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ABSTRACT 

In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory 
in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase 

 x   of the complex matter field x

 

 carries the charge degree of freedom of the complex matter field and is 

akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The 
theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being 
gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral 
quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are 
derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved 
under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone 
gauge-fixing. 
 
Keywords: Light-Front Quantization; Hamiltonian Quantization; Path Integral Quantization; BRST Quantization; 

Constrained Dynamics; Gauge Symmetry; Chern-Simons-Higgs Theory; Broken Symmetry Phase; Higgs 
Potential; Spontaneous Symmetry Breaking 

1. Introduction 

Gauge theories in two-space one-time dimensions in-
volving Chern-Simons (CS) term coupled to matter fields 
describe excitations with fractional statistics [1-8]. Such 
studies form a broad field of study [1-15]. 

The Hamiltonian [16], path integral [17-19] and Bec-
chi, Rouet, Stora and Tyutin (BRST) [20-22], formula-
tions of the pure CS theory have been studied in Refs. 
[7,8], in the instant-form (IF) quantization (IFQ) [23,24] 
as well as in the light-front (LF) quantization (LFQ) 
[23,24]. 

The CS theory in the presence of a Higgs potential has 

been studied in Refs. [9-14], under appropriate gauge- 
fixing conditions, in the so-called symmetry phase of the 
Higgs potential [9-11] as well as in the so-called broken 
(or frozen) symmetry phase [12,13] of the Higgs poten- 
tial [12-15], where the phase x  of the complex 
matter field  x

0 constantx t 

 carries the charge degree of free-
dom of the complex matter field and is, in fact, akin to 
the Goldstone boson [12-15]. 

The IF Hamiltonian, path integral and BRST formula-
tions of this theory have been studied in Ref. [12] on the 
hyperplanes defined by the IF time:  
[23,24], in the broken (or frozen) symmetry phase of the 
Higgs potential [12-15] under appropriate gauge-fixing 
conditions. *Talk presented by UK at the “International Conference on Light-Cone 

2011: Applications of Light-Front Coordinates to Highly Relativistic 
Systems,” held at the Southern Methodist University, Dallas Campus, 
Dallas, USA, May 22-27, 2011 (Published in Conf. Proceedings (Few 
Body Syst. 52, 457-461 (2012)). 
#Corresponding author. 

In this work we study the LF Hamiltonian, path inte-
gral and BRST formulations of this CS-Higgs (CSH) 
theory on the hyperplanes defined by the light-cone (LC) 
time: 
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[13,23,24], in the BSP of the Higgs potential. 
This is in contrast to our earlier work [12] on the 

quantization of the same theory, where we have studied 
the IFQ of this theory in the BSP of the Higgs potential. 
In the present work, on the other hand, we study its LFQ. 

We further wish to emphasize that the preliminary re-
sults of this work on the LFQ of this theory are presented 
in Ref. [13] and the complete details of this work are 
described here in the present work. 

It may be important to mention here that the LFQ of 
any theory has several advantages over its IFQ for sev-
eral well known reasons [18,19,23,24]. Also because the 
LF coordinates are not related to the conventional IF co-
ordinates by a finite Lorentz transformation, the descrip-
tions of the same physical result may be different in the 
IF and LF dynamics. In fact, the study of a theory using 
the IFQ as well as the LFQ determines the canonical 
structure and the constrained dynamics of the theory 
rather completely [18,19,23,24]. These are the main mo-
tivations for our present studies. 

Also, different aspects of this theory have been studied 
by several authors in various contexts [1-8]. For further 
details about the motivations for a study of the different 
aspects of the CSH theories by various authors including 
a comparative description of different studies, we refer to 
the work of Refs. [1-8], as well as to our earlier work of 
Refs. [7-13]. 

In this work we present the complete details of the 
LFQ of this theory in the broken (or frozen) symmetry 
phase of the Higgs potential (cf. the work of Ref. [13] for 
our preliminary results). After a brief recap of the theory 
in the broken (or frozen) symmetry phase of the Higgs 
potential in the next section, its LF Hamiltonian and path 
integral formulations are presented in Section 3 and its 
LF BRST formulation is described in Section 4. The 
summary and discussion is finally given in Section 5. 

