronecker 

delta A
B  and/or AB

CD  which filters out the trace from 
“off-diagonal” terms and leaves the trace intact for “on- 
diagonal” terms. In this way, the “bottom to top” nu- 
clides are “off-diagonal” tensor components and the “top 
to bottom” nuclides are “on diagonal” components. In 
either case, however, the “resonance” for nuclear binding 
is established by the components of the N ABCDE , which 
are ,u dm m , u dm m  in some combination and/or inte- 
ger multiple. And, as regards Figure 1 above, the chasm 
between the lighter nuclides and 4He is explained on the 
basis that each of 2H, 3H and 3He are “bottom to top” 
“o 4ff-diagonal” nuclides, while He, which happens to fill 
the 1s shells, is the lightest “top to bottom” “on-diago- 
nal” nuclide. 2H, 3H and 3He start at the bottom of the 
nuclear see-saw and move up; 4He starts at the top of the 
see-saw and moves down. 

To amplify this point, in Figure 7 below we peek 
ahead at some heavier nuclides, namely, 3Li and 4Be. 
Using a nuclear shell model similar to that used for elec-
tron structure, all nucleons in the 4He alpha are in 1s 
shells. The two protons are spin up and down each with 
1s, as ar  the two ne trons. As soon as we add one more 
nucleon, by Exclusion, we must jump up to the 2s shell, 
which admits four more nucleons and can reach up to 
8
4 Be  before we must make an incursion into the 2p shell. 

We note immediately from the above—which has been 
noticed by others before—that the binding energy 
8
4 0B 0 060654752. u  of 8Be is almost twice as large as 
that of the alpha particle, to just under one part in ten 
thousand AMU. Specifically: 

4 8
2 0 4 02 B B 2 0 030376586499

0 060654752

0.000098421

. u

. u

u

   




     (5.5) 

This is part of why 8Be is unstable and invariably de- 
cays almost immediately into two alpha particles (9Be is 
the stable Be isotope). But 

e u

of particular interest here, is 
to

thre

 subtract off the alpha 4
2 0B 0 030376586499. u  from 

each of the Li and Be isotopes, and compare them side 
by side with the non-zero binding energies from H and 
He. The result of this exercise is in Figure 8 below. 

Equation (5.5) is represented above by the fact that 
8 4 4
4 0 2 0 2B B B  . The table on the left is a “1s square” 
and the table on the right is a “2s square.” But they are 
both “s-squares.” What is of interest is that the remaining 

e nuclides in the 2s square are not dissimilar in pat- 
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te

“at the bottom” “of

e alpha rticle’s 4
2 0B

rn from the other three nuclides in the 1s square. This 
means that three of the four nuclides in the 2s square start 

f-diagonal” just as in 1s, and the 
fourth, 8Be, starts “on diagonal” “at the top.” But, in the 
2s square, the “bottom” is th  pa   

0376586499. u . So the filled 1s shell provides a 
” below the 2s shell; a non-ze minimum en- 

nderpinning binding in the 2 e. 
 least from the 1s and 2s e  nuclides 

of 4
2 0PredictedB 0.030379212155u  for the alpha in (5.1), 

in contrast to 4
2 0B 0.030376586499u  from the em- 

pirical data, is an exact match in AMU through the fifth 
decimal place, but is still not within experimental errors. 
Specifically, the alpha mass listed in [12] and shown in 
Figure 2 is 4.001506179125(62)u, which is accurate to 
ten decimal places in AMU. Similarly, the proton mass 
1.007276466812(90)u and the neutron mass 
1.00866491600(43)u used to calculate 4

2 0B  are accu- 
rate to ten and nine decimal places respectively in AMU. 
So the match between 4

2 0PredictedB  and the empirical 
4
2 0B  to under 3 parts per million is still not within the 
experimental errors beyond five decimal places, because 
this energy is known to at least nine decimal places in 
AMU. Consequently, (5.1) must be regarded as a very 
close, but still approximate relationship for the observed 
alpha binding energy. Additionally, because (5.1) is 
based on (4.1), wherein the mass of the up quark is iden- 
tified with 2

1 0B 0 002388170100um . u   which is the 
deuteron binding energy, the question must be consid- 
ered whether this identification (4.1), while very close, is 
also still approximate. 

Specifically, it is possible to make (5.1) for the alpha 
into an exact relationship, within experimental errors, if 
we reduce the up quark mass by exactly ε = 
0.000000351251415u (in the seventh decimal place), 
such that: 

2
1 00.002387818849 B

0.002388170100
um u

u

 


        (5.6) 

That is, we can make (5.1) for the alpha into an exact 

0 03
“platform
ergy u
pears at
wi

tribute

ro 
s squar

xamples that
And it ap- 

th full shells are “diagonal” tensor components and all 
others are off diagonal. The see-saw for 2s is elevated so 
its bottom is at the top of the 1s see-saw. 

It is also important to note that as we consider much 
heavier nuclides—and 56Fe is the best example—even 
more of the energy that binds quarks together is released 
from all the nucleons. For 56Fe, calculating from the dis- 
cussion prior to (4.8), the unused U binding energy con- 

d by all 56 nucleons totals only 0.00082662u. But 
in Figure 6 we saw that 0.00709663u of the 4He binding 
energy is unused. Much of this, therefore, is clearly used 
by the time one arrives at 56Fe. So, almost all the binding 
energy that is reserved for quark confinement for lighter 
nuclides becomes released to bind together heavier nu- 
clides, with peak utilization at 56Fe. That is, by the time 
an 56Fe nuclide has been fused together, much of the 
binding energy previously reserved in the 1s and 2s 
shells to confine quarks has been released, and this con- 
tributes to overall binding for the heavier nuclides. One 
may thus think of the unused binding energy in lighter 
nuclides as a “reservoir” of energy that will be called 
upon for binding together heavier nuclides. For nuclides 
heavier than 56Fe, the used-to-available percentage, cf. 
Figure 1, tacks downwards again, and more energy is 
channeled back into quark confinement and less into nu- 
clear binding. So while quark confinement is “bent” to 
the limit at 56Fe, with almost all latent binding energies  

see-sawed into nucleon binding rather than quark con- 
finement, quark confinement can never be “broken.” 

