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ABSTRACT 

The analysis of survival data is a major focus of statistics. Interval censored data reflect uncertainty as to the exact times 
the units failed within an interval. This type of data frequently comes from tests or situations where the objects of inter- 
est are not constantly monitored. Thus events are known only to have occurred between the two observation periods. 
Interval censoring has become increasingly common in the areas that produce failure time data. This paper explores the 
statistical analysis of interval-censored failure time data with applications. Three different data sets, namely Breast 
Cancer, Hemophilia, and AIDS data were used to illustrate the methods during this study. Both parametric and non- 
parametric methods of analysis are carried out in this study. Theory and methodology of fitted models for the inter- 
val-censored data are described. Fitting of parametric and non-parametric models to three real data sets are considered. 
Results derived from different methods are presented and also compared. 
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1. Introduction 

A great many studies in statistics deal with deaths or 
failures of components: they involve the numbers of 
deaths, the timing of death, or the risks of death to which 
different classes of individuals are exposed. The analysis 
of survival data is a major focus of statistics. 

In standard time-to-event analysis, the time to a par- 
ticular event of interest is observed exactly or right-cen- 
sored. Numerous methods are available for estimating 
the survival curve and also for estimation of the effects 
of covariates for these cases. In certain situations, the 
times of the event of interest may not be exactly known. 
This means that it may have occurred within particular 
time duration. In clinical trials, patients are often seen at 
pre-scheduled visits but the event of interest may have 
occurred in between visits. These types of data are 
known as interval-censored data. 

Right-censored data can be considered as a special 
case of interval-censored data. Some of the inference ap- 
proaches for right-censored data can be directly, or with  

minor modifications, used to analyze interval-censored 
data. However, most of the inference approaches for 
right-censored data are not appropriate for interval-cen- 
sored data due to fundamental differences between these 
two types of censoring. The censoring approach behind 
interval censoring is more complicated than that of right 
censoring. For right-censored failure time data, sub- 
stantial advances in the theory and development of mo- 
dern statistical methods are based on the counting pro- 
cesses theory, which is not applicable to interval-cen- 
sored data. Due to the complexity and special structure of 
interval censoring, the same theory is not applicable to 
interval-censored data. 

Interval censoring has become increasingly common 
in the areas that produce failure time data. Over the past 
two decades, a lot of literature on the statistical analysis 
of interval-censored failure time data has appeared. 

Lindsay and Ryan [1] provided a tutorial on Biosta- 
tistical methods for interval-censored data. This paper il- 
lustrated and compared available methods which cor- 
rectly treated the data as being interval-censored. This 
paper did not provide a full review of all existing meth- 
ods. However, all approaches were illustrated on two 
data sets and compared with methods which ignore the 
interval-censored nature of the data. In this paper, we 
have used some of the methodologies, notations and equ- 
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ations used by Lindsay and Ryan [1]. 
Lindsay [2] showed that parametric models for interval 

censored data can now easily be fitted with minimal pro-  
gramming in certain standard statistical software pack- 
ages. Regression equations were introduced and finite 
mixture models were also fitted. Models based on nine 
different distributions were compared for three examples 
of heavily censored data as well as a set of simulated data. 
It has been found that interval censoring can be ignored 
for parametric models. Parametric models are remarkably 
robust with changing distributional assumptions and more 
informative than the corresponding non-parametric mod- 
els for heavily interval censored data. 

Finkelstein and Wolfe [3] provided a method for re- 
gression analysis to accommodate interval-censored data. 
Finkelstein [4] develops a method for fitting proportional 
hazards regression model when the data contain interval- 
censored observations. The method described in this pa- 
per is used to analyze data from an animal study and also 
a clinical trial. 

Peto [5] provided a method of calculating an estimate 
of the cumulative distribution function from interval- 
censored data, which was similar to the life-table tech- 
nique. 

Rosenberg [6] presented a flexible parametric proce- 
dure to model the hazard function as a linear combination 
of cubic B-Splines and derived maximum likelihood es- 
timates from censored survival data. This provided smo- 
oth estimates of the hazard and survivorship functions 
that are intermediate between parametric and non-para- 
metric models. HIV infections data that were interval- 
censored were used to illustrate the methods. 

Odell et al. [7] studied the use of a Weibull-based ac- 
celerated failure time regression model when interval- 
censored data were observed. They have used two alter- 
native methods to analyze the data. Turnbull [8] has used 
non-parametric estimation of a distribution function for 
censored data. A simple algorithm using self-consistency 
as a basis was used to get maximum likelihood estimates. 

Farrington [9] provided a method for weak parametric 
modeling of interval-censored data using generalized 
linear models. Three types of models, namely, additive, 
multiplicative and proportional hazard model with dis- 
crete baseline survival function were considered. Goetghe- 
beur and Ryan [10] introduced semi-parametric regres- 
sion analysis of interval censored data. A semi-para- 
metric approach to the proportional hazards regression 
analysis of interval-censored data was proposed in this 
paper. The method was illustrated on data from the breast 
cancer cosmetics trial, previously analyzed by Finkel- 
stein [4]. 

