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ABSTRACT 

In this study we establish the probability density function of the square transformed left-truncated  21,N   error com- 

ponent of the multiplicative time series model and the functional expressions for its mean and variance. Furthermore the 

mean and variance of the square transformed left-truncated  21,N   error component and those of the untransformed 

component were compared for the purpose of establishing the interval for σ where the properties of the two distributions 
are approximately the same in terms of equality of means and normality. From the results of the study, it was estab-
lished that the two distributions are normally distributed and have means 1.0  correct to 1 dp in the interval 0 < σ < 
0.027, hence a successful square transformation where necessary is achieved for values of σ such that 0 < σ < 0.027. 
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1. Introduction 

Consider a normally distributed random variable X with 
probability density function  f x  specified as 
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    (1) 

Often in practice, the random variable X which has a 
 21,N   distribution do not admit values less than or 

equal to zero. We therefore disregard or truncate all val-
ues of  to take care of the admissible region X > 
0. Now if the values of X below or equal to zero cannot 
be observed due to censoring or truncation, then the re-
sulting distribution is a left-truncated normal distribution. 

0X

[1] obtained the probability density function of the 
left-truncated normal distribution as 
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with mean  and variance  E X  Var X  given by 
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and 
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  (4) 

The study of the properties of normally distributed 
random variables when certain outcomes are constrained 
or restricted has been a rich and fertile one—with appli-
cations in regression analysis, inventory management and 
time series modeling to mention but a few. 

A time series is a collection of observations made se-
quentially in time. Examples occur in a variety of fields, 
ranging from economics to engineering and methods of *Corresponding author. 
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analyzing time series constitute an important area of sta-
tistics [2]. Time series analysis comprises methods that 
attempt to understand such time series, often either to 
understand the underlying context of the data points 
(Where did they come from? What generated them?), or 
to make forecasts. Time series forecasting is the use of a 
model to forecast or predict future events based on 
known past events. 

Methods for time series analyses are often divided into 
three classes: descriptive methods, time domain methods 
and frequency domain methods. Frequency domain me- 
thods centre on spectral analysis and recently wavelet 
analysis [3,4] can be regarded as model-free analyses. 
Time domain methods [5,6] have a distribution-free sub-
set consisting of the examination of the autocorrelation 
and cross-correlation analysis. 

Descriptive methods [2,7] involve the separation of an 
observed time series into components representing trend 
(long term direction), the seasonal (systematic, calendar 
related movements), cyclical (long term oscillations or 
swings about the trend) and irregular (unsystematic, short 
term fluctuations) components. The descriptive method is 
known as time series decomposition. If short period of 
time are involved, the cyclical component is superim-
posed into the trend [2] and the observed time series 
 , 1, 2, ,t X t  Λ n


 can be decomposed into the trend- 

cycle component  tM , seasonal component  tS  and 
the irregular/residual component .  te

The decomposition model of interest in this study is 
the multiplicative time series model given by 

t t t tX M S e                 (5) 

where t  are independent, identically distributed nor-
mal errors with mean 1 and variance  

. 

e

0 .i e   2 2. 1,te N  
Data transformation is a mathematical operation that 

changes the measurement scale of a variable. Reasons for 
transformation include stabilizing variance, normalizing, 
reducing the effect of outliers, making a measurement 
scale more meaningful, and to linearize a relationship [8]. 
For further details on reasons for transformation, see [9- 
11]. Many time series analyst assume normality and it is 
well known that variance stabilization implies normality 
of the series. The most popular and common data trans-
formations are the power transformation namely the 
logarithm, square root, inverse, inverse square root, 
square and inverse square transformations. A statistical 
procedure for choice of appropriate data transformation 
can be obtained in [8,11]. It is important to note that, if 
we apply square transformation on model (5), we still 
obtain a multiplicative time series model given by 

2 2 2
t t t t t tY M S e M S e    t

t

          (5b) 

where 2 2,t t tM M S S    and  2
t te e

Studies on the effects of transformation on the error 
component of the multiplicative time series model) are 
not new in the statistical literature. The overall aim of 
such studies is to establish the conditions for successful 
transformation. A successful transformation is achieved 
when the desirable properties of a data set remains un-
changed after transformation. The basic properties or 
assumptions of interest for this study are: 1) Unit mean 
and 2) constant variance. In this end, [1] investigated the 
effect of logarithmic transformation on the error compo-
nent  te  of a multiplicative time series model where 

  2
LogY

1,e Nt  and discovered that the logarithm trans- 
form; te  can be assumed to be normally dis-
tributed with mean, zero and the same variance, 2 for  
< 0.1. Similarly [12,13] had studied the effects of inverse 
and square root transformations on the error component 
of the same model. [12] discovered that the inverse  

transform 
1

t

Y
e

  can be assumed to be normally dis-  

tributed with mean, one and the same variance provided 
0.07  . Similarly [13] discovered that the square root 

transform; tY e  can be assumed to be normally dis-
tributed with unit mean and variance, 4σ2 for 0.3  , 
where σ2 is the variance of the original error component 
before transformation. Furthermore, [14] has studied the 
implication of square root transformation on a two-pa- 
rameter Gamma distributed error component of a multi-
plicative error model and discovered that the unit mean 
assumption is approximately maintained, but the variance 
of the transformed distributions is one-quarter of the 
original variance. 