Finally, before turning to 3He in the next section, let us 
comment briefly on experimental errors. The prediction 

 

 

Figure 7. Empirical binding energies  0B  of selected 1s and 2s nuclides (AMU). A
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relationship if we make (4.1) for the up quark into an 
approximate relationship, or vice versa, but not both. So, 
should we do this? 

A further clue is provided by (5.5), whereby the em- 
pirical 8 4

0B B 2  is a close
but not exact rat

al place 

n can ge
near

gard (4.1) identifying the up quark mass with the deu-
teron binding energy to be an exact relationship, and to 
regard (5.1) for the alpha to be an approximate relation-
ship that still requires some tiny correction in the sixth 
decimal place. Similarly, as we develop other relation-
ships which, in light of experimental errors, are also 
close but still approximate, we shall take the view that 
these relationships too, especially given (5.5), will re-
quire higher order corrections. Thus, for the moment, we 
leave (4.1) intact as

In section 10, however, we shall show why (4.1) is 
 not an exact relationship but is only approximate 

to about 8 parts per ten million AMU. But this will be 
due not to the closeness of the predicted-versus-observed 
energies for the alpha particle, but due to our being able 
to develop a theoretical expression for the difference 

   

4 0 2 , but still approximate 
relationship. This close io is not a com- 
parison between a theoretical prediction and empirical 
observation; it is a comparison between two empirical 
data points. So this seems to suggest, as one adds more 
nucleons to a system and makes empirical predictions 
such as (5.1) based on the up and down quark masses, 
that higher order corrections (at the sixth decim
in AMU for alpha and the fifth decimal place in AMU 
for 8

4 0B ) will still be needed. So because two-body sys- 
tems such as the deutero nerally be modeled 

ly-exactly, and because a deuteron will suffer less 
from “large A = Z + N corrections” than any other nu-
clide, it makes sense absent evidence to the contrary to 
re

 an exact relationship. 

actually

M n M p  between the observed masses of the free 
utron and tne he free proton to better than one part per 

million AMU. 

6. Prediction of the Helion Nuclide Binding 
Energy to 4 Parts in 100,000 

Now, we turn to the 3
2 He  nucleus, also referred to as 

the helion. In contrast with the alpha and the deuteron 
already examined which are integer-spin bosons, this 
nucleon is a half-integer spin fermion. Knowing as 
pointed out after (5.4) that we will “start at the bottom” 
of the see-saw for this nuclide, and knowing that our 
toolkit for constructing binding energy predictions is 

, ,u d u dm m m m , it turns out after some trial and error 
exercises strictly with these energies that we can make a 
fairl ose prediction by setting: 

 

The empirical energy from Figure 3, in comparison, is 
3
2 0B 0.008285602824u , so that: 

3 3
2 0Predicted 2 0B B

602824

0.000037739252 .u



 


 (6.2) 

While not quite as close as (5.2) for the alpha particle, 
this is still a very clos

0 008323342076 0 008285. u . u

tch to just under 4 parts in 
10

n

ABBA , then referring to (4.9), we find that: 

 

e ma
0,000 AMU. But does this make sense in light of the 

outer products (4.9), (4.10)? 
If we wish to write (6.1) in the manner of (5.3) a d 

(5.4) in terms of the components of an outer tensor 
product E

 

3
3 2
2 0Predicted P33B 2π 2

2

AA uE m

m m m

  

 

So the expression 

u dm m
   (6.3) 

u d u

2 u u dm m m  in (6.1) in fact has a 
very natural formulation which utilizes the trace 

2d um m  (AA index summation) of one of the ma- 
trices in (4.9), times a um taken from the 33 (or possi- 
bly 22) diagonal component of the other matrix in (4.9). 
The use in (6.3) of PE  from (4.9) rather than of NE  
from (4.10), draws from the fact that we need the AA 
trace to be 2d um m , and not 2u dm m  as 
would otherwise occur if we used (4.10). S here, the 
empirical data clearly causes us to use PE om the 

 from the neutron 
matrix in (4.10). We also note that physically, 3He has 
one more proton than neutron. This is a third data point 
in the Yang-Mills tensor for nuclear binding. 

7. Prediction of the Triton Nuclide Binding 
Energy to 3 Parts in One Million, and the 
Neutron minus Proton Mass Difference to 

o 
 fr

proton matrix in (4.9) rather than NE

7 Parts in Ten Million 

Now we turn to the 3
1H  triton nuclide, which as shown in 

Figure 3, has a binding energy 3
1 0B 0 009105585412. u , 

and as discussed following (5.4), is a “bottom to top” 
nuclide. As with the alpha and the helion, we use the 
energies from components of the outer products ABCDE , 
see again (4.9) to (4.11). However, following careful trial 
and error consideration of all possible combinations, 
there is no readily-apparent combination of , ,u dm m   

u dm m  together with em  and factors of  
3

22π  

which yield a close match to well under 
3

 

1 percent, to 
B1 0 0 009105585412. u , which is the observed 3

1H  
binding energy. 