Lawless [11] provides a unified treatment of models 
and statistical methods used in the analysis of lifetime or 
response time data (Chapter 3, Section 3.5.3, p. 124). 

Numerical illustrations and examples involving real data 
demonstrate the application of each method to problems 
in areas such as reliability, product performance evalua- 
tion, clinical trials, and experimentation in the biomedi- 
cal sciences. Collet [12] describes and illustrates the mo- 
deling approach to the analysis of survival data. Some 
methods for analyzing interval-censored data are de- 
scribed and illustrated. This begins with an introduction 
to survival analysis and a description of four studies in 
which survival data was obtained. These and other data 
sets then illustrate the techniques presented, including the 
Cox and Weibull proportional hazards models, acceler- 
ated failure time models, models with time-dependent 
variables, interval-censored survival data and model 
checking.  

Sun [13] has recently presented statistical models and 
methods specifically developed for the analysis of inter- 
val-censored failure time data. This book collects and 
unifies statistical models and methods that have been 
proposed for analyzing interval-censored failure time 
data. It provides the first comprehensive coverage of the 
topic of interval-censored data. This focuses on non-pa- 
rametric and semi-parametric inferences, but it also de- 
scribes parametric and imputation approaches. This paper 
reviews the substantial body of recent work in this field 
and also provides some applications. 

2. Statistical Methodology 

2.1. Parametric Methods 

The straightforward procedure to analyze censored data 
is to assume a parametric model for the failure times. It is 
possible to fit Accelerated failure time (AFT) models for 
a variety of distributions to interval censored data. In the 
statistical area of survival analysis, an accelerated failure 
time model is a parametric model that provides an alter- 
native to the commonly-used proportional hazards mod- 
els. A proportional hazards model assumes that the effect 
of a covariate is to multiply the hazard by some constant; 
an AFT model assumes that the effect of a covariate is to 
multiply the predicted event time by some constant. AFT 
models can therefore be framed as linear models for the 
logarithm of the survival time. 

The results of AFT models are easily interpreted. For 
example, the results of a clinical trial with mortality as 
the endpoint could be interpreted as a certain percentage 
increase in future life expectancy on the new treatment 
compared to the control. So a patient could be informed 
that he would be expected to live (say) 15% longer if he 
took the new treatment. Hazard ratios are harder to explain 
in layman’s terms. More probability distributions can be 
used in AFT models than parametric proportional ha- 
zards models. A distribution must have a parameteriza- 
tion that includes a scale parameter to be used in an AFT 
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model. The logarithm of the scale parameter is then 
modeled as a linear function of the covariates. 

The Weibull distribution (including the exponential 
distribution as a special case) can be parameterized as 
either a proportional hazards model or an AFT model, 
and is the only family of distributions to have this pro- 
perty. The results of fitting a Weibull model can there- 
fore be interpreted in either framework. Unlike the Wei- 
bull distribution, log-logistic distribution can exhibit a 
non-monotonic hazard function which increases at early 
times and will decrease at later times.  

Other distributions suitable for AFT models include 
the log-normal and log-gamma distributions, although 
they are less popular than the log-logistic, partly as their 
cumulative distribution functions do not have a closed 
form. 

The SAS procedure LIFEREG provides a way of fit- 
ting accelerated failure time models for a variety of dis- 
tributions to interval censored data. The AFT model is 
defined by the transformation 

0e z
zT T  ,           (2.1) 

where zT
T

 is the failure time random variable for an in- 
dividual with covariate z and 0  is the failure time that 
the individual would have if they had covariate value 0. 
The effect of changing covariates is to shrink or stretch 
the time to event. If   is negative, then the covariate 
has the effect of “speeding up time” so that individuals 
with larger values of z have higher failure rates and 
hence shorter survival times. The survival function can 
be written as 

       0 e0; e z zS t 

 S t

0logT T z

zS t z P T t z P T t    , (2.2) 

where 0  is the survival function for an individual 
with covariate value 0. Taking natural logarithm, the 
AFT model can be expressed as 

log z  

logT

.        (2.3) 

If we assume that 0 can be expressed as W  , 
where W is a random variable, then the model can be 
written in a linear model-like form: 

log zT z W    

T z W

.       (2.4) 

The PROC LIFEREG module of SAS fits this model, 
except that the sign is changed on the regression coeffi- 
cients. That is, SAS fits 

log z      .       (2.5) 

It is possible to include a variety of distributions to be 
placed on the error term W with SAS, including the log 
of the exponential, log-normal and log-gamma distribu- 
tions. The intercept parameter   and the scale parame- 
ter   are usually not of direct interest, although for 
some distributions, there is a relationship between the 

AFT model and a proportional hazards model through 
the scale parameter. For example, if W is an extreme 
value distribution (log of a unit exponential), then T has a 
Weibull distribution. Note that because of the change in 
sign implicit in the AFT formulation, the direction of 
covariate effects will be opposite to those fit with a Cox 
proportional hazards model. 

