
Modern Instrumentation, 2013, 2, 26-32
http://dx.doi.org/10.4236/mi.2013.22005 Published Online April 2013 (http://www.scirp.org/journal/mi)

Perturbation Functions in Computer Graphics

Sergey I. Vyatkin*, Boris S. Dolgovesov, Mikhail A. Gorodilov
Synthesizing Visualization Systems Laboratory, Siberian Branch of the Russian Academy of Sciences, Russian Federation

Email: *sivser@mail.ru

Received January 11, 2013; revised February 15, 2013; accepted February 25, 2013

Copyright © 2013 Sergey I. Vyatkin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The problem of real-time photorealistic imaging is discussed. New techniques for specifying free forms without their
approximation by polygons are considered. Free forms based on the perturbation functions have an advantage of spline
representation of surfaces, that is, a high degree of smoothness, and an advantage of arbitrary form for a small number
of perturbation functions. Transformations of geometric objects are described for set-theoretic operations, projections,
offsetting, and metamorphosis. We propose a GPU solution to render freeform objects at high frame rates.

Keywords: Geometric Objects; Perturbation Functions; Geometric Operations

1. Introduction

Nowadays real-time computer graphics oriented to 3D
scene visualization has attained considirable success.
However, even though a sufficiently high realism of real-
time scene imaging has been attained, some problems are
still present, for instance, it is necessary to store and
visualize scenes containing a greater number of polygons
than it is implemented in the present-day systems. Analy-
sis of possible directions of evolution of a real-time visu-
alization system shows that the easiest way to improve
picture quality, i.e., to increase the number of polygons
rendered per frame, is not the most effective one. Along
these lines, the qualitative changes are difficult to achieve.

New techniques for specifying free forms without their
approximation by polygons or spline-patches are consid-
ered. We suggest expanding the notion of primitives and
making it possible to process them by easy and effective
method without approximation by polygons. A method to
display curved surfaces allows obtaining picture quality
which cannot be achieved by the traditional means (even
with great number of polygons) and is described below.

The geometric concept of virtual environment model-
ing using function-based objects can be described as an
algebraic system [1].

 , ,M W

where  is the set of geometric objects,  is the set of
geometric operations, and W is the set of relations on the
set of objects. Geometric objects are considered as closed

subsets of n-dimensional Euclidean space En with the
definition:

 1 2, , , 0nf x x x 

where f is a real continuous function defined on En.
A functionally defined object is completely defined by

means of the real-valued describing function of three
variables (x1, x2, x3) in the form of F(X)  0, then the ob-
jects are treated as closed subsets of the Euclidean space
En, defined by the describing function F(X)  0, where F
is the continuous real-valued function and X = (x1, x2, x3)
is the point in En, defined by the coordinate variables.
Here F(X)  0 defines points inside the object, F(X) = 0
defines points on the boundary, and F(X)  0 defines
points that lie outside and do not belong to the object.

It is possible to describe complex geometry forms by
specifying surface deviation function (of second order) in
addition to surface basic function of second order (see
Figure 1). Generally a function F(x, y, z) specifies sur-
face of second order that is quadric

  2 2 2
11 22 33 12 13

23 14 24 34 44

, ,

0,

F x y z A x A y A z A xy A xz

A yz A x A y A z A

    

     

where x, y and z are spatial variables.
Were developed necessary algorithms and set of C++

classes: adaptive ray casting for scenes containing func-
tion-based objects (including OpenGL color/depth buff-
ers compatibility); С++ classes for function-based ob-
jects representation; С++ classes for rendering of func-
tion-based objects; С++ classes interface classes pro-
vided to make the whole system to be easily extended to *Corresponding author.

Copyright © 2013 SciRes. MI

S. I. VYATKIN ET AL. 27

Figure 1. Simple function-based object with two perturba-
tion functions.

incorporate new algorithms and features.

For visualizing the binary adaptive ray casting algo-
rithm was used [2]. The algorithm well-suited for modern
GPU and provides good performance with good quality
of results. The main task is fast finding the first intersec-
tion point with a surface that is only functionally defined.
Compute Unified Device Architecture (CUDA) from
NVIDIA was used. CUDA is a model of parallel pro-
gramming. Together with a set of software, she allows to
realize programs in language C for execution on a
graphics accelerator.