But all is not lost, and much more is found: When 
studying nuclear data, there are two interrelated ways to 
formulate that data. First, is to look at binding energies as 
we have done so far. Second, is to look at mass excess. 

y cl
3 3

0 2 0PredictedPredicted
B He B 2

0.008323342076 .

u u dm m m

u

  


 (6.1) 
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The latter form

ach that enables us to match 
up the empirical binding data for the triton to the  

ulation, mass excess, is very helpful when 
studying nuclear fusion and fission processes, and as we 
shall now see, it is this appro

, , ,d u d em m m m m  and factors of  u

3

22π  that we have  

ployedalready successfully em  for the deuteron, alpha, 
and helion. As a tremendous bonus, we will be able to 
derive a strictly theoretical expression for the observed, 
empirical difference: 

    1 1
0 1 0.001388449188M n M p M M u     (7.1) 

between the free, unbound neutron mass  M n   
1 008664916000. u  and the free, unbound proton mass 

  1 007276466812M p . u , see Figure 2. 
The derivation of the 3He binding energy and the neu- 

tron minus proton mass difference is somewhat involved, 
and so is detailed in the Appendix. But the results a
follows: For the neutron minus proton mass differen
(A15), also using (1.11), we obtain: 

re as 
ce, in 

   
Predicted

 

 

   

3

2

3

2

2 2π

3 2 3 2π

u e μ d

u d μ d u

M n M p

m m m m

m m m m m

 

  

   

   

g energy in (A17), we use 
th

0.001389166099u

which differs from the empirical (7.1) by a mere 
0.000000716911u , or just over seven parts per ten mil- 
lion! And for the 3He bindin

 (7.2) 

e above to help obtain: 

 
 

3 3
1 0PredictedPredicted

B H B0

3

24 2 2π

0.009102256308

u μ dm m m

u

 



    (7.3) 

whic 9105585412u , the em- 
pi

A theoretic
uct 

h differs from 3
1 0B 0.00
e 3, by merrical value in Figur  0.000003329104u , 

or just over 3 parts per million. 
al tensor expression for (7.3) using compo- 

nents of an outer prod ABBAE  as in (5.3), (5.4) and 
(6.3), may be written as: 

 

ely

 

 

3
3 2
1 0Predicted P2233 P3322

P1122 P1133

3

2

2π

4 2 2πu μ d

B E E E E

E E

m m m

   

 

 

 (7.4) 

As earlier noted following (5.4), there will be some 
flexibility in these tensor component assignments until 
we develop a wider swathe of binding energ

P2222 P3333

ies beyond 

f 

de
bin
mi e have also deduced a 

e n
g

l

ct theo
nding

energies

8. Mass Excess Pred

the “1s square” and start to discern the wider patterns. 
With the foregoing, we have now reached our goal o

ducing precise theoretical expressions for all of the 1s 
ding energies, solely as a function of elementary fer- 

on masses. In the process, w
like-expression for th eutron-proton mass difference! 

From here, after consolidatin  our binding energy re- 
sults and expressing them as mass excess in Section 8, 
we examine the solar fusion cycle in Section 9, including 
possible technological implications of these resu ts for 
catalyzing nuclear fusion. In Section 10 we again focus 
on experimental errors as we did at the end of Section 5, 
and explain why (7.2) should be taken as an exa - 
retical relationship with the quark masses and bi  

 then slightly recalibrated. 

ictions 

Let us now aggregate some of the results so far, as well 
as those in the Appendix. First of all, let us draw on (A4), 
and use (A14) and the neutron minus proton mass dif- 
ference (7.2) to rewrite (A4) as: 

   

 

3
1 Predicted

3

2

2

4 2 2πu μ d

M M p M n

m m m

 

 
      (8.1) 

Specifically, we have refashioned (A4) to include one 
proton mass and two neutron masses, because the 3

1H  
triton nuclide in fact contains one proton and two neu-  

trons. Thus,  
3

24 2 2πu μ dm m m   represents a theo-  

retical value of the mass excess of two free neutrons and 
one free proton with    2 M p M n  over the mass 
they possess when fused into a triton, expressed

equal in

Similarly for heliu

 via a 
negative number as a fusion mass loss. This is  
magnitude and opposite in sign to binding energy (7.3). 

m nuclei, first we use (A5) to write: 

   

3 1 1 3
2 0 1 0 2

3
2

B 2

2

M M M

M p M n M

   

  
       (8.2) 

We then place 3
2 M  on the left and use (6.1) to write: 

   3
2 2 2 u u dM M p M n m   m m .    (8.3) 

Here, 2 u u dm m m   is the fusion mass loss for the 
helion, also equal and opposite to binding energy (6.1). 

Next, we again use (A5) to write: 

   

4 1 1 4
2 0 1 0 2

4
2

B 2 2

2 2

M M M

M p M n M

    

    
          (8.4) 

Combining this with (5.1) then yields: 

   

 

4
2 2 2 6 6

10 10

u d

d u

M M p M n m m

m m

   

 
3

2

16
2

2π

u d
u d

m m
m m 

    (8.5) 

Copyright © 2013 SciRes.                                                                                 JMP 



J. R. YABLON 

Copyright © 20                                                                              JMP 

86 

The fusion mass loss for the alpha—much larger than 
for the other nuclides we have examined—is given by the 
lengthie    2 2

13 SciRes.    

r terms after M p M n . Agai
equa ha binding energy
with terms consolidated above. 

 via (A5), it is easy to 

n, this is 
 in (5.1), l and opposite to the alp

Finally, from (4.1), deduce for 
the deuteron, that: 

   2
1 uM M p M n  m ,           (8.6) 

etical Review of the

 
pr
mine that an energy (A11) is released in this fusion, 
which energy, in light of (A13), now becom

 

9. A Theor  Solar Fusion 
Cycle, and a Possible Approach to 
Catalyzing Fusion Energy Release 

As a practical exercise, let us now use all of the forego- 
ing results to theoretically examine the solar fusion cycle. 
The first step in this cycle is (A10) for the fusion of two

otons into a deuteron. It is from (A10) that we deter- 

with a mass loss represented simply by um , again, 
equal and opposite the binding y (4.1). 
 

es:  energ

 
3

22π 0 0 1141003dm . u                (9.1)1 1 2
1 1 1Energy H H H Energy 2 0045μe m       

 

This equates to 0.420235 MeV which is a well-k
energy in solar fusion as is noted in the Appendix. The 
positron annihilates with an electron e e

nown 

      to 
pr

where in deuterons produced in (9.1) fuse with pr
pr elions. We wri

2

otons to 
oduce h te this in terms of masses as: 

32 1
1 1Energy M M  

1

M .        (9.3) 

The proton mass is 1

oduce an additional 
em2  worth of energy as well. 