2.2. Non-Parametric Estimation of Survival 
Curve 

2.2.1. Kaplan-Meier Estimator 
The Kaplan-Meier estimator estimates the survival func- 
tion for life-time data. In medical research, it might be 
used to measure the fraction of patients living for a certain 
amount of time after treatment. An economist might mea- 
sure the length of time people remain unemployed after a 
job loss. An engineer might measure the time until failure 
of machine parts. 

A plot of the Kaplan-Meier estimate of the survival 
function is a series of horizontal steps of declining magni- 
tude which, when a large enough sample is taken, ap- 
proaches the true survival function for that population. 
The value of the survival function between successive 
distinct sampled observations is assumed to be constant. 

An important advantage of the Kaplan-Meier curve is 
that the method can take censored data into account, for 
instance, if a patient withdraws from a study. When no 
truncation or censoring occurs, the Kaplan-Meier curve is 
equivalent to the empirical distribution. 

Let S t

1 2 3

 be the probability that an item from a given 
population will have a lifetime exceeding t. For a sample 
from this population of size N let the observed times until 
death of N sample members be 

Nt t t t .          (2.6)    

it

it id

it

Corresponding to each  is in , the number “at risk” 
just prior to time , and , the number of deaths at time 

. 
Note that the intervals between each time typically will 

not be uniform. For example, a small data set might begin 
with 10 cases, have a death at Day 3, a loss (censored case) 
at Day 9, and another death at Day 11. Then we have 
 1 23, 11t t  ,  10, 8n n1 2   1, 1d d 

 S t

 

, and .  1 2

The Kaplan-Meier estimator is the nonparametric 
maximum likelihood estimate of . It is a product of 
the form 

ˆ
i

i i

t t i

n d
S t

n




n
t n

.           (2.7) 

When there is no censoring, i  is just the number of 
survivors just prior to time i . With censoring, i  is the 
number of survivors less the number of losses (censored 
cases). It is only those surviving cases that are still being 
observed (have not yet been censored) that are “at risk” of 
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an (observed) death. 
Let T be the random variable that measures the time of 

failure and let  F t  be its cumulative distribution func- 
tion. Note that 

       1t F t  1S t P T t P T       (2.8) 

Consequently, the right-continuous definition of  Ŝ t  
may be preferred in order to make the estimate compatible 
with a right-continuous estimate of  F t . 

With right-censored data, Kaplan and Meier [14] 
showed that the closed form product limit estimator is the 
generalized maximum likelihood estimate. This curve 
jumps at each observed event time. 

2.2.2. Turnbull Estimator 
In most applications, the data may be interval-censored. 
By interval-censored data, a random variable of interest 
is known only to lie in an interval, instead of being ob- 
served exactly. In such cases, the only information avai- 
lable for each individual is that their event time falls in 
an interval, but the exact time is unknown. A nonpara- 
metric estimate of the survival function can also be found 
in such interval censored situations. The survival func- 
tion is perhaps the most important function in medical 
and health studies. In this section, the iterative procedure 
proposed by Turnbull [8] to estimate such function is 
described and illustrated. 

Situations where the observed response for each indi- 
vidual under study is either an exact survival time or a 
censoring time are common in practice. Other situations, 
however, can occur, and amongst them we find the lon- 
gitudinal studies, where the individuals are followed for a 
pre-fixed time period or visited periodically for a fixed 
number of times. In this context, the time i  
until the occurrence of the event of interest for each indi- 
vidual is only known (whenever it occurs) to be within 
the interval between visits, i.e., between the visit in time 

i  and the visit in time i . Note that in such studies, 
the survival times i  are no longer known exactly. It is 
only known that the event of interest has occurred within 
the interval 

 1, ,T i n 

L U
T

 ,i iL U

U

 with i i i . Furthermore, 
note that if the event occurs exactly at the moment of a 
visit, which is very improbable but can happen, then we 
have an exact survival time. In this case it is assumed 
that . 

L T U

i i i

On the other hand, it is known for the individuals with 
right censoring that the event of interest did not occur 
until the last visit but it can happen at any time from that 
moment on. We therefore assumed in this case that i  
can occur within the interval  

 
with i  being 

equal to the period of time from the beginning of the 
study until the last visit and . 

T L

T
 L

U

T

 

 ,iL

 



i

Similarly, it is known for the individuals that are left 
censored, that the event of interest has occurred before 

the first visit and, hence, we assume that i  falls in the 
interval 0,U 0iLi  with   representing the begin- 
ning of the study and i  is the period of time from the 
beginning of the study until the first visit. 

U

i iL U

Note from what we have presented so far that exact 
survival times as well as right and left censored data, are 
all special cases of interval survival data with   
for exact times, iU  0L for right censoring and i 

  
for left censoring. We can therefore state that interval 
survival data generalize any situation with combinations 
of survival times (exact or interval) and right and left 
censoring that can occur in survival studies. 