2. Previous Works

The functional representation describes most accurately
the object geometry and has the smallest size of the re-
quired data. Procedures of functional representation de-
monstrate compact and flexible representation of sur-
faces and objects that are the results of logical operations
on volumes. Its disadvantage is complicated geometrical
processing and visualization in real-time. Some kernels
are described in [3-10]: Gaussian function, inverse func-
tion, inverse squared function, metaballs, soft objects, W-
shaped quartic polynomial, Cauchy function and so on.
Radial-based functions (RBFs) are described in [11-13].

A few rendering algorithms are described in [10]: ray-
marching, LG-surfaces, sphere-tracing algorithm, ray-
tracing with interval analysis, etc. In [14] presented a
method for displaying metaballs in real time on the GPU.
In [15] a ray-casting rendering algorithm for algebraic
surfaces was proposed. GPU ray-tracing of voxel data
was introduced in [16]. In [17] a GPU-based rendering
algorithm of algebraic surfaces was introduced. In [18]
ray-tracing algorithm of 3D models based on radial func-
tions on the GPU was proposed. In [19] presented a ray-
casting of discrete isosurfaces. In [20] presented a GPU-
based sphere tracing algorithm of implicit surfaces. In
[21] a GPU-based method for rendering F-rep (function-
ally represented) was presented.

3. Geometric Objects

We propose describing complex geometric objects by
specifying the function of deviation (an implicit second-
order function) from the base surfaces [22]. The freeform
is a composition of the base surface and the perturbation
functions.

     
1

, , , , , ,
N

i i
i

F x y z F x y z f R x y z


  

where fi is the form-factor; the perturbation function
Ri(x, y, z) is found as follows

 
   

 

3 , , , if , , 0
, ,

0, if , , 0
i

i

i iQ x y z Q x y z
R x y z

Q x y z

  


Herein, Qi(x, y, z) is the perturbing quadric.
Since      max max maxQ R Q R  i i i i , for esti-

mating the maximum Qi on some interval we have to
calculate the maximum perturbation function on the same
interval. The obtained surfaces are smooth (see Figures 2
and 3), and creation of complex surface forms requires
few perturbation functions.

Figure 4 shows a result of modeling a scene object by
means of free forms, whose description required 4 K byte
information, which is 500 times less than the polygonal

Figure 2. Function-based object with perturbation func-
tions.

Figure 3. Function-based objects with perturbation func-
tions.

Copyright © 2013 SciRes. MI

S. I. VYATKIN ET AL. 28

Figure 4. Complex function-based geometric object.

description that would take 2 M byte information. Thus,
the problem of object construction reduces to the prob-
lem of quadric surface deformation in a desired manner
rather than to approximation by primitives (polygons or
patches represented by B-spline surfaces). In addition,
while solving the descriptive function in the form of
inequality F(X)  0, we can visualize not only the surface
but also the internal structure of the object.

4. Geometric Operations

Two major types of elements of the set of geometric ob-
jects are simple geometric objects and complex geometric
objects (see Figures 4 and 5). A complex geometric ob-
ject is a result of operations on simple geometric objects
[23].

The set of geometric operations  is expressed mathe-
matically in the following form:

1 2¡: nM M M     M ,

where n is the number of operation operand.
Let the object G1 be defined as f1(X)  0. The unary op-

eration (n = 1) of the object G1 means operation G2 =
¡(G1) with the definition

  2 1 0f f X ,

where  is a continuous real function of one variable. Let
us consider the following unary, binary operations and
relations in more detail.

4.1. Projections

Projections of a solid onto three orthogonal planes yield
us a representation of its different sides. The projection of
3D solid onto the coordinate plane is considered as a un-
ion of sections of the solid by planes parallel to the coor-
dinate plane at a sufficiently small distance from each
other. We will a mathematical description of the process
for a space of arbitrary dimension. Let the initial object G1
 En be described by the function

 1 1 2, , , , , 0i nf x x x x  

and its projection G2  En–1 be described by the function

Figure 5. Simple geometric objects.

 2 1 2 1 1, , , , , , 0i i nf x x x x x   

The object G2 can be defined as a union of sections of
the object G1 by the hyper plane xi = Cj, where Cj+1 = Cj +
xi, j = 1, N and C1 = ximin. Let be the function for the sec-
tion. As a result, the function for the projection at xi0
is a union of all functions f1j:

2 11 12 1 1j Nf f f f f       .