The second reaction in the solar fusion cycle is: 

2 1 3
1 1 2H H He Energy              (9.2) 

M , and these other two masses 
have already been found, respectively, i
Thus, (9.3) may be reduced to: 

n (8.6) and (8.3). 

 

 2 1 3
1 1 2Energy H H He Energy   

 

which equates to 5.528577 MeV, also a well-known en- 
ergy in the study of solar fusion. 

The final step in this cycle fuses two helions together

0 005935171976u dm m . u          um           (9.4) 

 
to

of this relationship is as follows: 

3 3 4 1 1
2 2 2 1 1Energy

The mass equivalent 

M M M M M          (9.6) 

 yield alpha particles plus protons, which protons then 
are available to repeat the cycle starting at (9.1): 

3 3 4 1 1
2 2 2 1 1He He He H H Energy          (9.5) 

Here we again make use of  1
1M M p , together with 

(8.3) and (8.5) to write: 
 

     
3

24 10 10 16 2πd u d d um m m m m m   3 3 4 1 1
2 2 2 1 1Energy He He He H H Energy 2

0 0137

um

.

      


 

This equates to 12.791768 Me

6

3252

u dm     (9.7) 

V, which is also a 
well-known energy from solar fusion studies. 

g. [14]), the reaction 
he two 3He  which 

8003u

Now, as is well known (see, e.
(9.4) must occur twice to produce t 2

are input to (9.7), and the reaction (9.1) must occur twice 
to produce the two 2

1H  which are in turn input to (9.4). 
So pulling this all together from (9.1), (9.4), (9.7) and 
e e      , we may express the entire solar fusion 

. In the top line b
detail each energy release from large

ions
 each 

contribution shown in the top line, including the neutrino 
- 

sol inate 
the

cycle in (9.8) below elow, we show in 
st to smallest, fol- 

lowed by the electron and neutrino emiss . In the 
second line we segregate in separate parenthesis,

mass which is virtually zero. In the third line, we con
idate terms. In the final line we use (1.11) to elim
 electron rest mass: 

        1 4
1 2Energy 4 H 2 He 12.79 M 2

 
 

 
   

 

3

2

2 6 4
2π

10 10 12

d u u d
u d u d

d u u

m m m m

m m m

3

2

MeV 2 0.42 MeV 4 2

2 2 2 4 2
2π

μ d

u u d e

d

m m
m m m m m

3

2

10 10 16

4 6 4 2
2π

2 22

u d e u d

e e

m m m m

m
m m m m m

m

eV 2 5.5    

4 6 2 d
u d u dm m m m



    

 
      
 

    


    



   


 

   
 

3

2

733389 MeV
2π

u u d .
12

26
m m m

   (9.8) 
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The above shows at least two things. First, the total 

energy of approximately 26.73 MeV 
leased during solar fusion is expresse

ed! 
This portends the ability to do the same for other types of 
fusion and fission, once the analysis of this paper is ex- 

nded to larger nuclides Z > 2, N > 2. 

ons as resonant cavities 
w

 more 
practical, because (9.8) tells us the precise 
that go into releasing the total 26.73 MeV of energy in 
the above. In particular, if one wanted to create an artifi- 
cial “sun in a box,” one would be inclined to amass a 
store of hydrogen, and subject that hydrogen store to 
g

 h

 

In the above, we have explicitly sho
fre  ap

h. 
So, what do we learn? If the nucleons are regarded as 

resonant cavities and the ener
pend on the masses of their current quarks as is made 
ve  
and harmonics highlighted in (9.9) and (9.10
for harmonic fusion is to subject a hydroge
high-fre proximate
of with the v

ill catalyze fusion by perhaps 
reducing the amount of heat that is required. In pre- 
sent-day approaches, fusion reactions are trigge
heat generated from a fission reaction, and 
would be to reduce or eliminate this need for such high 

as, but not limited to, Compton 
backscattering and any other methods which are known 
at present or may become known in the future for pro- 
ducing gamma radiation, it would also be necessary to 
provide substantial shielding against the health effects of 
such radiation. The highest energy/smallest wavelength 
component, 6 29 44MeV 6 69Fdm . .

known to be re- 
d entirely in terms 

of a theoretical combination of the up and down (and 
optionally electron) masses, with nothing else add

te
Secondly, because the results throughout this paper 

seem to validate modeling nucle
ith energies released or retained based on the masses of 

their quark contents, this tells us how to catalyze “reso- 
nant fusion” which may make fusion technology

resonances 

amma radiation at or near the specified discrete ener- 
gies that appear in (9.8), so as to facilitate resonant cav- 
ity vibrations at or near the energies required for fusion 
to occur. Specifically, one would bathe the ydrogen 
store with gamma radiation at one or more of the follow- 
ing energies/frequencies in combination, some without, 

and some with, the Gaussian  
3

22π  divisor (we con-  

ths via vert to waveleng  1F 1 197 MeV ): 

 

 

 

 harmonic 13 22 MeV 14 91Fu dm m . . 