In this paper we study the implication of square trans-
formation on the error component of the multiplicative 
time series model with a view to establish the interval for 
σ, for which the transformation is successful. The paper 
is organized into 6 sections. Section 1 contains the intro-
duction. The probability density function, mean and va- 
riance of the square transformed left-truncated  

 21,N   error component are established in Section 2. 
Comparison of the square transformed and the untrans-
formed distributions were compared in Section 3. Finally 
the summary and conclusion, references and appendix 
are respectively contained in Sections 4-6. 

2. Probability Distribution of the Square 
Transformed Error Component 

Using the transformation, 

2y x                    (6) 

in (2) and the admissible values of , we 
would then find the probability density function (pdf) of 

 0y y  

2y x . From this point forward it is important to note 
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from (5) and (5b), that symbolically 2
t ty e e   and 

tx e . Applying the transformation in (6) implies that 
d 1

d 2

x

y y
 .                (7) 

But, the pdf of y,  f y  is given by 

    d

d

x
f y f x y

y
             (8) 

where 
d 1

d 2

x

y y
  is the absolute value of the Jacobian 

of the transformation [15]. Thus 
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 (9) 

The crucial question is now “is (9) a proper pdf?”. If it 
is to be a proper pdf, it must satisfy the condition; 

1)   d 1f y y 
0




hence we now proceed to show that the integral of (9) is 
equal to unity as follows: 
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therefore, substituting the results in (11a) through (11c) 
into (10) yields 
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and this shows that (9) is a proper pdf. 

2.1. Mean of the Square Transformed  
Distribution, E Y Y X  

By definition 
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Applying the substitution given in (11) into (12), we 
obtain 
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where 
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By integration by parts the following results are ob-
tained 
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Substituting the results of (18), (21) and the value of k 
into (13), we obtain 

 

 2

1
22

2

π 1
2 1 e 1 1

2 2

1
2π 1

E Y

 




     
                

       

 (22) 

2.2. Variance of the Square Transformed  
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Applying the transformation given in (11) into (23), 
we have that 

   

   

2

2 2

42 2

1

0
4 42 2

1 0

1
1 e d

1 1
1 e d 1 e d

u

u u

E Y u u
k

u u u
k k







 

 



 



 

   



  u

(24) 

Copyright © 2013 SciRes.                                                                                  AM 



J. OHAKWE  ET  AL. 684 
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Applying the substitution in (14) and its corresponding 
results in (15) into (26), we have that 
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Using the results given in (17), it can be shown after a 
series of algebraic manipulations, that (27) is equal to 
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hence 
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Furthermore applying the substitution in (19) and its 
corresponding results in (20a) and (20b) into  
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Substituting the results in (29) and (30) and the value 
of k into (24), we have that 
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(32) 

3. Condition for Successful Square  
Transformation 

In this section, the interval  for which the 
desirable properties of the square transformed left-trun- 
cated 

0 b R   

 21,N   distribution is approximately the same 
to that of the untransformed. The properties of interest 
are unit mean and normality and as a result we would 
first determine the interval  for which the 
means of the transformed and the untransformed distri-
butions of interest are both equal to unity (That is 

0 b R   

   









 
     

 

   



     (29) 

   E Y 1.0E X  ). Secondly we would determine the    
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Table 1. An abridged table showing the computations of E(X), E(Y), Var(X) and Var(Y). 

SN σ E(X) E(Y) Var(X) Var(Y) 