2. Theory in Broken (or Frozen) Symmetry 
Phase: A Recap 

The Chern-Simons-Higgs theory in two-space one-time 
dimensions is defined by the action [1-15]: 

1 1S                       (1a) 

    2
V

   
1 2

A A D D 
   

    
   (1b) 

 2 2 4

4  0 2V                    (1c) 

   22 2 2
0 0, 0  V                  (1d) 

2

, ,

2π

D ieA D ieA     



     

   
 



       (1e) 

 
012

012

: diag 1, 1, 1 , 

, 0,1, 2, 1

g 

 

   

    
              (1f) 

Here   is the Chern-Simons parameter. We keep the 
Higgs potential rather general, i.e., without making any 
specific choice for the parameters of the potential except 
that they are chosen such that the potential remains a 
double well potential with 0 . This action thus de-
scribes the theory in the so-called symmetry phase [9-11]. 
In the following we however, study this theory in the so- 
called broken (or frozen) symmetry phase (BSP) [12-15],  

0 

 x    


of the complex matter field . For this pur-

pose, for the complex matter field  we take [12-15]: 

   0 0exp , 0x i x              (2) 

 x     is the phase of the complex matter  Here 

 xfield  . The acion of the theory in the BSP [3,4,7]  

then becomes: 

  

3d ,

1
:

2 2

S x

A A eA eA  
    

  



         

 


  (3) 

It is important to notice here that the vector gauge 
boson A  becmes massive in the BSP. This mass gen- 
eration of the vector gauge boson takes place perhaps 
through a mechanism similar to the Higgs mechanism 
[9-15]. The phase   carries the charge degree of free- 
dom of   and is, in fact, akin to the Goldstone boson 
and is to be treated as a dynamical field. Also the ground 
state in the BSP is not rotational invariant. Such studies 
of the theory in the broken-symmetry (superfluid) state 
could be relevant for the effective theories in the con- 
densed matter, as the action of the theory describes the 
low-lying excitations in the BSP [12-15], as well as for 
an understanding of the issue of exotic statistics in 
gauge-invariant observables [1-8]. In the next section we 
study the LF Hamiltonian and path integral formulations 
of the above theory in the BSP. 

3. Light-Front Hamiltonian and Path 
Integral Formulations 

The LF action of the theory in the BSP of the Higgs po-
tential reads: 

2d d dS x x x                 (4a) 

Copyright © 2013 SciRes.                                                                                 JMP 
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                  (4b) 

 
possesses four primary constraints: Canonical momenta obtained from the above action 

are:  1 20,  π 0eA   
         (6a)        

   L
eAπ







 


 
 

                (5a) 

    22
0,  A

A A

 
 

 
 

 

   

 

    
   

  (5b) 

2

2 2
E A

A

 




   



π, ,    2E  

, ,

 
               (5c) 

Here  and  are the momenta ca-  

nonically conjugate respectively to A A    and 2A . 
The above equations however, imply that the theory  

3 2 40,  0
2 2

A E A
               

   
    (6b) 

The symbol   here denotes a weak equality (WE) in 
the sense of Dirac [16], and it implies that these above 
constraints hold as a strong equality only on the reduced 
hypersurface of the constraints and not in the rest of the 
phase space of the classical theory (and similarly one can 
consider it as a weak operator equality (WOE) for the 
corresponding quantum theory) [16,18,19]. The canoni-
cal Hamiltonian density corresponding to  is: 

 

 

2

22
2 2 2 2 2 2

: π

1

2 2

c A A E A L

A A A A A A A A eA e A A eA



  

   
   

        
  

          
                  



1 2, ,

        (7) 

 
After including the primary constraints 3   and 
 in the canonical Hamiltonian density  with the 

help of the Lagrange multiplier field 

c
, ,s u v w

T

   

 and  the 
total Hamiltonian density  could be written as: 4

 

 

2

22
2 2 2 2 2 2

π
2 2

1

2 2

T s eA w A u E A v

A A A A A A A A eA e A A eA

 

  

   


        
  

                    
                 



2dT T

        (8) 