 

6 29 44 MeV 6 69F

2 22 MeV 88 56F

2 harmonic 4 45 MeV 44 28F

4 harmonic 8 90 MeV 22 14F

3 30 MeV 59 62F

2 harmonic 6 61 MeV 29 81F

d

u

u

u

u d

u d

m . .

m . .

m . .

m . .

m m . .

m m . .

 

 

 

 

 

 

       (9.9) 

4

 

 

 

 

   

   

 

3

2

3

2

3

2

3

2

2 2π 0.62 MeV 316.15F

10 2π 3 12 MeV 63 23F

10 2π 1 41 MeV 139.47F

22 2π 3.10 MeV 63.40F

d

d

u

u

m

m . .

m .

m

 

 

 

 
3

2

3

2

3

2

3

2

2 2π 0.42 MeV 469 53F

4 2π harmonic 0.84 MeV 234.77F

12 2π harmonic 2.52 MeV 78 26F

16 2π harmon

u d

u d

u d

u d

m m .

m m

m m .

m m

 

 

 

 ic 3.36 MeV 58.69F 

(9.10) 

wn each basic 
quency/energy which pears in the second, third or 

fourth lines of (9.8) as well as harmonics that appear in 
(9.8). Also, one should consider frequencies based on the 
electron mass and its wavelengt

gies at which they fuse de- 

ry evident by (9.8), and given the particular energies
), the idea 
n store to 

quency gamma radiation  at least one 
 the frequencies (9.9), (9.10), iew that these 

harmonic oscillations w

red using 
one goal 

heat and especially the need for any fissile trigger. That 
is, we at least posit the possibility—subject of course to 
laboratory testing to confirm feasibility—that applying 
the harmonics (9.9), (9.10) to a hydrogen store can cata- 
lyze fusion better than known methods, with less heat and 
ideally little or no fission trigger required. 

Of course, these energies in (9.9), (9.10) are very high, 
and aside from the need to produce this radiation via 
known methods such 

  , is e
energetic and would be very difficult to shield (and to 
produce), but this resonance arises from (9.8) which is 
for the final 3 3 4 1 1

2 2 2 1 1He He He H H Energy      por- 
tion of the solar fusion cycle. If one were to forego this 
portion of the fusion cycle and focus only on catalyzing 
1 1 2 

xtremely 

1 1 1H H H Energye       to fuse protons into 
deuterons, then the only needed resonance is 

 
3

22 2π 0.42MeV 469 53Fu dm m .  . 

Not only is this easiest to produce because its energy is 
the lowest of all the harmonics in (9.9) and (9.10), but it 
is the easiest to shield and the least harmful to humans. 

Certainly, a safe, reliable and effective method and 
associated hardware for producing energy via fusing 
protons into deuterons via reac (9.1), and perhaps tion 

nd deuterons into lions as in 
 one of the ha onics (9.9), 

(9.10) into a hydrogen store perhaps in combination with 
other known fusion methods, while insufficient to create 
the “artificial sun” modeled above if one foregoes the 

further fusing protons a  he
(9.4), by introducing at least rm
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final alpha production in (9.7), would nonetheless repre- 
sent a welcome, practical addition to sources of energy 
available for all forms of peaceful human endeavor. 

10. Recalibration of Masses and Binding 
Energies via an Exact Relation
the Neutron minus Proton Mass 
Difference 

At the end of Section 5, we briefly commented on ex- 
perimental errors. As between the alpha particle and the 
deuteron, we determined it was more sensible to associ- 
ate the binding energy of the deuteron precisely with the 
mass of the up quark, thus making the theoretically-pre- 
dicted alpha binding energy a close but not exact match 
to its empirically observed value, rather than vice versa. 
But the prediction in (7.2) for the neutron minus proton 
mass difference to just over 7 parts in ten million is a 
very different matter. This is even more precise by half 
an order of magnitude than the alpha mass pred
and given the fundamental nature of the relationship for 

   

ship for 

iction, 

M n M p  which is central to beta-decay, we now 
argue why (7.2) should be taken as an exact relationship 
with all other relationships recalibrated accordingly, so 
that now the up quark mass will still be very close to the 
deuteron binding energy, but will no longer be exactly 
equal to this energy. 

First of all, as just noted, the    M n M p  mass 
difference is the most precisely predicted relationship of 
all the relationships developed above, to under one part 
per million AMU. Second, we have seen that all the other 
nuclear binding energies we have predicted are close 
ap

a precisely- 
kn

 a basic sense, the deutero

proximations, but not exact, and would expect that this 
inexactitude will grow larger as we consider even heavier 
nuclides, see, for example, 8Be as discussed in Figures 7 
and 8. So, rhetorically speaking, why should the deuteron 
be so “special,” as opposed to any other nuclide, such 
that it gets to have an “exact” relation to some combina- 
tion of elementary fermion masses while all the other 
nuclides do not? Yes, the deuteron should come closest 
to the theoretical prediction (namely the up mass) of all 
nuclides, because it is the smallest composite nuclide. 
Closer than all other nuclides, but still not exact. After all, 
even the A = 2 deuteron should suffer from “large A = Z 
+ N” effects even if only to the very slightest degree of 
parts per ten million. Surely it should suffer these effects 
more than the A = 1 proton or neutron. 

Third, if this is so, then we gain a new footing to be 
able to consider how the larger nuclides differ from the 
theoretical ideal, because even for this simplest A = 2 
deuteron nuclide, we will already have 

own deviation of the empirical data from the theoretic- 
cal prediction, which we may perhaps be able to ex- 
trapolate to larger nuclides for which this deviation cer- 

tainly becomes enhanced. That is, the deviations between 
predicted and empirical binding data for all nuclides be-
comes itself a new data set to be studied and hopefully 
explained, thus perhaps providing a foundation to theo-
reti- cally eliminate even this remaining deviation. 