As usual in the analysis of non-interval survival data, 
it is also of interest to estimate the survival function 
 S t  and to assess the importance of potential prognos- 

tic factors. Few statistical software allow for such data, 
and for this reason a common practice amongst data 
analysts is to assume that the event occurring within the 
interval  ,L Ui i  has occurred either at the upper/lower 
limit of the interval or, at the middle point of each inter- 
val. Rucker and Messerer [15], Odell et al. [7] and Dorey 
et al. [16] stated that assuming interval survival times as 
exact times can lead to biased estimates as well as results 
and conclusions that were not fully reliable. In this work 
we describe a nonparametric procedure for estimation of 
the survival function for interval survival data. 

Peto [5] was the first to propose a non-parametric me- 
thod for estimating the survival distribution based on 
interval-censored data. Turnbull [8] derived the same es- 
timator, but used a different approach in estimation. Sup- 
pose  1, ,T i n i , the survival times for n patients, are 
independent random variables with right continuous sur- 
vival function    PrS t T t  . If iT  are not ob- 
served directly, but instead are known to lie in the inter- 
val  ,i iL R

    
n

i i
i

L S L S R 

, then the likelihood for the n observations is, 

.     (2.9) 

 S t , we mean By 

 
0

lim S t


 

 S t

             (2.10) 

which may be different from , since S t



 is left 
continuous. It is important to note that different authors 
vary in their conventions regarding definition of the cen- 
soring interval. The Convention of Peto [5] and Turnbull 
[8] who assumed a closed interval, ,L R

L R
R

i i , was followed. 
This definition facilitates the accommodation of observa- 
tions that are known exactly, that is, i i , but neces- 
sitates the use of the i

  notation in above Equation 
(2.9) to allow a non-zero contribution to the likelihood 
for these observations. Finkelstein [4] assumed semi- 
closed censoring intervals, which need to add the con- 
vention that the likelihood contribution for any observa- 
tion with an exact failure time, , is . Good ar- iT  iS t
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guments against almost any convention can be made for 
defining the censoring intervals. In practice, the choice 
will have little impact and all reasonable conventions can 
be adopted. 

Turnbull [8] derived the same estimator using an itera- 
tive self-consistency algorithm, described below. Gen- 
tleman and Geyer [17] showed that this self-consistent 
estimator is not always the maximum likelihood estima- 
tor (MLE), and that the MLE is not necessarily unique 
and discuss conditions under which this can be deter- 
mined. 

Since the observed event times are known to occur 
only within potentially overlapping intervals, the survival 
curve can only jump within so-called equivalence sets 

1 , , where 1j j j . The 
curve between 

,j jq q    1,j  q  ,m q p

jp  and 1jq   is flat. The estimate of 
 is unique only up to these equivalence classes; any 

function that jumps the appropriate amount within the 
equivalence class will yield the same likelihood. 

 S t

An analog of the Product-Limit estimator of the sur-
vival function for interval-censored data is presented in 
this section. This estimator, which has no closed form, is 
based on an iterative procedure and has been suggested 
by Turnbull [8]. 

To construct the estimator, let 0 1 2 m0      
L

1,i 



n thi

 
be a grid of time which includes all the points i  and 

i  for . For the  observation, define a 
weight ij

U ,
  to be 1 if the interval  1 ,j j 


 is con- 

tained in the interval ,i iL U  and 0, otherwise. The 
weight ij  indicates whether the event which occurs in 
the interval  ,iL Ui  could have occurred at j . An  

initial guess at  jS   is made and Turnbull’s algorithm 

is as follows: 
Step 1: Compute the probability of an event occurring 

at time j  by 

  1j jp S S    , 1, , ;j j m    (2.11) 

Step 2: Estimate the number of events which occurred 
at j  by 

1
1

n
ij j

j m
i ik kk

p
d

p






 


, 1, , ;j m    (2.12) 

Step 3: Compute the estimated number at risk at time  

j  by ;
m

j kk j
n d


   

Step 4: Compute the updated Product-Limit estimator 
using the pseudo data found in Steps 2 and 3. If the up- 
dated estimate of S is close to the old version of S for all 

j ’s, stop the iterative process, otherwise repeat Steps 1- 
3, using the updated estimate of S. 

2.2.3. Logspline Estimation of the Survival Curve 
Kooperberg and Stone [18] have introduced the Log- 

spline density estimation. They have developed a system 
for data that may be right censored, left censored, or in- 
terval censored. A fully automatic method was used to 
determine the estimate, which involved the maximum 
likelihood method and may involve stepwise knot dele- 
tion and either the Akaike information criterion (AIC) or 
Bayesian information criterion (BIC), was used to deter- 
mine the estimate. 

Kooperberg and Stone [18] provided software (log- 
spline. fit, available through Statlib for S-plus2) which 
can be used to obtain smoothed estimates of the survival 
function based on interval censored data using splines. 
Smooth functions were fitted to the log-density function 
of the failure times within subsets of the time axis de- 
fined by the “knots”, and constrained to be continuous at 
those points. This provides a loosely parametric frame- 
work for finding estimates of the survival and hazard 
functions which can be useful for exploratory data analy- 
sis. Their approach is related to that of Rosenberg [6] 
who uses splines to model the hazard function. 