 
The physical degrees of freedom of the system are 

governed by the reduced Hamiltonian density of the the- 
ory (which is obtained by implementing the constraints 
of the theory strongly) [8-13]. Also, in the present case, 

The Hamilton’s equations of motion of the theory that 
preserve the constraints of the theory in the course of 
time could be obtained from the total Hamiltonian (and  

x  .  Hare omitted here for the sake of bravity): 
 , and A   play the role of gauge variables and the two 

pairs Demanding that the primary constraint 1  be preserved 
in the course of time, one obtains the secondary Gauss- 
law constraint of the theory as: 

 ,A   2 ,A E and  are the pair of inessential 
eliminable variables and a pair describing the physical 
degrees of freedom of the system. Accordingly, we choose, 
in the present case, the first pair namely,  ,A 2

5 0e e A  
       as 

the pair describing the physical degrees of freedom and 
the other pair as the pair of inessential eliminable vari- 
ables. So for writing the reduced Hamiltonian density of 
the theory, we choose 

              (9) 

The preservation of 2 3 4, ,   and 5  , for all times 
does not give rise to any further constraints. The theory is 
thus seen to possess only five constraints i  (with i = 1, 
2, 3, 4, 5), where 1 2 3, ,    and 4  are primary con- 
straints and 5  is a secondary constraint. Further, the 
matrix of the Poisson brackets among the constraints i , 
with  is seen to be a singular matrix im- 
plying that the set of constraints i

 1, 2,3, 4,5i 
  is first-class and 

that the theory under consideration is gauge-invariant. 

,π, , A    and   as the 
independent variables and the remaining phase space 
variables as the dependent variables. The later ones are 
then expressed in terms of the independent variables as: 

 2
,  π eA

 20,  ,  
2

E A A


   
         (10) 
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Finally the reduced Hamiltonian density of the theory 
describing the physical degrees of freedom of the system 
expressed in terms of the independent variables is then 
obtained as: 

2
1 2e 


           

   



2dR R

2
2 22 2

R

A A A e A A
     





 (11) 

where H x   is the reduced Hamiltonian of the  

theory and it describes the physical degrees of freedom 
of the system. Here we reminded ourselves that as an 
alternative to the above, we could have equivalently ex-
pressed it in terms of the other pair namely,  ,2A E

 ,A 
 

instead of the pair . The field equations derived 
from the Heisenberg equations of motion are then ob-
tained as: 

  2 2π π, Ri H     2

2e


     



        (12a) 

, 0Ri H                            (12b) 

2

2
A e A

    

, 0RA H  

2, Ri H   
           

  

(12c) 

A i                       (12d) 

2

2
A e A

      
2, Ri H                 (12e) 
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2

4 2e e
2

, RA i A H A 


 
 

 
          

 

 2, ,


    (12f) 

The vector gauge current of the theory 
J J J J    is: 

   
2

2

d dJ j x x

A2 2d d
2

x x e eA A
   

  





   


 

 
   

 (13a) 

   
2

2

d dJ j x x

A2 2d d
2

x x e eA A
   

  





     


 

    
 (13b) 

   

2 2
2d dJ j x x

A2 2 2d d
2

x x e eA A
   




 


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

0j 

2 2, , , 0e A A       


     
(13c) 

The divergence of the vector gauge current density of 
the theory could now be easily seen to vanish satisfying 
the continuity equation:  , implying that the 
theory possesses at the classical level, a local vec- 
tor-gauge symmetry. The action of the theory is indeed 
seen to be invariant under the local vector gauge trans- 

formations: 

     (14a)       

2, , , π 0
2 2

A E
        

 


 (14b)        

, ,s u e w                

2 , 0s u v wv

         (14c) 

      (14d)                

 2, ,xwhere x x     is an arbitrary function of its 
arguments. In order to quantize the theory using Dirac’s 
procedure we now convert the set of first-class con-
straints of the theory i  into a set of second-class con-
straints, by imposing, arbitrarily, some additional con-
straints on the system called gauge-fixing conditions or 
the gauge constraints. For this purpose, for the present 
theory, we could choose, for example, the following 
gauge-fixing condition: 0A  