Fourth, in n, which is one 
proton fused to one neutron, has a mass which is a meas- 
ure of “neutron plus proton,” while    M n M p  is a 
measure of “ really 
faced with a question of what gets to be exact and what 
must be only approximate: n + p, or n − p? Seen in this 

neutron minus proton.” So we are 

light,    M n M p  measures
d states, as 

separate and distinct entities, and thus characterizes these 
elemental nucleons in their purest form. In the uteron, 
by contrast, we have a two-body system whic - 
pu

 an energy feature of 
neutrons and protons in their native, unboun

de
h is less

re. So if we must choose between one or the other, we 
should choose    M n M p  to be exact relationship, 
with the chips falling where they may for all other rela- 
tio

act 
relationship which drives all others, is: 

nships, including the deuteron binding energy. Now, 
the deuteron binding energy is relegated to the same 
“approximate” status as that of all other compound poly- 
nuclides, and only the proton and neutron as distinct 
mono-nuclides get to enjoy “exact” status. 

Let us therefore do exactly that. Specifically, for the 
reasons given above, we now abandon our original pos- 
tulate that the up quark mass is exactly equal to the deu- 
teron binding energy, and in its place we substitute the 
postulate that (7.2) is an exact relationship, period. That 
is, we now define, by substitute postulate, that the ex

   

   
   

Predicted
M n M p   

Then, we modify all the other relationships accord- in-
gly. 

The simplest way make this adjustment is to modify 
the original postulate (4.1) to read: 

2
1 0B 0 002388170100um . u

Observed

3

0.001388449188

3u

M n M p

u

m m

  


  22 3 2πd μ d um m m 
    (10.1) 

     ,      (10.2) 

and to then substitute this into (10.1) with ε taken as very 
small but unknown. This is most easily solvable numeri- 
cally, and it turns out that 0 000000830773ε . u  , 
which is just over 8 parts in ten million u. That is, sub- 

0 000000830773. ustituting ε  

the following critical mass/energies 

 into (10.2), then using 
(1.11) to derive the down quark mass, then substituting 
all of that into (10.1), will make (10.1) exact through all 
twelve decimal places (noting that experimental errors 
are in the last two places). 

As a consequence, 
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de  adjusted starveloped earlier become nominally ting at 
the sixth decimal place in AMU, and now become (con- 
trast (4.1), (4.3), (4.4), (4.5) and (4.6) respectively): 

0 002387339327um . u ,                  (10.3) 

0 005267312526dm . u ,                   (10.4) 

0 003546105236u dm m . u ,                (10.5) 

   
3

2
P 2 4 4 2π

0 008200606481

u d d u d uB m m m m m m

. u

    


 (10.6) 

   
3

2
N 2 4 4 2π

0 010531999771

d u u u d dB m m m m m m

. u

    


 (10.7) 

Additionally, this will slightly alter the binding ener- 
gies that were predicted earlier. The new results are as 
follows (contrast (5.1), (6.1) and (7.3) respectively): 

4
2 0PredictedB 0 030373002032. u ,         (10.8) 

0

 less than one

3
2 0PredictedB 0 008320783890. u .         (10.9) 

3
1 0PredictedB 0 009099047078. u .        (10.10) 

and, via (10.3) and this adjustment of masses, 

2
1 0PredictedB 0 002387339327um . u  .    (10.11) 

In (10.11), we continue to regard the predicted deu- 
teron binding energy 2

1 0PredictedB  to be equal to the mass 
of the up quark, but because the mass of the up quark has 
now been slightly changed because of our substitute 
postulate, the observed energy, which is 2

1 0B    
.002388170100u , will no longer be exactly equal to the 

predicted energy (10.11). Rather, we will now have 
2 2
1 0 1 0PredictedB B , with a difference of  part 
per million AMU. The precise, theoretical exactitude 
now belongs to the    M n M p  difference in (10.1). 
As a bonus, the up and down quark masses now become 
known cision in AMU, with experimental 
errors in the 11th and 12th digits, which is inherited from 
the precision with which the electron, proton and neutron 
masses are known. 

One other point is very much worth noting. With an 
entirely theoretical, exact expression now developed for 
the neutron min s difference via (10.1), we 
start to target the full, dressed proton and neutron masses 
themselves. Specifically, it would be extremely desirable 
to be able to specify the proton and neutron masses as a 
function of the elementary up, down, and electron fer- 
mion masses, as we have here with binding energies. 
Fundamentally, by elementary algebraic p

 to ten-digit pre

us proton mas

rinciples, tak- 
in

rst time, we now 
have an exact theoretical expression for the difference 
between these masses. But we still lack an independent 
expression related to their sum. 

Every effort should now be undertaken to fi
relationship related to the sum of these masses. In all 
likelihood, that relationship, which must inherently ex- 
plain the natural ratio just shy of 1840 between the 
m

 of about 420 and 190 involving the up and down 
m

 those terms which 
involve the vacuum 

g each of the proton and neutron masses as an un- 
known, we can deduce these masses if we have can find 
two independent equations, one of which contains an 

exact expression related to the sum of these masses, and 
the other which contains an exact expression related to 
the difference of these masses. Equation (10.1) achieves 
the first half of this objective: for the fi

nd another 

asses of the nucleons and the electron, and/or similar 
ratios

asses, will need to emerge from an examination of the 
amended t’Hooft Lagrangian terms in (3.10) which we 
have not yet explored, particularly

 . While analyzing 

olve differences. Wha

-
bers for result referenced for

The mass loss (negative m
Section 8 which was very
amining the solar fusion cycle 
negative (positive) of what is s
just considered the 

binding ener- 
gies and mass excess and nuclear reactions as we have 
done here is a very valuable exercise, the inherent limita- 
tion is that all of these analyses inv t 
is needed to obtain the “second” of the desired two inde- 
pendent equations, are sums, not differences (Note: the 
author lays the GUT foundation for, and then tackles this 
very problem, in two separate papers published in this 
same special issue of JMP). 