3. Applications 

There are essentially three approaches to fit survival 
models. The first straightforward method is the paramet- 
ric approach, where a specific functional form for the 
baseline hazard  t0  is assumed. Examples are: mod- 
els based on the exponential, Weibull, gamma and gen- 
eralized F distributions. A second approach might be 
called a flexible or semi-parametric strategy, where mild 
assumptions are made about the baseline hazard  t0 . 
Specifically, time is subdivided into reasonably small 
intervals and it is assumed that the baseline hazard is 
constant in each interval leading to a piecewise exponen- 
tial model. The third approach is a non-parametric strat- 
egy that focuses on estimation of the parameters leaving 
the baseline hazard  t0  completely unspecified. This 
approach relies on a partial likelihood function proposed 
by Cox [19]. 

Five ways of estimating the time to event ignoring the 
effects of covariates are considered initially. Standard 
Kaplan-Meier estimator is used first. It is assumed that 
exact times of event are known and this is done either by 
assuming the event occurred at the left interval, or at the 
right interval. These two extreme cases should roughly 
bracket the estimates derived using the interval-censoring 
methods. A second approach is using a Weibull model, 
where the survivals function is modeled using the esti- 
mates from the SAS Proc LIFEREG. A Third procedure is 
to model the interval-censored nature of the data using the 
techniques proposed by Turnbull. The fourth is to use 
splines models proposed by Kooperberg and Stone [18]. 
Finally, the survival function is estimated using the piece- 
wise exponential model. 
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

3.1. Breast Cancer Data 38 are right-censored. All estimated curves for the Breast 
Cancer data are presented in Figure 1. KM for R and 
KM for L represent Kaplan Meier estimates for right 
censored and left censored data respectively in Figures 
1-3. 

This data set is from a retrospective study of patients 
with breast cancer designed to compare radiation therapy 
alone versus in combination with chemotherapy with res- 
pect to the time to cosmetic deterioration. This data set 
has been analyzed by several authors to illustrate various 
methods for interval censored data. Patients were seen 
initially every 4 to 6 months, with decreasing frequency 
over time. If deterioration was seen, it was known only to 
have occurred between two visits. Deterioration was not 
observed in all patients during the course of the trial, so 
some data were right-censored. 

3.2. AIDS Data 

This data set focused on the development of drug re- 
sistance (measured using a plaque reduction assay) to 
zidovudine in patients enrolled in four clinical trials for 
the treatment of AIDS. Samples were collected on the 
patients at a subset of the scheduled visit times dictated 
by the four protocols. Since the resistance assays were 
very expensive, there were few assessments on each pa- 
tient, resulting in very wide intervals, 

The breast cancer data set is described in detail in 
Finkelstein and Wolfe [3] and it consists of a total of 94 
observations from a retrospective study looking at the 
time to cosmetic deterioration. Information is available 
on one covariate, type of therapy, either radiation alone 
(coded 0), or in combination with chemotherapy (coded 
1). Of the 94 observations, 56 are interval-censored and  

,L R , if resis- 
tance was seen to have occurred, and a high proportion of 
right-censored observations. Because of the sparseness of 
these data, this is a challenging data set to analyze. The 
variables of interest were the effects of stage of disease, 

 

 

Figure 1. All estimated curves for the breast cancer data. 
 

 

Figure 2. All estimated curves for AIDS data. 
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Figure 3. All estimated curves for hemophilia data. 
 
dose of zidovudine and CD4 lymphocyte counts at time 
of randomization on the time to development of resis- 
tance. All estimated curves for the AIDS data are pre- 
sented in Figure 2. 

Lindsay and Ryan [1] have presented both Breast Can- 
cer and AIDS data sets. More information about these 
two data sets could be found there. Some of the analytic- 
cal methods, notations and results presented in this paper 
are similar to their paper. 

3.3. Hemophilia Data 

In 1978, 262 persons with Type A or B hemophilia have 
been treated at Hospital Kremlin Bicetre and Hospital 
Coeur des Yvelines in France. Twenty-five of the hemo- 
philiacs were found to be infected with HIV on their first 
test for infection. By August 1988, 197 had become in- 
fected and 43 of these had developed clinical symptoms 
(AIDS, lymphadenopathy, or leukopenia) relating to their 
HIV infection. All of the infected persons were believed 
to have become infected by contaminated blood factor 
received for their hemophilia. The observations for the 
262 patients were based on a discretization of the time 
axis into 6-month intervals. Here time is measured in 
6-month intervals, with L = 1 denoting July 1, 1978, and 
Z denoting chronologic time of first clinical symptom. 
The 25 hemophiliacs infected at entry are assigned L = 1. 
Victor and Stephen [20] have presented this data in their 
paper and more information could be found there. They 
have initially analyzed Hemophilia data considering this 
as a Doubly-Censored Survival Data. However, we have 
analyzed this data set taking left censoring, right censor- 
ing and interval censoring into consideration. All esti- 
mated curves for the Hemophilia data are presented in 
Figure 3. 