0A
. Here the gauge 

  represents the light-cone coulomb gauge and is 
a physically important gauge. Corresponding to this 
gauge choice, the theory has the following set of con- 
straints under which the quantization of the theory could 
e.g. be studied: 

1 1 1 0                         (15a) 

 2 2 2 π 0eA    
              (15b) 

3 3 3 2 0
2

A
          

 
          (15c) 

4 4 4 0
2

E A
         

 
          (15d) 

 2
5 5 5 0e e A    

     

6 0A 

        (15e) 

                     (15f)    

RThe matrix   of the Poisson brackets among the 
set of constraints i  with    is seen to 
be nonsingular with the determinant given by 

1,2,3,4,5,6i 

 
     

1

2

2 3
2 2

det R

e x y x y x y



     


 
 
              

 (16) 

 

RThe other details of the matrix   are omitted here 
for the sake of bravity. Finally, following the standard 
Dirac quantization procedure, the nonvanishing equal 
light-cone-time commutators of the theory, under the 
gauge: 0A   are obtained as: 

   
   

2 2

2 2

, , ,π , ,

2

x x x x x x

i x y x y



 

   

 

 
 

  
          (17a) 
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  
 

, , ,

2

   
 

2 2

2 2

, ,A x x x

i
x y 

  

 



 

x x x

x y

   
 



 

         (17b) 

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 
 

2 2, , ,

2
 

2

2 2

, ,A x x x

i
x y 

 

  

E x x x

x y

  
 



 

           (17c) 

 
 

2 2, , ,

2
 

2

2 2

, ,x x x

ie
x y




 



 

A x x x

x y

    



           (17d) 

   

2 2 2

2 2

, , , , ,A x x x A x x x

i
x y x y 



    

 


 


  

   

          (17e) 



   

2 2

2 2

, , , , ,

4

E x x x x x x

i
x y x y

  

    

 

 

  

0

           (17f) 

Also, for the later use, for considering the BRST for-
mulation of the theory we convert the total Hamiltonian 
density into the first-order Lagrangian density IL : 

 

               

   
0 2

2

2 2 2 2 2 2 2 2

1

2 2 2 2

s u v w TA A E A s u v w: πI

A A A

 

 

   
   



A A A A A eA eA A A A A
    

   
     

      
     

             
                   


   (18) 

 
 kZIn the path integral formulation, the transition to quan- 

tum theory is made by writing the vacuum to vacuum 
transition amplitude for the theory called the generating 

functional J

k

 of the theory [17-19] under the 
gauge-fixing under consideration, in the presence of the 
external sources J  as: 

 

   d expZ J i   3
2d πk

k k s u v w Tx J A A E A s u v w     
       

                    

 2, , , , , , ,k

 (19) 

 

 π, , , , , , ,k s u v wE        Here, the phase space variables of the theory are:  . 
A A A s u v w     with the corresponding   The functional measure d  of the generating func- 

tional  Z Jrespective canonical conjugate momenta:  under the above gauge-fixing is obtained as: k

 

           

            

   

2

2

d d d

0 0 0
2 2

π 0 0 0

2 3
2 2 2d d

d d d d d dπ d d d d d d ds u v w

e x y x y x y A A A

s u v w z E

         


 

                     

          

A E A

eA e e A A

   

    

  

  
 

 

                            

                 

0A 

                 (20) 

 
The Hamiltonian and path integral quantization of the 

theory under the gauge:  is now complete. 

4. Light-Front BRST Formulation 

For the BRST formulation of the theory [20-22], we re-
write the theory as a quantum system that possess the 
generalized gauge invariance called BRST symmetry. 
For this, we first enlarge the Hilbert space of our gauge- 
invariant theory and replace the notion of gauge-trans- 
formation, which shifts operators by c-number functions, 
by a BRST transformation, which mixes operators with 
Bose and Fermi statistics, we then introduce new 
anti-commuting variables c and c

b

ˆ ˆ ˆ, π 0, ,ec A c   


 (Grassman numbers 
on the classical level, operators in the quantized theory) 

and a commuting variable  such that [20-22]: 



2 2
ˆ ˆ,A c A c 



  

   
               (21a) 

20, , ,
2 2

ˆ ˆ ˆ ˆ 0s u v w

c E c  

   