In the realization of this operation for the whole scene
we fixed one coordinate, depending on what projection
had to be obtained.

4.2. Offsetting

The offsetting operation was implemented by transfor-
mation of perturbation function coefficients. Thus, one
can created an enlarged or diminished copy of the initial
object, i.e., makes positive or negative offsetting. For
example, solid beats can be simulated. Let the initial ob-
ject be defined by the function f(X) > 0, then in the case
of this operation, the obtained solid will be described by
the function F = f(X) + C, where С < 0 determines the
negative offsetting (compression) and C > 0 determines
the positive offsetting (extension). Otherwise, adding to-
gether the positive or negative constant and the free term
of the perturbation function yields extension or compres-
sion of the whole object.

4.3. Set-Theoretic Operations

Let the objects G1 and G2 be defined as f1(X)  0 and f2(X)
 0. The binary operation (n = 2) of the objects G1 and G2
means operation G3 = ¡(G1,G2) with the definition

    3 1 2, 0f y f f X X ,

where  is the continuous real function of two variables.
Let us dwell on the binary operations: set-theoretic opera-
tions and 3D metamorphosis (morphing).

For function-based objects on the bases of perturbation
functions we propose the following. To create a complex
scene, one should describe in it a certain number of primi-
tives necessary for a concrete task. The rendered object

Copyright © 2013 SciRes. MI

S. I. VYATKIN ET AL. 29

with which the rendering algorithm interacts by means of
query represents the whole 3D scene. Hence, the geomet-
ric model should allow designing of objects and their
compositions of infinite complexity. This is primarily
achieved by means of Boolean operations of uniting and
intersection.

4.4. 3D Metamorphosis

This operation transforms the first defined object into
second with obtaining multiple intermediate forms. The
term originates from the word metamorphosis and refers
to the animation technique in which one pattern is gradu-
ally transformed to another. During the metamorphosis
(morphing), the initial pattern is gradually transformed to
the final one.

A sequence of frames of transformation of one object
to another is generated by means of the initial, final, and
key intermediate models.

Let F1 and F2 be values of the perturbation functions
of the first and second objects, respectively. Then the
resulting perturbation function is calculated as follow:

 1 21F F F    ,

where β is the positive continuous function.
For function-based objects with the use of perturbation

functions, one can perform 3D morphing of nongomeo-
morphic objects.

4.5. Twisting

Twisting is a solid deformation being a particular case of
bijective mapping which serves for defining deformations
of initial objects. For twisting of the initial solid we found
and transformed its coordinates x, y, z.

4.6. Global and Local Deformation

First thing that is necessary to state is that if we want to
propagate the deformation it should be somehow added
to all object that it affects. Actually the current scene-tree
is organized so that it is no possibility to add object only
by referencing i.e. without copying. This is done for
avoiding situations when being changed somewhere the
object unintentionally change the other part of the scene
that referenced to it too. Thus the additional perturbations
should have such parameters to assure the part-per-part
connectivity for each pair of the object the perturbation
affects. In this case it will be looked as one perturbation.

4.7. Sweeping

We consider the swept volume as a projection of a mov-
ing solid from the 4D (x,y,z,t) space to the 3D (x,y,z)
space. Then we draw the solid each time new coordinates
that were changed by the proper law. In so doing, the pre-

vious images are stored in the memory and used to obtain
the result of swept volume. The newly formed figure is a
union of images of the swept solid for different positions.

4.8. Relations

A binary relation is a subset of the set 2M M M  . It
can be defined as

:iS M M I 

The examples of binary relations are inclusion, point
membership, interference or collision.

Collision Detection
Collision detection is a complicated problem solved in
various computer programs. This means that for each
animation frame, one should test whether any two or
more objects collided. The collision detection algorithm
described in [24] is based on the relation of object inter-
section and uses the Sobol’s quasirandom sequences and
the spiral quadratic search for detecting nonnegative
values of the function defining the intersection. In so do-
ing, body, confining spheres are used to define the region
of search. This algorithm does not always result in colli-
sion detection, i.e., the algorithm does not ensure detec-
tion of event as stated by authors. Moreover, a drastically
different time is required for different collisions.

We propose original way of collision detection without
using any bounding volumes around each object and pre-
processing stage. For objects based on perturbation func-
tions the object collision is detected in a constant time for
collisions of different complexity, and the detection of
events is absolutely ensured [25]. This way of collision
detection is based on the relation of object intersections,
function representation with perturbation functions and
on the recursive object space subdivision for search the
contact point of the objects.

