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ABSTRACT 

The problem of real-time photorealistic imaging is discussed. New techniques for specifying free forms without their 
approximation by polygons are considered. Free forms based on the perturbation functions have an advantage of spline 
representation of surfaces, that is, a high degree of smoothness, and an advantage of arbitrary form for a small number 
of perturbation functions. Transformations of geometric objects are described for set-theoretic operations, projections, 
offsetting, and metamorphosis. We propose a GPU solution to render freeform objects at high frame rates. 
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1. Introduction 

Nowadays real-time computer graphics oriented to 3D 
scene visualization has attained considirable success. 
However, even though a sufficiently high realism of real- 
time scene imaging has been attained, some problems are 
still present, for instance, it is necessary to store and 
visualize scenes containing a greater number of polygons 
than it is implemented in the present-day systems. Analy- 
sis of possible directions of evolution of a real-time visu- 
alization system shows that the easiest way to improve 
picture quality, i.e., to increase the number of polygons 
rendered per frame, is not the most effective one. Along 
these lines, the qualitative changes are difficult to achieve. 

New techniques for specifying free forms without their 
approximation by polygons or spline-patches are consid- 
ered. We suggest expanding the notion of primitives and 
making it possible to process them by easy and effective 
method without approximation by polygons. A method to 
display curved surfaces allows obtaining picture quality 
which cannot be achieved by the traditional means (even 
with great number of polygons) and is described below. 

The geometric concept of virtual environment model- 
ing using function-based objects can be described as an 
algebraic system [1]. 

 , ,M W  

where  is the set of geometric objects,  is the set of 
geometric operations, and W is the set of relations on the 
set of objects. Geometric objects are considered as closed 

subsets of n-dimensional Euclidean space En with the 
definition: 

 1 2, , , 0nf x x x   

where f is a real continuous function defined on En. 
A functionally defined object is completely defined by 

means of the real-valued describing function of three 
variables (x1, x2, x3) in the form of F(X)  0, then the ob- 
jects are treated as closed subsets of the Euclidean space 
En, defined by the describing function F(X)  0, where F 
is the continuous real-valued function and X = (x1, x2, x3) 
is the point in En, defined by the coordinate variables. 
Here F(X)  0 defines points inside the object, F(X) = 0 
defines points on the boundary, and F(X)  0 defines 
points that lie outside and do not belong to the object. 

It is possible to describe complex geometry forms by 
specifying surface deviation function (of second order) in 
addition to surface basic function of second order (see 
Figure 1). Generally a function F(x, y, z) specifies sur- 
face of second order that is quadric 
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where x, y and z are spatial variables. 
Were developed necessary algorithms and set of C++ 

classes: adaptive ray casting for scenes containing func- 
tion-based objects (including OpenGL color/depth buff- 
ers compatibility); С++ classes for function-based ob- 
jects representation; С++ classes for rendering of func- 
tion-based objects; С++ classes interface classes pro- 
vided to make the whole system to be easily extended to  *Corresponding author. 
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Figure 1. Simple function-based object with two perturba-
tion functions. 
 
incorporate new algorithms and features. 

For visualizing the binary adaptive ray casting algo- 
rithm was used [2]. The algorithm well-suited for modern 
GPU and provides good performance with good quality 
of results. The main task is fast finding the first intersec- 
tion point with a surface that is only functionally defined. 
Compute Unified Device Architecture (CUDA) from 
NVIDIA was used. CUDA is a model of parallel pro- 
gramming. Together with a set of software, she allows to 
realize programs in language C for execution on a 
graphics accelerator. 

2. Previous Works 

The functional representation describes most accurately 
the object geometry and has the smallest size of the re- 
quired data. Procedures of functional representation de- 
monstrate compact and flexible representation of sur- 
faces and objects that are the results of logical operations 
on volumes. Its disadvantage is complicated geometrical 
processing and visualization in real-time. Some kernels 
are described in [3-10]: Gaussian function, inverse func- 
tion, inverse squared function, metaballs, soft objects, W- 
shaped quartic polynomial, Cauchy function and so on. 
Radial-based functions (RBFs) are described in [11-13]. 

A few rendering algorithms are described in [10]: ray- 
marching, LG-surfaces, sphere-tracing algorithm, ray- 
tracing with interval analysis, etc. In [14] presented a 
method for displaying metaballs in real time on the GPU. 
In [15] a ray-casting rendering algorithm for algebraic 
surfaces was proposed. GPU ray-tracing of voxel data 
was introduced in [16]. In [17] a GPU-based rendering 
algorithm of algebraic surfaces was introduced. In [18] 
ray-tracing algorithm of 3D models based on radial func- 
tions on the GPU was proposed. In [19] presented a ray- 
casting of discrete isosurfaces. In [20] presented a GPU- 
based sphere tracing algorithm of implicit surfaces. In 
[21] a GPU-based method for rendering F-rep (function- 
ally represented) was presented. 