ˆ ˆ ˆ         

       

2

ˆ ˆ, ,

ˆ ˆ,

       (21b) 

s c u e c

v c w c

 

 
  

  

    
                 (21c) 

     

ˆ ˆ ˆ0, , 0c c b b    
2ˆ 0

                    (21d) 

with the property  . We now define a BRST-in- 
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variant function f (a function of all the phase space vari-
ables of the BRST-invariant theory) such that ˆ 0f  . 
Performing gauge-fixing in the BRST formalism implies 

adding to the first-order Lagrangian density 0I , a triv-
ial BRST-invariant function. We could thus write e.g.: 

 

   2

2 2 2 2

2 2

1

2 2

1 1ˆ
2

BRST A A A A A eA eA

A A c A b
e


2 2

2 2

A A A

A A

  

   

      
   

  
  


                 


              

 

         (22) 

 

The last term in the above equation is the extra BRST-invariant gauge-fixing term. After one integration by parts, the 
above equation could now be written as: 
 

   2

2 2 2 2 2 2

1

2

BRST A A A A A A eA eA

A A A A b A b c c cc
e



2
2 2

2 2

1 1

2 2

A A   



      
   

  
    


                 


               



b

 





          (23) 

 

Proceeeding classically, the Euler Lagrange equation 
for  reads 

1
b A

e



    
 

0b 

 

                 (24) 

the requirement  then implies ̂
1ˆ ˆ ˆ 0b A
e

  
   

c 

             (25) 

which in turn implies 

c                           (26) 

The above equation is also an Euler-Lagrange equation 
(ELE) obtained by the variation of BRST ith respect to  w
c . I  introducing momenta one has to be careful in de-
fining those for the fermionic variables. We thus define 
the bosonic momenta in the usual manner so that 

n

 
: BRST b

A






   

 


 

            (27) 

but for the fermionic momenta with directional deriva-
tives we set 

 

: ;

:

c BRST

c BRST

c
c

c
c








   

 





   
 







c

            (28) 

implying that the variable canonically conjugate to  is 
c  and the variable conjugate to c c is  . For 

writing the quantum Hamilotonian density from the La-
grangian density in the usual manner we remember that 
the former has to be Hermitian so that: 

 

   

   

2 2

2 2 2 2

22

2 2

π

2

1 1 1

2 2

BRST s u v w c c BRST

v w

c c

A A E A s u v w c c

s u v w A A A A A A A A

eA A cc
e





 

   
         

     
     

  


                       

               

               

 

s u


   


 (29) 

 
We can check the consistency of our definitions of the 

the fermionic momenta by looking at the Hamiltons 
equations for the Fermionic variables: 

;BRST BRST
c c

c c 
 

   
 

 
            (30) 

Thus we see that 

,BRST c BRST c
c c

c c 
 

       
 

 
   (31) 

is in agreement with our definitions of the fermionic 
momenta. Also, for the operators , ,c c c  and c , 
one needs to satisfy the anticommutation relations of 

c  with c  or of c  with c , but not of c , with 
. In general, c  and c c  are independent canonical 

variables and one assumes that: 

     
    

, , 0, , 0,

, 1 ,

c c c c c c

c c c c



 

     

   
     (32) 

 ,  means an anti-commutator. We thus see that where 
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the anti-commutators in the above equation are non- 
trivial and need to be fixed. In order to fix these, we de-
mand that c satisfy the Heisenberg equation: 

 , BRSTc i c                    (33) 

and using the property 2 2 0c c   one obtains 

   ,c c c   , BRSTc              (34) 

The last three equations then imply: 

    ,c c i  

Q
2 0Q 

, 1c c            (35) 

Here the minus sign in the above equation is nontrivial 
and implies the existence of states with negative norm in 
the space of state vectors of the theory. The BRST charge 
operator  is the generator of the BRST transforma-
tions. It is nilpotent and satisfies . It mixes op-
erators which satisfy Bose and fermi statistics. According 
to its conventional definition, its commutators with Bose 
operators and its anti-commutators with Fermi operators 
for the present theory satisfy: 

   

 

2

2

, , ,

,
2

, ,A Q A Q A Q

E Q


 