5. Rendering

We consider the geometric object that has the property of
answering the request on intersection with a bar. The
negative answer guarantees that the object is not inter-
sected and has no common points belonging to the inter-
section is done by recursive subdivision of the space in-
side the cube defined by boundaries of 1 along each
coordinate (see Figure 6).

The center of the cube matches the origin of the model
coordinate system M whereas the plane Z = −1 coincides
with the screen plane. Coordinate system in which the
algorithm subdivides cubic volume is called work or mo-
del space and is denoted M (see Figure 6). Coordinate
system with camera (viewer) in its origin and viewing
frustum is denoted P. In the given work we suggest to
use the binary adaptive ray casting algorithm for ray-

Copyright © 2013 SciRes. MI

S. I. VYATKIN ET AL. 30

Figure 6. The model coordinate system (M) in which the
space inside the cube is subdivided.

surface intersection calculation. The general block-sche-
me algorithm is shown on Figures 7 and 8. Starting from
the observer’s eye, a viewing ray (a bar) is traced through
the object space for each pixel on the view plane.

For each bar-surface intersection test are executed. If
the object intersects with given bar, then bar subdivides
further. Otherwise, we exclude bar from subdivision. Us-
ing results of intersection test, we perform subdivision of
sub bars that fall within the quadric completely or, proba-
bly, partially, and the knowingly external sub bars are
eliminated from processing.

On some recursion level we determine first point,
which contains a surface.

After a finding of a point of ray-surface intersection,
we calculate normal and color.

Calculation of all color components of a pixel is per-
formed in the same manner by the following formula:

ambi ambi diff diff spec spec

ambi diff spec

Q C Q C Q C
C

Q Q Q

 


 

where “ambi” refers to characteristics of ambient light,
whereas “diff” and “spec” refer to the diffused and
specular components of reflected light, respectively; C
are the color components; Q are the weight coefficients.
Color components are calculated by a vector light model.
Four vectors are involved in the calculation: normal to
the surface (n), vector to the light source, reflected light
direction (r) and vector to the viewer (v):

 diff lite surf,C n l C C

Clite is the light source color; Csurf is the surface color;

 spec lite,
p

C r v C

where p is the reflection coefficient.
In [26,27] we proposed a texture memory management

policy that substitutes the classical assignation policy of
one texel per voxel, applied for the volume representa-
tion in texture space. The texture is an object (not mapped)
changing the properties of another object. The feature of
the texture is that any object may be the texture. A sup-
plement to the data structure with consideration of the

Figure 7. The general block-scheme: ray-surface intersection
calculation.

Figure 8. The general block-scheme: binary subdivision of a
bar.

structure is that each object can have a reference to an-
other object being a texture for it.

In our work two applications which visualize free form
objects based on perturbation functions have been real-
ized. The first uses only CPU for calculations. The sec-
ond uses GPU for calculation of depth, normal and illu-
mination, and CPU for geometric transformations. For
image display both versions used DirectX. Testing of
productivity of the offered variants of realization has

Copyright © 2013 SciRes. MI

S. I. VYATKIN ET AL. 31

been made. Testing was made on the computer with pro-
cessor Intel Core2 CPU E8400 3.0 GHz, and GPU Ge-
Force 8800 GTX. Performance strongly depends on the
speed of memory.

In [15] ray casting algebraic surfaces is described.
That by means of a usual polynomial to set a difficult
surface it is necessary to increase its degree. In a case
with Bezier curves that also is not guaranteed, is how
much exact initial function will be approached to this
curve. One more disadvantage of this method is what to
translate such object in other co-ordinate systems not a
simple problem. Therefore creation of dynamical scenes
is complicated.

In [20] presented another method for finding the first
intersection of the surface with the ray. It is based on the
usual step by step tracing. The difference is that the step
size is not constant and is chosen at each step. At each
step, is a ball centered at the current point on the ray. The
radius of the ball is selected so that no point of not lying
inside it. Selecting a ball can make a step in the direction
of the ray at the radius of the ball. It is obvious that the
radius should be the greatest. The process continues until
the radius does not exceed the selected error. Thus, the
search speed is not slower than normal step by step
search with a step equal to the size of the error. But in
almost all cases, using this algorithm, we can find a point
of intersection for a smaller number of steps. However,
finding a suitable radius is a complex task. For static
scenes preliminary data processing is used. But such
method can be applied effectively only when objects are
static. That is when the form and scale of objects does
not change.