3. Geometric Objects 

We propose describing complex geometric objects by 
specifying the function of deviation (an implicit second- 
order function) from the base surfaces [22]. The freeform 
is a composition of the base surface and the perturbation 
functions. 

     
1

, , , , , ,
N

i i
i
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

    

where fi is the form-factor; the perturbation function 
Ri(x, y, z) is found as follows  
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Herein, Qi(x, y, z) is the perturbing quadric. 
Since      max max maxQ R Q R  i i i i , for esti- 

mating the maximum Qi on some interval we have to 
calculate the maximum perturbation function on the same 
interval. The obtained surfaces are smooth (see Figures 2 
and 3), and creation of complex surface forms requires 
few perturbation functions. 

Figure 4 shows a result of modeling a scene object by 
means of free forms, whose description required 4 K byte 
information, which is 500 times less than the polygonal 
 

 

Figure 2. Function-based object with perturbation func-
tions. 

 

 

Figure 3. Function-based objects with perturbation func-
tions. 
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Figure 4. Complex function-based geometric object. 
 
description that would take 2 M byte information. Thus, 
the problem of object construction reduces to the prob-
lem of quadric surface deformation in a desired manner 
rather than to approximation by primitives (polygons or 
patches represented by B-spline surfaces). In addition, 
while solving the descriptive function in the form of 
inequality F(X)  0, we can visualize not only the surface 
but also the internal structure of the object. 

4. Geometric Operations 

Two major types of elements of the set of geometric ob- 
jects are simple geometric objects and complex geometric 
objects (see Figures 4 and 5). A complex geometric ob- 
ject is a result of operations on simple geometric objects 
[23].  

The set of geometric operations  is expressed mathe- 
matically in the following form: 

1 2¡: nM M M     M , 

where n is the number of operation operand. 
Let the object G1 be defined as f1(X)  0. The unary op- 

eration (n = 1) of the object G1 means operation G2 = 
¡(G1) with the definition 

  2 1 0f f X , 

where  is a continuous real function of one variable. Let 
us consider the following unary, binary operations and 
relations in more detail. 

4.1. Projections 

Projections of a solid onto three orthogonal planes yield 
us a representation of its different sides. The projection of 
3D solid onto the coordinate plane is considered as a un- 
ion of sections of the solid by planes parallel to the coor- 
dinate plane at a sufficiently small distance from each 
other. We will a mathematical description of the process 
for a space of arbitrary dimension. Let the initial object G1 
 En be described by the function 

 1 1 2, , , , , 0i nf x x x x    

and its projection G2  En–1 be described by the function 

 

Figure 5. Simple geometric objects. 
 

 2 1 2 1 1, , , , , , 0i i nf x x x x x     

The object G2 can be defined as a union of sections of 
the object G1 by the hyper plane xi = Cj, where Cj+1 = Cj + 
xi, j = 1, N and C1 = ximin. Let be the function for the sec- 
tion. As a result, the function for the projection at xi0 
is a union of all functions f1j:  

2 11 12 1 1j Nf f f f f       . 

In the realization of this operation for the whole scene 
we fixed one coordinate, depending on what projection 
had to be obtained. 

4.2. Offsetting 

The offsetting operation was implemented by transfor- 
mation of perturbation function coefficients. Thus, one 
can created an enlarged or diminished copy of the initial 
object, i.e., makes positive or negative offsetting. For 
example, solid beats can be simulated. Let the initial ob- 
ject be defined by the function f(X) > 0, then in the case 
of this operation, the obtained solid will be described by 
the function F = f(X) + C, where С < 0 determines the 
negative offsetting (compression) and C > 0 determines 
the positive offsetting (extension). Otherwise, adding to- 
gether the positive or negative constant and the free term 
of the perturbation function yields extension or compres- 
sion of the whole object.  

4.3. Set-Theoretic Operations 

Let the objects G1 and G2 be defined as f1(X)  0 and f2(X) 
 0. The binary operation (n = 2) of the objects G1 and G2 
means operation G3 = ¡(G1,G2) with the definition 

    3 1 2, 0f y f f X X , 

where  is the continuous real function of two variables. 
Let us dwell on the binary operations: set-theoretic opera- 
tions and 3D metamorphosis (morphing). 