11. Summary and Conclusion 

Summarizing our results here, we now have the follow- 
ing theoretical predictions for the binding energies in Fig- 
ure 3, with isobar lines shown, and with equation num

 convenience: see Figure 9. 
ass excess) discussed in 

 helpful to the exercise of ex-
in Section 9, is simply the 
hown in Figure 9. Having 

   M n M p  mass difference, it is 
useful to also look at the difference between the 
3He isobars, A = 3 in the above. Given that 3He is the 
stable nuclide and that 3H undergoes 

3H and 

   decay into 3He, 
we may calculate the predicted difference in bind
ergies to be: 

ing en-

 
3 3
2 0 1 0 3Predicted

2

2
B B 2 1

2π
u u dm m m

 
          
 

 (11.1) 

0.00077826318 

The empirical difference −0.00081998
from the predicted difference by 0.000
helpful to contrast the above to (the n
which represents the most elementary 

9u

2588 u differs 
041719399u. It is 
egative of) (10.1) 
   decay of a 

neutron into a proton. Similar calculations may be carried 
out as between the isotopes and isotones in F

The numerical values of these theoretica
igure 9. 

l binding en- 
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er
w predict

 each try in 
Figure 10, we su

Figure 11 sh

d, every one o

re

ndent predictio

sonant cavity Yang-Mills magnetic mono- 
poles with binding energies determined by their current 
quark masses, provides the strongest theoretical explana- 
tion to date of what baryons are, and of how prot
neutrons confine their quarks and bind together into com- 
posite nuclides. The theory of nuclear binding first de- 
ve

 

ing energy for the 2H deuteron most precisely of all, to 
just over 8 parts in ten million. 
These energies as well as the neutron minus proton mass 
difference do not appear to have ever before been theo-

gies in Figure 9, in AMU, using the recalibrated (10.8) 
through (10.11), are no ed to be: see Figure 10. 

These theoretical predictions should be carefully 
compared to the empirical values in Figure 3. Indeed, 
subtracting each entry in Figure 3 from  en

mmarize our results for all of the 1s 
nuclides in Figure 11. 

ows how much each predicted binding 
energy differs from observed empirical binding energies. 
As has been reviewe f these predictions is 
accurate to under four parts in 100,000 AMU (3He has 
the largest difference). Specifically: we have now used 
the thesis that baryons are resonant cavity Yang-Mills 
magnetic monopoles with binding energies reflective of 
their current quark m

tically explained with such accuracy, and each of the 
foregoing energy predictions is mutually-independent 
from all the others. So even if any one prediction is 
thought to be nothing more than coincidence, the odds 
against five indepe ns on the order of 1 
part in 105 or better being mere coincidence exceed 1025 
to 1. This is not mere coincidence! 

This leads to the conclusion that the underlying thesis 
that baryons generally, and neutrons and protons espe- 
cially, are re

asses to predict the binding energies 
of the 4He alpha to under four parts in one million, of the 
3He helion to under four parts in 100,000 and of the 3H 
triton to under seven parts in one million. Of special im-
port, we have exactly related the neutron minus proton 
mass difference—which is central to beta decay—to the 
up and down quark masses. This in turn enables us via 
the substitute postulate of Section 10 to predict the bind-

ons and 

loped in [1] and further amplified here, establishes a 
basis for finally “decoding” the abundance of known data 
regarding nuclear masses and binding energies, and by 

 

Figure 9. Binding energies  A
Z 0B  of

 

 1s nuclides (Theoretical, AMU). 

 

Figure 10. Binding energies    oA
Z 0B f 1s nuclides (Predicted, AMU). 

 

 

g energies  A
Z 0B  of 1s nuclides (AMU). Figure 11.  Predicted minus observed bindin
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agnetic charges (nu-
cl

has heretofore gone unrecognized in the 140 years since 
Maxwell first published his Treatise on Electricity and 
Magnetism. 
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Appendix—Detailed Derivation of the 
Triton Nuclide Binding Energy and the 
Neutron minus Proton Mass Difference 

To derive the triton binding energy, we start by consid- 
g a hypothetical process to fuserin e a 1H  nucleus (pro- 

ton) with a 2
1H nucleus (deuteron) to produce a 3

1H  
leus (triton), plus whatever by-p

1

s a charge of

 to be balanced with a 
eutrino. Of course, there will be some fusion energy re- 
ased. So in short, the fusion reaction we now wish to 
udy is: 

Energy         (A1) 

The question: how much energy is released? 
As we can see, this process i cludes a 

nuc roducts emerge from 
the fusion. Because the inputs 1

1H  and 2
1H  each have 

a charge of +1, and the output 3H  also ha1

+1
 

, a positron will be needed to carry off the additional 
lectric charge, and this will neede

n
le
st

1 2 3
1 1 1H H H e  

n    decay. If 
e neglect the neut ss 0m  , and since 

ee
 , we can r A1) using the nuclide 

asses in Figure 2 cal relationship: 

4780386215

w rino
eformu

, as the 

 ma
late (

empiri
m m
m

1 2 3
1 1 1Energy 0.00eM M M m     u  (A2) 

If we then return to our “toolkit” (4.11), we see that 
76340200m u . The difference: 

80386215

6340200

004046015

u

. u

u

    (A3) 

 four parts per million! So, we now regard  
ergy 2 um  to be very close relationship to the em- 

irical data for the reaction (A1) with energy release 
2). For the deuteron, alpha and helion, our toolkit 

atched up to a binding energy. But for the triton, in 
ontrast, our toolkit instead matched up to a fusion-re- 
ase energy. A new player in this mix, which has not 
eretofore become directly involved in predicting bind- 
g energies, is the electron rest mass in (A2). So, based 

n Energy 2 um , and then rewrite (A2), 

2 0.0047u 

Energy 2 0 0047

0 00477

0.000

um . 