1 0.0100 1.0000 1.0180 0.0001 1.0325 

2 0.0110 1.0000 1.0198 0.0001 1.0358 

3 0.0120 1.0000 1.0216 0.0001 1.0392 

4 0.0130 1.0000 1.0234 0.0002 1.0425 

5 0.0140 1.0000 1.0252 0.0002 1.0459 

6 0.0150 1.0000 1.0270 0.0002 1.0492 

7 0.0160 1.0000 1.0288 0.0003 1.0526 

8 0.0170 1.0000 1.0306 0.0003 1.0560 

9 0.0180 1.0000 1.0324 0.0003 1.0594 

10 0.0190 1.0000 1.0342 0.0004 1.0628 

11 0.0200 1.0000 1.0360 0.0004 1.0663 

12 0.0210 1.0000 1.0378 0.0004 1.0697 

13 0.0220 1.0000 1.0396 0.0005 1.0732 

14 0.0230 1.0000 1.0414 0.0005 1.0767 

15 0.0240 1.0000 1.0431 0.0006 1.0801 

16 0.0250 1.0000 1.0449 0.0006 1.0836 

17 0.0260 1.0000 1.0467 0.0007 1.0871 

18 0.0270 1.0000 1.0485 0.0007 1.0907 

19 0.0280 1.0000 1.0503 0.0008 1.0942 

20 0.0290 1.0000 1.0521 0.0008 1.0978 

21 0.0300 1.0000 1.0539 0.0009 1.1013 

22 0.0310 1.0000 1.0557 0.0010 1.1049 

23 0.0320 1.0000 1.0575 0.0010 1.1085 

24 0.0330 1.0000 1.0593 0.0011 1.1121 

25 0.0340 1.0000 1.0611 0.0012 1.1157 

26 0.0350 1.0000 1.0629 0.0012 1.1193 

27 0.0360 1.0000 1.0647 0.0013 1.1230 

28 0.0370 1.0000 1.0665 0.0014 1.1266 

29 0.0380 1.0000 1.0683 0.0014 1.1303 

30 0.0390 1.0000 1.0701 0.0015 1.1340 

31 0.0400 1.0000 1.0719 0.0016 1.1377 

32 0.0410 1.0000 1.0737 0.0017 1.1414 

33 0.0420 1.0000 1.0755 0.0018 1.1451 

34 0.0430 1.0000 1.0773 0.0018 1.1488 

35 0.0440 1.0000 1.0791 0.0019 1.1526 

36 0.0450 1.0000 1.0809 0.0020 1.1564 
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value of  for which the curve shapes of the two 
probability distributions are bell-shaped and symmetrical 
about a unit mean. 

b R

For the purpose of this investigation,    ,VarE X X

,0.011,0.012,

, 
 and  using Equations (3), (4), (22) and 

(32) are computed for values of 
  ,E Y  Var Y

0.01  , 
. The results of the computations are 

given in Table 1 (For want of space, Table 1 is an 
abridged table). From Table 1, the following results are 
true; 

0.298,0.299,0.300

1)  to one decimal place (dp) for 
the interval  . 

    1.0E X E Y 
0 0.027; 

    1.0E X E Y 
0.027b 

2)  to two decimal places for the 
interval . In order to determine 
the number of decimal place(s) to use, we investigate the 
normality of the pdf curves of the square transformed and 
that of the untransformed distributions at the points b = 
0.027 and 0.280. The investigation of normality at the 
two points is based on the previous studies of [1,12,13] 
whereby, normality of a pdf curve at a point b implied 
normality at points . Bell-shaped curves 
and symmetry about a unit mean would be a measure of 
normality. The pdf curves of the two distributions of in-
terest for b = 0.027, 0.280 are given in Figures 1 and 2. 

0 0.28;b 

0  

0.28

a bR

 

 

Figure 1. Curve Shapes of the Square-transformed   f y  

and Untransformed   f x


 probability density function 

of the left-truncated 21,N   Distribution for 0.027 . 

 

 

Figure 2. Curve Shapes of the Square-transformed   f y  

and Untransformed   f x


 probability density function 

 Distribution for 0.280 . 

From the Figures, ious that there is a - it is obv  clear de
parture from normality for the pdf curves for b = 0.280, 
therefore the acceptable interval is 0 0.027  , since 
there is clear evidence of normality a s also 
clear from Table 1 that 

t b = 0.027. It i
   Var VarY X   . Fur-

thermore it is also eviden  that ced from Table 1
 Var 1.0Y  , 0 0.027  , hence  1.0,1.0Y N , 

0 0.027   correct t ecimal pla

y and Conclusion 

o one d ce (dp). 

4. Summar

e pdf of the square In this study we have established th
transformed left-truncated  21,N   error component of 
the multiplicative time seri l and the functional 
expressions for its mean and variance. Furthermore the 
mean and variance of the square transformed left-trun- 
cated 

es mode

 21,N   error component and those of the un-
transfo ponent were compared for the purpose 
of establishing the interval for σ where the properties of 
the two distributions are approximately the same in terms 
of equality of means and normality. From the results of 
the study, it was established that the two distributions are 
normally distributed and have means 1.0  correct to 
1dp in the interval 0 0.027

rmed com

  . 
Based on the res ud refore con-

cl
ults of this st y we the

ude that successful square transformation where neces-
sary is achieved for values of σ such that 0 0.027  . 
However caution has to be exercised sinc -
formation leads to increased error variance. 

e square trans
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