For function-based objects on the bases of perturbation 
functions we propose the following. To create a complex 
scene, one should describe in it a certain number of primi- 
tives necessary for a concrete task. The rendered object 
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with which the rendering algorithm interacts by means of 
query represents the whole 3D scene. Hence, the geomet- 
ric model should allow designing of objects and their 
compositions of infinite complexity. This is primarily 
achieved by means of Boolean operations of uniting and 
intersection.  

4.4. 3D Metamorphosis 

This operation transforms the first defined object into 
second with obtaining multiple intermediate forms. The 
term originates from the word metamorphosis and refers 
to the animation technique in which one pattern is gradu- 
ally transformed to another. During the metamorphosis 
(morphing), the initial pattern is gradually transformed to 
the final one. 

A sequence of frames of transformation of one object 
to another is generated by means of the initial, final, and 
key intermediate models. 

Let F1 and F2 be values of the perturbation functions 
of the first and second objects, respectively. Then the 
resulting perturbation function is calculated as follow: 

 1 21F F F    , 

where β is the positive continuous function. 
For function-based objects with the use of perturbation 

functions, one can perform 3D morphing of nongomeo- 
morphic objects. 

4.5. Twisting 

Twisting is a solid deformation being a particular case of 
bijective mapping which serves for defining deformations 
of initial objects. For twisting of the initial solid we found 
and transformed its coordinates x, y, z. 

4.6. Global and Local Deformation 

First thing that is necessary to state is that if we want to 
propagate the deformation it should be somehow added 
to all object that it affects. Actually the current scene-tree 
is organized so that it is no possibility to add object only 
by referencing i.e. without copying. This is done for 
avoiding situations when being changed somewhere the 
object unintentionally change the other part of the scene 
that referenced to it too. Thus the additional perturbations 
should have such parameters to assure the part-per-part 
connectivity for each pair of the object the perturbation 
affects. In this case it will be looked as one perturbation. 

4.7. Sweeping 

We consider the swept volume as a projection of a mov- 
ing solid from the 4D (x,y,z,t) space to the 3D (x,y,z) 
space. Then we draw the solid each time new coordinates 
that were changed by the proper law. In so doing, the pre-

vious images are stored in the memory and used to obtain 
the result of swept volume. The newly formed figure is a 
union of images of the swept solid for different positions. 

4.8. Relations 

A binary relation is a subset of the set 2M M M  . It 
can be defined as  

:iS M M I   

The examples of binary relations are inclusion, point 
membership, interference or collision. 

Collision Detection 
Collision detection is a complicated problem solved in 
various computer programs. This means that for each 
animation frame, one should test whether any two or 
more objects collided. The collision detection algorithm 
described in [24] is based on the relation of object inter- 
section and uses the Sobol’s quasirandom sequences and 
the spiral quadratic search for detecting nonnegative 
values of the function defining the intersection. In so do- 
ing, body, confining spheres are used to define the region 
of search. This algorithm does not always result in colli- 
sion detection, i.e., the algorithm does not ensure detec- 
tion of event as stated by authors. Moreover, a drastically 
different time is required for different collisions.  

We propose original way of collision detection without 
using any bounding volumes around each object and pre- 
processing stage. For objects based on perturbation func- 
tions the object collision is detected in a constant time for 
collisions of different complexity, and the detection of 
events is absolutely ensured [25]. This way of collision 
detection is based on the relation of object intersections, 
function representation with perturbation functions and 
on the recursive object space subdivision for search the 
contact point of the objects. 

5. Rendering 

We consider the geometric object that has the property of 
answering the request on intersection with a bar. The 
negative answer guarantees that the object is not inter- 
sected and has no common points belonging to the inter- 
section is done by recursive subdivision of the space in- 
side the cube defined by boundaries of 1 along each 
coordinate (see Figure 6). 

The center of the cube matches the origin of the model 
coordinate system M whereas the plane Z = −1 coincides 
with the screen plane. Coordinate system in which the 
algorithm subdivides cubic volume is called work or mo- 
del space and is denoted M (see Figure 6). Coordinate 
system with camera (viewer) in its origin and viewing 
frustum is denoted P. In the given work we suggest to 
use the binary adaptive ray casting algorithm for ray-  
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Figure 6. The model coordinate system (M) in which the 
space inside the cube is subdivided. 
 
surface intersection calculation. The general block-sche- 
me algorithm is shown on Figures 7 and 8. Starting from 
the observer’s eye, a viewing ray (a bar) is traced through 
the object space for each pixel on the view plane. 