       

  

Q c   
       (36a) 

    2π, , ,Q c c Q e
            2

c e c



    
 

(36b) 

 

   2 22
A A A

 

,

1 π

c Q

E e  


           
 

(36c) 

  , 1c Q    2e e A 
 

Q

                 (36d) 

All other commutators and anti-commutators involv-
ing  vanish. In view of this, the BRST charge opera-
tor of the present theory could be written as: 

 

 2A A  

2 2d

π
2

Q x ic e e A

i c E eA








  
 

  

         


(37) 

This equation implies that the set of states satisfying 
the conditions: 

2 0
2

A
  

 
0,                (38a) 

 0, π
2

E A     
 

0eA
      

 

    (38b) 

2 0e e A 
                        (38c) 

belong to the dynamically stable subspace of states   
satisfying 0 Q , i.e., it belongs to the set of BRST- 

invariant states. In order to understand the condition 
needed for recovering the physical states of the theory we 
write the operators c  and c

c c

 in terms of fermionic 
annihilation and creation operators. For this purpose we 
consider the equation:      . The solution of this 
equation gives the Heisenberg operator  c   where 
 x   is the light-cone time variable, (and corre-

spondingly  c ) as: 

    † †e e ; e ei i i ic B D c B D        

0

       (39) 

  imply which at the time 

    † †0 ; 0c c B D c c B D               (40a) 

   
   † †

0 ;

0

c c i B D

c c i B D

 

 

    

     
                (40b) 

By imposing the conditions 

   2 2 , , 0c c c c c c                (41a) 

   , ,c c i c c                      (41b) 

one then obtains 

 2 2,B B D D 
2†B  † †,B D

2†D 0   (42a)  

       † † † †, , , , 0B B D D B D B D         (42b) 

       † † † †, , , , 0B B D D B D B D         (42c) 

       † † † †, , , , 1B B D D B D D B         (42d) 

       † † † †, , , , 1B B D D B D D B    

2 2B D

    (42e) 

with the solution 


2†B

2†D                  (43a)  0 

      † † † †, , , , 0B D B D B D B D   

 

    (43b) 

 † †1 1
, ; ,

2 2
B B D D                   (43c) 

We now let 0  denote the fermionic vacuum for 
which 

0 0 0B D                  (44)  

Now by defining  to have norm one, we have 0

† †1 1
0 0 , 0 0

2 2
BB DD


          (45)  

so that 
† †) 0, 0 0B D               (46)  

The theory is thus seen to possess negative norm states 
in the fermionic sector. The existence of these negative 
norm states as free states of the fermionic part of BRST  
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 

is however, irrelevant to the existence of physical states 
in the orthogonal subspace of the Hilbert space. In terms 

of fermionic annihilation and creation operators the 
quantum Hamiltonian density is: 

 

   

† †

2

2

1

2

BRST s u v ws u v w B B D D   




          

       



2

2 2 2 2 2 2

1 1

2 2
A A A A A A A A eA A

e

         
 



                

     (47) 

 
and the BRST charge operator is: 
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

          

                        (48) 

 
Now because 0Q  

Q
, the set of states annihiliated 

by  contains not only the set for which the constraints 
of the theory hold but also additional states for which 

2 2
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A c A c
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
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   
           (50a) 
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ˆ ˆ ˆ0, , 0c c b b                  (50d)    The Hamiltonian is also invariant under the anti-BRST 
transformation given by: with generator or anti-BRST charge 
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which in terms of annihilation and creation operators reads: 
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We also have The states for which the constraints of the theory hold, 

satisfy both of these conditions and are in fact, the only 
states satisfying both of these conditions, since although 
with (43), 

 , 0; , 0BRST BRSTQ Q       

d

Q Q     (53) 

2

with 

BRST BRSTx  

Q

                      (54)    † † † †2 2B B D D BB DD          (56) 

and we further impose the dual condition that both  
and Q  annihilate physical states, implying that: 