For the breast cancer example, the Kaplan-Meier esti- 
mates, bracket the Turnbull estimate. The Turnbull curve 
lies very close to both Weibull and logspline curves. At 

the same time, estimates from the Weibull, and logspline 
estimates are quite close to each other. The piecewise 
curve does not properly fall within the Kaplan-Meier 
estimates. 

The estimated survival curve for the AIDS data took 
very few steps in the non-parametric models, which re- 
flected the high degree of censoring in this small data set. 
The Kaplan-Meier estimates no longer bracketed the 
Turnbull estimate, mainly because the Turnbull estimate 
had very few jumps due to the particular configuration of 
this data set. The logspline estimate also tracked the pa- 
rametric models closely. The non-parametric methods 
were not very helpful in understanding the AIDS data. 

For the Hemophilia data, the results were quite similar 
to breast cancer data except the logspline model. Results 
derived for the piecewise exponential are not accurate for 
all three data sets. 

3.4. Covariate Effects on Time to Event 

To compare the two treatments, for Breast cancer data a 
retrospective study of 46 radiation only and 48 radiation 
plus chemotherapy patients was conducted. Using Turn- 
bull’s algorithm the estimated survival functions were 
obtained for radiotherapy only and radiation plus che- 
motherapy groups respectively, which are shown in Fig- 
ure 4. Note that the estimated survival curves did not 
show striking differences from 0 to 18 months. From 18 
onwards, however, a fast decay of the curve is seen for 
patients given radiotherapy plus chemotherapy. Note, for 
instance, that only 11.06% of the patients in the radio- 
therapy plus chemotherapy group were estimated to be 
free of any evidence of breast retraction at time t = 40 
months against 47.37% in the radiotherapy group. 

Using the midpoint of each interval, is a common 
practice among analysts due to the lack of well-known 
statistical methodology and available software. Then 
applying the Kaplan-Meier method, we obtained the es- 
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timated survival curves presented in Figure 5. The 
curves estimated previously are also shown in the graph. 
Comparing the curves we can see that the estimates ob- 
tained using both, the midpoints and the intervals, are 
very similar to each other at several times but they tend 
to be under or over estimated at others. Although not 
shown here, under or over estimation became more evi- 
dent if it is assumed that the event occurred to the end or 
at the beginning of each interval instead of at the mid- 
point. The range of each interval also contributes for the 
magnitude of these differences. They are more accentu- 
ated as the range of each interval increases. 

Positive parameter estimates in Cox regression indi- 
cate higher failure rates for individuals with larger values 
of the covariate. The exponential model parameter 
should be of comparable magnitude to the Cox model, 
but with the sign reversed. The Weibull is the only fam- 
ily of models that is both proportional hazards and AFT. 
It can easily be shown that the estimated regression coef- 
ficient should be comparable to the coefficients from the 
Cox. 

Results using the Cox regression models assuming 
exact event times (taken to be the left, midpoint and right 
extremes of the interval), and based on the exponential, 
Weibull and log-normal models for the breast cancer data 
is shown in Table 1. Parameter estimates of each of the 
above models considered, standard errors and P-values 
obtained for these different models are presented in this 
Table. All four analyses give similar results about the 
treatment comparison and suggest that the adjuvant che- 
motherapy significantly increases the risk of breast re- 
traction. Note that the Cox analysis has the minimal im- 
pact from the differing assumptions about timing of events. 
Cox models are fitted with left end point, middle point 
and right end point. Results obtained for fitting these 
models for the AIDS data with all four covariates, stage, 
dose, CD41 and CD42 are shown in Table 2. The results 
differed from those obtained from the Breast Cancer data, 
although none of the estimated covariate effects are sig- 
nificant except in two instances. Possible explanations 
are that the sample size is quite small, and the observed 
information is very limited due to interval-censoring. 
Another reason could be that the covariates are correlated. 
The last two covariates, the indicators of CD4 count, 
CD41 and CD42 are correlated and both are also corre- 
lated with the other covariates the stage of the disease. 
Therefore, the last two covariates CD41 and CD42 are 
removed, and the new analysis results are presented in 
Table 3 along with the other results for exponential, 
Weibull, Log-Nor- mal and piecewise exponential. 

Now we take a look at the individual effects of stage 
and dose on the time to development of resistance. For 
stage, all methods indicate an increased risk of develop- 
ing resistance for the patients in a later stage of disease. 