For each bar-surface intersection test are executed. If 
the object intersects with given bar, then bar subdivides 
further. Otherwise, we exclude bar from subdivision. Us- 
ing results of intersection test, we perform subdivision of 
sub bars that fall within the quadric completely or, proba- 
bly, partially, and the knowingly external sub bars are 
eliminated from processing. 

On some recursion level we determine first point, 
which contains a surface. 

After a finding of a point of ray-surface intersection, 
we calculate normal and color. 

Calculation of all color components of a pixel is per-
formed in the same manner by the following formula: 

ambi ambi diff diff spec spec

ambi diff spec

Q C Q C Q C
C

Q Q Q

 


 
 

where “ambi” refers to characteristics of ambient light, 
whereas “diff” and “spec” refer to the diffused and 
specular components of reflected light, respectively; C 
are the color components; Q are the weight coefficients. 
Color components are calculated by a vector light model. 
Four vectors are involved in the calculation: normal to 
the surface (n), vector to the light source, reflected light 
direction (r) and vector to the viewer (v): 

 diff lite surf,C n l C C  

Clite is the light source color; Csurf is the surface color; 

 spec lite,
p

C r v C  

where p is the reflection coefficient. 
In [26,27] we proposed a texture memory management 

policy that substitutes the classical assignation policy of 
one texel per voxel, applied for the volume representa- 
tion in texture space. The texture is an object (not mapped) 
changing the properties of another object. The feature of 
the texture is that any object may be the texture. A sup- 
plement to the data structure with consideration of the 

 

Figure 7. The general block-scheme: ray-surface intersection 
calculation. 
 

 

Figure 8. The general block-scheme: binary subdivision of a 
bar. 
 
structure is that each object can have a reference to an- 
other object being a texture for it. 

In our work two applications which visualize free form 
objects based on perturbation functions have been real- 
ized. The first uses only CPU for calculations. The sec- 
ond uses GPU for calculation of depth, normal and illu- 
mination, and CPU for geometric transformations. For 
image display both versions used DirectX. Testing of 
productivity of the offered variants of realization has 
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been made. Testing was made on the computer with pro- 
cessor Intel Core2 CPU E8400 3.0 GHz, and GPU Ge- 
Force 8800 GTX. Performance strongly depends on the 
speed of memory. 

In [15] ray casting algebraic surfaces is described. 
That by means of a usual polynomial to set a difficult 
surface it is necessary to increase its degree. In a case 
with Bezier curves that also is not guaranteed, is how 
much exact initial function will be approached to this 
curve. One more disadvantage of this method is what to 
translate such object in other co-ordinate systems not a 
simple problem. Therefore creation of dynamical scenes 
is complicated.  

In [20] presented another method for finding the first 
intersection of the surface with the ray. It is based on the 
usual step by step tracing. The difference is that the step 
size is not constant and is chosen at each step. At each 
step, is a ball centered at the current point on the ray. The 
radius of the ball is selected so that no point of not lying 
inside it. Selecting a ball can make a step in the direction 
of the ray at the radius of the ball. It is obvious that the 
radius should be the greatest. The process continues until 
the radius does not exceed the selected error. Thus, the 
search speed is not slower than normal step by step 
search with a step equal to the size of the error. But in 
almost all cases, using this algorithm, we can find a point 
of intersection for a smaller number of steps. However, 
finding a suitable radius is a complex task. For static 
scenes preliminary data processing is used. But such 
method can be applied effectively only when objects are 
static. That is when the form and scale of objects does 
not change. 

6. Conclusion 

The freeform representations created by means of the 
perturbation functions have the following advantages: 
fewer surface for mapping curvilinear objects, short da- 
tabase description, fewer operations for geometric trans- 
formations and data transfer, simple animation and de- 
formation of objects and surfaces, and a wide spectrum 
of applications (interactive graphics systems for visual-
izing function-based objects, CAD 3D simulation sys- 
tems, 3D web visualization, etc.). We have investigated 
various geometric operations on functionally defined ob- 
jects on the basis of the perturbation functions. We have 
analyzed the collision detection algorithm by means of 
recursive object space subdivision. We may conclude 
that in the proposed function-based object collision de- 
tection algorithm, the collision is always detected and 
does not depend on the relative position of collided ob- 
jects and parts of their surfaces, i.e., such an algorithm 
guarantees detection of the event, which has been proved 
both experimentally and theoretically. Modern high-per- 
formance parallel multiprocessor systems graphics ac- 

celerators provide an opportunity to expand methods of 
three-dimensional visualization of the fourth dimension - 
time. As a result, it is possible to implement new effects 
on geometric objects, caused by the introduction of op- 
erations on functions in real time. 
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