6. Conclusion

The freeform representations created by means of the
perturbation functions have the following advantages:
fewer surface for mapping curvilinear objects, short da-
tabase description, fewer operations for geometric trans-
formations and data transfer, simple animation and de-
formation of objects and surfaces, and a wide spectrum
of applications (interactive graphics systems for visual-
izing function-based objects, CAD 3D simulation sys-
tems, 3D web visualization, etc.). We have investigated
various geometric operations on functionally defined ob-
jects on the basis of the perturbation functions. We have
analyzed the collision detection algorithm by means of
recursive object space subdivision. We may conclude
that in the proposed function-based object collision de-
tection algorithm, the collision is always detected and
does not depend on the relative position of collided ob-
jects and parts of their surfaces, i.e., such an algorithm
guarantees detection of the event, which has been proved
both experimentally and theoretically. Modern high-per-
formance parallel multiprocessor systems graphics ac-

celerators provide an opportunity to expand methods of
three-dimensional visualization of the fourth dimension -
time. As a result, it is possible to implement new effects
on geometric objects, caused by the introduction of op-
erations on functions in real time.

REFERENCES
[1] A. Pasko, V. Adzhiev, A. Sourin, et al., “Function Rep-

resentation in Geometric Modeling: Concepts, Implemen-
tation and Applications,” The Visual Computer, Vol. 11,
No. 6, 1995, pp. 429-446.

[2] S. I. Vyatkin, M. Gorodilov and B. S. Dolgovesov,
“GPU-Based Binary Adaptive Ray Casting for Freeform
Objects with Perturbation Functions,” Proceedings of the
IASTED International Conferences on Automation, Con-
trol, and Information Technology, Novosibirsk, 15-18 June
2010, pp. 223-228.

[3] J. McCormack and A. Sherstyuk, “Creating and Render-
ing Convolution Surfaces,” Computing Graphics Forum,
Vol. 17, No. 2, 1998, pp. 113-120.
doi:10.1111/1467-8659.00232

[4] J. Bloomenthal and K. Shoemake, “Convolution Sur-
faces,” ACM SIGGRAPH Computer Graphics, Vol. 25,
No. 4, 1991, pp. 251-256. doi:10.1145/127719.122757

[5] G. Sealy and G. Wyvill, “Smoothing of Three-Dimen-
sional Models by Convolution,” Proceedings of Com-
puter Graphics International, Pohang, 24-28 June 1996,
pp. 184-190.

[6] J. F. Blinn, “A Generation of Algebraic Surface Draw-
ing,” ACM Transactions on Graphics, Vol. 1, No. 3, 1982,
pp. 235-256. doi:10.1145/357306.357310

[7] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shira-
kawa and K. Omura, “Object Modeling by Distribution
Function and a Method of Image Generation,” The Trans-
actions of the Institute of Electronics and Communication
Engineers of Japan, Vol. J68-D, No. 4, 1985, pp. 718-
725.

[8] G. Wyvill, C. McPheeters and B. Wyvill, “Data Structure
for Soft Objects,” The Visual Computer, Vol. 2, No. 4,
1986, pp. 227-234. doi:10.1007/BF01900346

[9] J. Bloomenthal, “Modeling the Mighty Maple,” Computer
Graphics, Vol. 19, No. 3, 1985, pp. 305-311.
doi:10.1145/325165.325249

[10] A. Sherstuyk, “Fast Ray Tracing of Implicit Surfaces,”
Computer Graphics Forum, Vol. 18, No. 2, 1999, pp.
139-147.

[11] A. G. Bors and I. Pitas, “Object Classification in 3-D
Images Using Alpha-Trimmed Mean Radial Basis Func-
tion Network,” IEEE Transactions on Image Processing,
Vol. 8, No. 12, 1999, pp. 1744-1756.
doi:10.1109/83.806620

[12] J. C Carr, et al., “Reconstruction and Representation of
3D Objects with Radial Basis Functions,” Proceedings of
the 28th Annual Conference on Computer Graphics and
Interactive Techniques, Los Angeles, 12-17 August 2001,
pp. 67-76.