0 and; 0Q Q               (55) 

there are no states of this operator with † 0B   and 
† 0D   , and hence no free eigenstates of the fer-

mionic part of BRST  that are annihiliated by each of 
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†, ,B B D †D, and . Thus the only states satisfying 
0 Q  and 0 Q  are those that satisfy the con- 

straints of the theory. Now because 0Q   , the set of 
states annihilated by Q  contains not only the set of 
states for which the constraints of the theory hold but 
also additional states for which the constraints of the 
theory do not hold in particular. This situation is, how- 
ever, easily avoided by aditionally imposing on the the- 
ory, the dual condition: 0Q   and 0Q  . Thus 
by imposing both of these conditions on the theory si- 
multaneously, one finds that the states for which the con- 
straints of the theory hold satisfy both of these conditions 
and, in fact, these are the only states satisfying both of 
these conditions because in view of the conditions on the 
fermionic variables  and c c  one cannot have simul-
taneously  and ,c c ,c  c , applied to  to give 
zero. Thus the only states satisfying 0Q    and 

0 Q  are those that satisfy the constraints of the 
theory and they belong to the set of BRST-invariant as 
well as to the set of anti-BRST-invariant states. 

Alternatively, one can understand the above point in 
terms of fermionic annihiliation and creation operators as 
follows. The condition 0Q   implies that the set of 
states annihiliated by  contains not only the states for 
which the constraints of the theory hold but also addi- 
tional states for which the constraints do not hold. How- 
ever, 

Q

0 Q  guarantees that the set of states anni- 
hiliated by Q  contains only the states for which the 
constraints hold, simply because † 0B    and 

†D 0  . Thus in this alternative way also we see that 
the states satisfying 0Q Q   are only those 
states that satisfy the constraints of the theory and also 
that these states belong to the set of BRST-invariant and 
anti-BRST-invariant states. This completes the BRST 
formulation of the theory. 

5. Summary and Discussion 

In this work we have presented the complete details of 
the LF Hamiltonian, path integral and BRST formula-
tions of the CSH theory on the hyperplanes defined by 
the light-cone (LC) time:  

 0 1

2

x x
x constant

 
   
 
 

 constant 

  

[23,24], in the BSP of the Higgs potential. The prelimi-
nary results of our present investigations are given in Ref. 
[13]. 

Further, our present studies are in contrast with our 
earlier work of Ref. [12] on the quantization of the same 
theory, where we have studied the IFQ of this theory on 
the hyperplanes defined by the IF time:  

0x t  

in the BSP of the Higgs potential (instead of its LFQ). In 
the present work, on the other hand, we have studied its 
LFQ on the hyperplanes defined by the LC time:  

 0 1

constant
2

x x
x 

 
   
 
 

. 

 xIn the BSP of the Higgs potential, the phase 
 

 
of the complex matter field x

x

 carries the charge 
degree of freedom of the complex matter field and is, in 
fact, akin to the Goldstone boson [12-15]. The theory in 
the so-called symmetry phase of the Higgs potential has 
also been studied by us earlier [9-11]. Also, different 
aspects of this theory have been studied by several au-
thors in various contexts [1-8]. For a comparative de-
scription of different studies, we refer to the work of Refs. 
[1-8], as well as to our earlier work of Refs. [7-13]. 

What actually necessitates our present studies is an 
important fact that the LFQ of any theory has several 
advantages over its IFQ for several well known reasons 
[23,24]. Also because the LF coordinates are not related 
to the conventional IF coordinates by a finite Lorentz 
transformation, the descriptions of the same physical 
result may be different in the IF and LF dynamics. In fact, 
the study of a theory using the IFQ as well as the LFQ 
determines the canonical structure and the constrained 
dynamics of the theory rather completely [18,19]. 