The non-parametric methods do not perform as well as 
the parametric methods. Unlike the breast cancer data, 
changing assumptions about when events are assumed to 
occur has a big impact on the Cox analysis. The strength 
of the significance is also affected when the midpoint or 
right extreme of the interval is used as the exact event 
time. With such large effects, using a method which ac- 
counts for the interval-censored nature of the data is 
preferable, but with so few steps in the survival curve 
using the non-parametric methods, a parametric analysis 
is the best choice. Similar trends are seen in fitting the 
effect of dose. The Cox model results are highly de- 
pendent on the assumptions about when the event oc- 
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Figure 4. Estimated survival based on interval-censored da- 
ta: Breast cancer data. 
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Figure 5. Estimated survival functions using midpoints and 
intervals: Breast cancer data. 
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Table 1. Breast cancer data: Effect of therapy on time to event. 

Type of Model Parameter Estimate of Model Standard Error of Parameter Estimate P-Value 

Cox (left) 0.912 0.287 0.001 

Cox (midpoint) 0.900 0.285 0.001 

Cox (right) 0.769 0.285 0.007 

Exponential –0.742 0.277 0.006 

Weibull (theraphy) –0.568 0.176 <0.001 

Weibull (scale) 0.619 0.074  

Lognormal (theraphy) –0.421 0.203 0.037 

Lognormal (scale) 0.882 0.097  

 
Table 2. Aids data: Effect of stage of disease, dose of zidovudine, CD41 and CD42. 

Type of Model Parameter Estimate of Model Standard Error of Parameter Estimate P-Value 

Stage of Disease 

Cox (left) 0.8754 0.6558 0.1819 

Cox (midpoint) 1.0083 0.6236 0.1059 

Cox (right) 0.0198 0.7281 0.9784 

Dose of Zidovudine 

Cox (left) 0.6394 0.7987 0.4234 

Cox (midpoint) 0.1230 0.7365 0.8673 

Cox (right) 0.0215 0.6440 0.9733 

100 < CD4 < 399 (CD41) 

Cox (left) 0.1447 0.8027 0.8570 

Cox (midpoint) –1.3723 0.9036 0.1288 

Cox (right) –2.1488 1.0259 0.0362 

CD4 > 400 (CD42) 

Cox (left) 0.1459 0.8675 0.8664 

Cox (midpoint) –1.6083 0.9181 0.0798 

Cox (right) –2.3043 0.9016 0.0106 

 
Table 3. Aids data: Effect of stage of disease and dose of zidovudine. 

Model Estimate Standard Error P-Value 

Stage of Disease 

Cox (left) 0.7923 0.4928 0.1079 

Cox (midpoint) 1.3980 0.4991 0.0051 

Cox (right) 0.7708 0.5148 0.1343 

Exponential –1.3076 0.5139 0.0109 

Weibull –0.7185 0.2711 0.0080 

(Weibull scale) 0.3934 0.1389  

Log-Normal –0.8467 0.2413 0.0004 

(Log-Normal scale) 0.3880 0.1302  

Piecewise    

Dose of Zidovudine 

Cox (left) 0.5672 0.5368 0.2907 

Cox (midpoint) 0.5333 0.5839 0.3611 

Cox (right) 0.3132 0.5544 0.5722 

Exponential –0.5843 0.5431 0.2820 

Weibull –0.3527 0.2845 0.2151 

Weibull (scale) 0.4898 0.1889  

Log-Normal –0.3920 0.3748 0.2956 

Log-Normal (scale) 0.7185 0.2563  
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curred. 

Interval-censored data often occur in medical applica- 
tions. As seen in the AIDS data set, when data are heav- 
ily censored, making assumptions about when events 
occurred and using techniques such as Cox regression 
can lead to inaccurate conclusions. It can also result in 
unstable estimation in the non-parametric methods. The 
parametric methods available in SAS, S-Plus and R are 
the most readily available alternatives. As seen with the 
examples presented in this paper, these parametric ap- 
proaches can be highly satisfactory in their performance. 
This is especially so if one chooses the Weibull or log- 
normal family that allows a reasonably wide range of 
distributional shapes. 

Results using the Cox regression models, the exponen- 
tial, Weibull and log-normal models for the Hemophilia 
data are shown in Table 4. Parameter estimates of each 
of the above models considered, standard errors and P- 
values obtained for these different models are presented 
in this Table. All of these four analyses show significant 
evidence of treatment effects. 

4. Conclusions and Further Work 

Interval censoring has become increasingly common in 
the areas that produce failure time data. This type of data 
frequently comes from tests or situations where the ob- 
jects of interests are not constantly monitored. Thus 
events are known only to have occurred within particular 
time durations. The purpose of this study was to illustrate 
available parametric and non-parametric methods that 
consider the data as being interval censored. 

The time to event ignoring the effects of covariates has 
been considered using five different techniques. The 
Kaplan-Meier estimator is used, assuming the event oc- 
curred at the left interval, or at the right interval. A 
Weibull model, where the survival function is modeled 
using the estimates from SAS PROC LIFEREG is carried 
out. A Third approach is accomplished by modeling the 
interval-censored nature of the data using the methods 
proposed by Turnbull [8]. Splines models presented by 

Kooperberg and Stone [18] are implemented. Finally, the 
survival function is estimated using the piecewise expo- 
nential model. Parametric models for interval-censored 
data can follow a number of distributions such as gener- 
alized gamma, the log-normal, the Weibull and the ex- 
ponential distribution. Different independent covariates 
or categorical variables have also been included in the 
model to study their effect on the response variable. 