[13] S. Matej and R. M. Lewitt, “Practical Considerations for

Copyright © 2013 SciRes. MI

http://dx.doi.org/10.1111/1467-8659.00232
http://dx.doi.org/10.1145/127719.122757
http://dx.doi.org/10.1145/357306.357310
http://dx.doi.org/10.1007/BF01900346
http://dx.doi.org/10.1145/325165.325249
http://dx.doi.org/10.1109/83.806620

S. I. VYATKIN ET AL.

Copyright © 2013 SciRes. MI

32

3-D Image Reconstruction Using Spherically Symmetric
Volume Elements,” IEEE Transactions on Medical Im-
aging, Vol. 15, No. 1, 1996, pp. 68-78.
doi:10.1109/42.481442

[14] Y. Kanamori, Z. Szego and T. Nishita, “GPU-Based Fast
Ray Casting for a Large Number of Metaballs,” Euro-
graphics, Vol. 27, No. 2, 2008, pp. 351-360.

[15] M. Reimers and J. Seland, “Ray Casting Algebraic Sur-
faces Using the Frustum Form,” Eurographics, Vol. 27,
No. 2, 2008, pp. 361-370.

[16] J. Kruger and R. Westermann, “Acceleration Techniques
for GPU-Based Volume Rendering,” 14th IEEE Visuali-
zation, Seattle, 24-24 October 2003, pp. 38-42.

[17] C. Loop and J. Blinn, “Real-Time GPU Rendering of
Piecewise Algebraic Surfaces,” Proceedings of ACM
SIGGRAPH, Vol. 25, No. 3, 2006, pp. 664-670.

[18] A. Corrigan and H. Quynh Dinh, “Computing and Ren-
dering Implicit Surfaces Composed of Radial Basis Func-
tions on the GPU,” International Workshop on Volume
Graphics, 2005, pp. 187-195.

[19] M. Hadwiger, C. Sigg, H. Scharsach, K. Buhler and M.
Gross, “Real-Time Ray-Casting and Advanced Shading
of Discrete Isosurfaces,” Computer Graphics Forum, Vol.
24, No. 3, 2005, pp. 303-312.
doi:10.1111/j.1467-8659.2005.00855.x

[20] G. Liktor, “Ray Tracing Implicit Surfaces on the GPU,”
Computer Graphics and Geometry, Vol. 10, No. 3, 2008,
pp. 36-53.

[21] O. Fryazinov and A. Pasko, “Using GPU for Interactive

Ray Casting Functionally Represented Models,” Com-
puter Graphics and Geometry, Vol. 9, No. 1, 2007, pp.
1-17.

[22] S. I. Vyatkin, “Complex Surface Modeling Using Pertur-
bation Functions,” Optoelectronics, Instrumentation and
Data Processing, Vol. 43, No. 3, 2007. pp. 40-47.
doi:10.3103/S875669900703003X

[23] S. I. Vyatkin, B. S. Dolgovesov and A. T. Valetov, “Geo-
metric Operations for Functionally Defined Objects Using
Perturbation Functions,” Optoelectronics, Vol. 40, No. 1,
2004, pp. 65-73.

[24] V. V. Savchenko and A. A. Pasko, “Collision Detection
for Functionally Defined Deformable Objects,” In: B.
Wyvill and M. P. Gascuel, Eds., The First International
Workshop on Implicit Surfaces, Grenoble, 18-19 April
1995, pp. 217-221.

[25] S. I. Vyatkin, B. S. Dolgovesov and A. S. Korsun, “Colli-
sion Detection of Functionally Defined Objects in Com-
puter Graphics Tasks,” Optoelectronics, Instrumentation
and Data Processing, Vol. 39, No. 6. 2003, pp. 119-126.

[26] S. I. Vyatkin and B. S. Dolgovesov, “A 3D Texture-
Based Recursive Multi-Level Ray Casting Algorithm,”
Proceedings of the Second IASTED International Multi-
Conference on Automation, Control, and Information
Technology, Novosibirsk, 20-24 June 2005, pp. 92-97.

[27] S. I. Vyatkin, “A 3D Texture-Based Rendering Algo-
rithm,” Computer Graphics and Geometry, Vol. 8, No. 3,
2006, pp. 65-78.
http://www.cgg-journal.com/2006-3/05.htm

http://dx.doi.org/10.1111/j.1467-8659.2005.00855.x
http://dx.doi.org/10.3103/S875669900703003X