 

is
En
p
(A
m
c
le
h
in
o  (A3), we set 

ing  1
1us M M p , as: 

 3 2
1 Predicted 1 2 u eM M p M m m    .     

Now let’s reduce. To translate between Figures 
3, we of course used: 

  (A4) 

2 and 

1 1
0 1 0BA A

Z ZZ M N M M              (A5) 

which relates observed binding energy 0B  in gene , 
to nuclear mass/weight M in general. So we now use (A5) 
specifically for 3

1 0B  and combi  this with (A4) using 
 1

0

Then, to take care of the remaining deuteron mass 
2
1M  in the above, we use (A5) a second time, now for 
2 : 1 0B

  

2 1

 2
1

1 2
1 0Predicted 1 0 1B M M M

M p M n

  

 
       (A7) 

M
2We then combine (A7) rewritten in terms of 1M , 

with (A6) to obtain: 

   3
1 0PredictedB M n M p 

2
1 0PredictedB 2 u em m  

    (A8) 

Now all we need is 2
1 0PredictedB . But this is just the deu- 

teron binding energy in (5.4). So a final substitution of 
2
1 0PredictedB um

   

 into (A8) yields: 

   3
1 0PredictedB 3 u eM n M p m m    .   (A9) 

So now, we do have a prediction for the triton binding 
energy, and it does include the electron rest mass, but it 
also includes the difference (7.1) between the free neu- 
tron and proton masses. It would be highly desirable for 
many reasons beyond the present exercise to also express 
this on a completely theoretical basis. 

To do this, we repeat the analysis just conducted, but 
now, we fuse two 1

1H  nuclei (protons) into a single 
2
1H nucleus (deuteron). Analogously to (A1), we write: 

1 1 2
1 1 1H H H Energye      ,       (A10) 

and again ask, how much energy? This fusion, it is noted, 
is the first step of the process by which the sun and stars 
produce energy, and is the simplest of all fusions, so is 
interesting from a variety of viewpoints. 

As in (A2), we first reformulate (A10) using the nu- 
clide masses in Figure 2, as the empirical: 

 

1 1 2
1 1 1

2
1

Energy

2

0.000451141003

e

e

M M M m

M p M m

u

  

  



       (A11) 

As a point of reference, this is equivalent to 0.420235 
MeV, which will be familiar to anybody to who has 

 studied hydrogen fusion. As before, we pore over the 

“toolbox” in (4.11), including  
3

22π  divisors, to dis- 

 

ral

ne
M M n , to write: 

 

3 1 1 3
1 0Predicted 1 0 1

2
1

B 1 2

2 2 u e

M M M

M n M m m

    

   
     (A6) 

cover that 
3

22 2π 0.00045042μ dm m 

ag

4092u . Once  

ain, we see a very close match, specifically: 

 
3

2Energy 2 2π

0 000451141003 0 000450424092

0.000000716911

μ dm m

. u . u

u






   (A12) 

an
Here, the match is to just over 7 parts in ten million, 
d it is the closest match yet! So we take this too to be a 
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meaningful relationship, rite (A11) as: and use this to rew

    2
1 ep M m   . 

Now we need to reduce this expression. First, using 
2

3

22 2π 2μ dm m M    (A13) 

(4.1), namely 1 0B um , we write (A7) as: 

   2
1 uM M p M n m   .         (A14) 

Then we combine (A14) with (A13) and rearrange, 
and also use (1.11), to obtain the prediction: 

   

 

   

Predicted

3

2

3

2

2 2π

3 3 2π

16609

u e μ d

u u

M n M p

m m m m

m m m

  

  

  

    (A15) 

2

0.001389 9

d μ dm m

u





This is an extremely important relatio
th

nship relating 
e observed difference (7.1) between the neutron and 

proton mass     0.001388449188M n M p u   solely 
to the up and down (and optionally electron) rest masses. 
This is useful in a wide array of circu
cially between nuclear isobars (along the diagonal lines 

he

mstances, espe- 

of like-A which are shown in the figures re) which by 
definition convert into one another via beta decay. Com- 
paring (A15) with (7.1), we see that: 

      
Observed

9188

M p

u

  

 A
this y 
empirical data. 

Because of this, we now take (A15) to b

Predicted

0 001389166099 0 00138844

0.000000716911

M n M p M n

. u .

u

   
 


 (A16) 

This is the exact same degree of accuracy, to just over 
7 parts in ten million MU, which we saw in (A12). So 

 is yet another relationship matched very closely b

e a meaningful 
relationship, and use this in (A9) to write: 

 
 

3 3
0 1 0PredictedPredicted

B H B
3

As a result, we finally have a theoretical expression 
for the binding energy of the triton, totally in term
up and down quark masses. The empirica

24 2 2π

0.009102256308

u μ dm m m

u

 



    (A17) 

s of the 
l value 3

1 0B   
0.009105585412u  is shown in Figure 3, and doing the 
co

00332

just ove
illion AMU! 

 
 

 
 

mparison, we have: 
3 3
1 0Predicted 1 0B B 0.009102256308

0.009105585412

u

u

 

     (A18) 

0.000 9104u 

We see that this result is accurate to r three 
parts in one m
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