Parametric and non-parametric methods of analysis are 
two different types of techniques in general for the ana- 
lysis of censored data. However, for the analysis of in- 
terval-censored data, the terminology behind them is the 
same. An important advantage of parametric inference 
approaches is that their implementation is quite straight- 
forward in principle and the theory of standard maximum 
likelihood can be applied. A primary disadvantage of 
these methods is that there often does not exist enough 
prior information or data to verify a parametric model. 
The major advantage of non-parametric methods such as 
Kaplan-Meier and Turnbull approach is that, one can 
avoid complicated interval censoring issues and make 
use of the existing inference procedures for the right- 
censored data. It is also assumed that the censoring me- 
chanism or variables are independent of the survival 
variables of interest. 

For the Breast Cancer example, the Kaplan-Meier es- 
timates, bracket the Turnbull estimate. The Turnbull 
curve lies very close to both Weibull and logspline cur- 
ves. At the same time, Weibull estimates and logspline 
estimates are quite close to each other. Cox regression 
models and parametric models with covariates using Ex- 
ponential, Weibull and Lognormal were fitted. Four ana- 
lyses produced similar results qualitatively and all show- 
ed an increased hazard for group on radiation and che- 
motherapy which was statistically significant. 

Unlike the results obtained for the Breast Cancer data, 
the estimated survival curve for AIDS data took very few 
steps in the non-parametric models. Possible explana- 
tions could be that the sample size is small, and the ob- 
served information was very limited due to interval cen- 

 
Table 4. Hemophilia data: Effect of treatment on time to event. 

Type of Model Parameter Estimate of Model Standard Error of Parameter Estimate P-Value 

Cox (left) –0.66678 0.14612 <0.0001 

Cox (midpoint) –0.73541 0.14594 <0.0001 

Cox (right) –0.88687 0.14645 <0.0001 

Exponential 0.5515 0.1455 0.0002 

Weibull (trt) 0.2240 0.0389 <0.0001 

Weibull (scale) 0.2566 0.0188  

Lognormal (trt) 0.2313 0.0496 <0.0001 

Lognormal (scale) 0.3583 0.0233  
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soring. The Kaplan-Meier estimates no longer bracketed 
the Turnbull estimate. The logspline estimate tracks the 
parametric models closely. The non-parametric methods 
were not very helpful in understanding the AIDS data. 
For the covariate effects of time to development of resis- 
tance, stage and dose were taken into account. All meth- 
ods indicated an increased risk of developing resistance 
for the patients in a later stage of disease. The Cox model 
results were highly dependent on the assumptions about 
when the event occurred. No methods showed a signifi- 
cant effect of dose on the time to development of resis- 
tance. 

The estimated survival curve for the AIDS data took 
very few steps in the non-parametric models, which re- 
flected the high degree of censoring in this small data set. 
For the AIDS data, we took a look at the individual ef- 
fects of stage and dose on the time to development of 
resistance. For these data, the non-parametric methods 
were not very helpful in understanding this data. For the 
breast cancer data, the four analyses gave similar results 
qualitatively. All showed an increased hazard for the 
group on radiation and chemotherapy which was statisti- 
cally significant. Kaplan-Meier estimates, as expected, 
bracket all other survival curves. 

For the Hemophilia data, the results derived were very 
much similar to those of Breast Cancer and AIDS data 
sets except the logspline model. Cox regression models 
and parametric models with covariates using Exponential, 
Weibull and Lognormal were fitted. Four analyses pro- 
duced similar results qualitatively and all have shown an 
increased hazard for the group on radiation and chemo-
therapy, which is statistically significant. Results derived 
for the piecewise exponential are not accurate for all 
three data sets. 

Major statistical packages such as SAS, S-Plus and R 
have procedures for analyzing interval-censored data 
using parametric models. Some non-parametric methods 
are easily programmed. In particular, the Turnbull [8] 
method for non-parametric estimation of the survival 
distribution, the Kooperburg and Stone [18] logspline 
estimates of the survival function and Finkelstein’s (1986) 
test for covariates are recommended. As seen in the 
AIDS data set, when data are heavily censored, making 
assumptions about when events occurred and using tech- 
niques such as Cox regression can lead to inaccurate 
conclusions. It can also result in unstable estimation in 
the non-parametric methods. 

As examples presented in this paper show, parametric 
approaches can be highly satisfactory in their perform- 
ance. Especially when the Weibull or log-normal family 
is chosen, it allows a reasonably wide range of distribu- 
tional shapes. To allow more flexible modeling with weak 
parametric assumptions, we suggest the use of a piece- 
wise constant hazards model. Finkelstein and Wolfe [3], 

Self and Grossman [21], Miller [22] and Buckley and 
James [23] have all proposed tests for assessing the co- 
variate effects. 
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