The LFQ has several advantages over the conventional 
IFQ [23,24]. In particular, for a LF theory seven out of 
ten Poincare generators are kinematical while the IF the-
ory has only six kinematical generators. In our treatment, 
we have made the convention to regard the light-cone 
variable    as the LF time coordinate [23,24] and 
the light-cone variable x  has been treated as the lon-
gitudinal spatial coordinate [23,24]. The temporal evolu-
tion of the system in x  is generated by the total Ham-
iltonian of the system. If we consider the invariant dis-
tance between two spacetime points in dimen-
sion [23,24]: 

 2 1 -

       
 

2 2 22 0 0 1 1 2 2: ;x y x y x y x y

IFQ

         

      
 

22 2 2: 2 ;x y x y x y x y

LFQ

   

 (57a) 

        

0 0

  (57b) 

then we find that in the instant-form, the points on the 
x y   constant hyperplanes, have space-like separa-
tion except when they are coincident when it becomes 
light-like one. On the light-front, however, with  

y x    constant, the distance becomes independent 
of  x y  and the separation again becomes space- 
like. The LF field theory therefore does not necessarily 
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xneed to be local in ,  even if the corresponding in- 
stant-form theory is formulated as a local one. The non- 
vanishing equal-time commutators of the IF theory are 
nonlocal and nonvanishing for space-like distances and 
violate the microcausality principle [23,24]. The nonvan- 
ishing equal light-cone-time commutators for the present 
theory, on the otherhand would be nonlocal in the 
light-cone space variable x

0A  0A 

 and nonvanishing only on 
the light-cone. There would therefore be no conflict with 
the microcausality principle for the LF theory unlike the 
case of the equal-time commutators in the IF theory. For 
further details on the Dirac’s different relativistic forms 
of dynamics, we refer to the work of Refs. [23,24]. 

The constrained dynamics of the present theory in IFQ 
as studied by us in Ref. [12], reveals that the theory pos-
sesses a set of four constraints where three constraints are 
primary and one secondary Gauss law constraint. The 
matrix of the Poission brackets of these two constraints is 
singular and therefore they form a set of first-class con-
straints, implying in turn, that the corresponding theory is 
gauge-invariant. The theory is indeed seen to possess a 
local vector gauge symmetry. For further details of this 
work, we refer to the work of Ref. [12]. 

The LFQ of this theory, on the other hand, reveals that 
the LF theory possesses a set of five constraints where 
four constraints are primary and one is a secondary 
Gauss law constraint. The matrix of the Poission brackets 
of these five constraints is singular implying that they 
form a set of first-class constraints. This implies in turn, 
that the corresponding theory is gauge-invariant. The 
theory is indeed seen to possess a local vector gauge 
symmetry, and correspondingly there exists a conserved 
local vector gauge current. 

Now because the set of constraints of the theory is 
first-class, one could quantize the theory under some 
suitable gauge-fixing as we have done in our present 
work for the Hamiltonian and path integral quantization 
of our theory. For this we have choosen the gauge-fixing: 

. The gauge  here represents the light- 
cone coulomb gauge. This gauge choice is not only ac-
ceptable and consistent with our quantization procedures 
but is also physically more intersting gauge choice rep-
resenting the light-cone coloumb gauge. 

However, in the above Hamiltonian and path integral 
quantization of the theory under some gauge-fixing con-
ditions the gauge-invariance of the theory gets broken 
because the procedure of gauge-fixing converts the set of 
first-class constraints of the theory into a set of sec-
ond-class one, by changing the matrix of the Poission 
brackets of the constraints of the theory from a singular 
one into a non-singular one. In view of this, in order to 
achieve the quantization of our gauge-invariant theory, 
such that the gauge-invariance of the theory is main-
tained even under gauge-fixing, one of the possible ways  

is to go to a more generalized procedure called the BRST 
quantization [20-22], where the extended gauge symme- 
try called as the BRST symmetry is maintained even un- 
der gauge-fixing. It is therefore desirable to achieve this 
so-called BRST quantization also if possible. This there- 
fore makes a kind of complete quantization of a theory. 
The light-cone BRST quantization of the present theory 
has been studied by us in the present work, under some 
specfic gauge choice (where a particular gauge has been 
choosen by us and which is not unique by any means). In 
this procedure, when we embed the original gauge-in- 
variant theory into a BRST system, the quantum Hamil- 
tonian density BRST  (which includes the gauge-fixing 
contribution) commutes with the BRST charge as well as 
with the anti-BRST charge. The new (extended) gauge 
symmetry which replaces the gauge invariance is main-
tained (even under the BRST gauge-fixing) and hence 
projecting any state onto the sector of BRST and 
anti-BRST invariant states yields a theory which is iso-
morphic to the original gauge-invariant theory. 
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