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ABSTRACT

In this paper, we consider the dual risk model in which periodic taxation are paid according to a loss-carry-forward sys-
tem and dividends are paid under a threshold strategy. We give an analytical approach to derive the expression of gs(u)
(i.e. the Laplace transform of the first upper exit time). We discuss the expected discounted tax payments for this model
and obtain its corresponding integro-differential equations. Finally, for Erlang (2) inter-innovation distribution, closed-

form expressions for the expected discounted tax payments are given.

Keywords: Dual Risk Model; Expected Discounted Tax Payments; Dividend; Threshold Strategy

1. Introduction

Consider the surplus process of an insurance portfolio
R(t)=u—ct+S(1) (1.1)

which is dual to the classical Cramér-Lundberg model in
risk theory that describes the surplus at time ¢, where
u >0 is the initial capital, the constant ¢ >0 is the

N(1)
rate of expenses, and S(t) = Z Y. is aggregate profits
i=l1

process with the innovation number process N(7)
being a renewal process whose inter-innovation times
T,(i=1,2,-+) have common distribution F. We also
assume that the innovation sizes {Y;,i >1}, independent
of {T,,i>1}, forms a sequence of i.i.d. exponentially
distributed random variables with exponential parameter
,B(> 0) . There are many possible interpretations for this
model. For example, we can treat the surplus as the
amount of capital of a business engaged in research and
development. The company pays expenses for research,
and occasional profit of random amounts arises accord-
ing to a Poisson process.

Due to its practical importance, the issue of dividend
strategies has received remarkable attention in the lite-
rature. De Finetti [1] considered the surplus of the com-
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pany that is a discrete process and showed that the opti-
mal strategy to maximize the expectation of the dis-
counted dividends must be a barrier strategy. Since then,
researches on dividend strategies has been carried out
extensively. For some related results, the reader may
consult the following publications therein: Bithlmann [2],
Gerber [3], Gerber and Shiu [4,5], Lin ef al. [6], Lin and
pavlova [7], Dickson and Waters [8], Albrecher et al. [9],
Dong et al. [10] and Ng [11]. Recently, quite a few inter-
esting papers have been discussing risk models with tax
payments of loss carry forward type. Albrecher ef al. [12]
investigated how the loss-carry forward tax payments
affect the behavior of the dual process (1.1) with general
inter-innovation times and exponential innovation sizes.
More results can be seen in Albrecher and Hipp [13],
Albrecher et al. [14], Ming et al. [15], Wang and Hu [16]
and Liu et al. [17,18].

Now, we consider the model (1.1) under the additional
assumption that tax payments are deducted according to
a loss-carry forward system and dividends are paid under
a threshold strategy. We rewrite the objective process as
{R%b (t),t > 0}. that is, the insurance company pays tax
atrate y e [0,1) on the excess of each new record high
of the surplus over the previous one; at the same time,
dividends are paid at a constant rate « whenever the
surplus of an insurance portfolio is more than » and
otherwise no dividends are paid. Then the surplus pro-
cess of our model {Ryﬂb (t),t2 0} can be expressed as
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—cdt + dS(t)l

x1 .
{R;,V,, (r )+dS(t)Z(§1§13x<r R, (s)}

—(c—a)dr+ds(t)1

x1

(R (1 asto)zmax 2,5

for >0, with R ,(0)=u. where 1, is the indi-

cator function of event 4 and R , (t’) is the surplus
immediately before time ¢ .
For practical consideration, we assume that the posi-
tive safety loading condition
c<E(Y,)/E(T,), (1.3)
holds all through this paper. The time of ruin is defined
as T, =inf{t>0:R,,(1)<0} with T,, =0 if

R,,(t)>0 forall £>0.
Ty,h
For initial surplus u >0, let D= J e ™dD(t) be
0

the present value of all dividends until ruin, and 6 >0
is the discount factor. Denote by ¥, (u,b) the expec-
tation of D, that is,

V,(ub)=E[D

R,,(0)=u]. (1.4)

It needs to be mentioned that we shall drop the sub-
script y whenever y is zero.
The rest of this paper is organized as follows. In Sec-

uf(c-a) ) ug—u+(c-a)t
g(u,uo) = J. e’b’fr1 (t)dt

0 0

When b<u<u,,

g(”vuo)

= [ e (t)dt{

ug—u+ct

0

It follows from Equation (2.1) and from Equation (2.2)
that g(u,u,) is continuous on (0,u,) as a function of
u and that

g(O*,uO):0,g(b+,u0):g(b’,u0).

For certain distributions £, one can derive integro-
differential equations for g(u,u,) and V(u,b). Let us
assume that the i.i.d innovation waiting times have a
common generalized Erlang (n) distribution, i.e. the

2.3)
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{R,_b (" )ras(0)<max &, , (s)}

{R%b t )+dS(t)< max R, j(s)

0<s<t

J. g(u—(c—a)t+y,u0)ﬁe’/’)}’dy+ I

J. g(u—ct+y,u0)ﬂe’ﬁydy+e_'5(

g(u—ct+y,u0)ﬂe’ﬂ”dy+e

+(l—7/)(R%b (t')+dS(t)—max R, (S))

0<s<t

R, (t)=b

0<s<t

- PR (7)+ a5 ()= mask,, ()

R, (1)< b

tion 2, We derive the expression of g;(u) (i.e. the
Laplace transform of the first upper exit time). We also
discuss the expected discounted tax payments for this
model and obtain its satisfied integro-differential equa-
tions. Finally, for Erlang (2) inter-innovation distribu-
tion, closed-form expressions for the the expected dis-
counted tax payments are given.

2. Main Results and Proofs

Let g(u,u,)=E, [e_&(”’o’“")} denote the Laplace trans-

form of the upper exit time 7 (u,0,u, ), which is the time
until the risk process {R,(¢),t> 0} starting with initial
capital u(<u,) up-crosses the level u,(>b) for the
first time without leading to ruin before that event. In
particular, g, (u,u,):= lﬁigg(u,uo) is the probability that

the process {R,, (1),t> O} up-crosses the level u, (>5)
before ruin.

For general innovation waiting times distribution, one
can derive the integral equations for g(u,u,). When
u<b,

0

ug—u+(c-a)t

,Beﬁydy} .1

(u=b)/c+b/(c-a)
ug—u+ct) + (22)

[ s ()
(u=b)/c

_ﬂ(uo —b+(c—a)(t—(u—b)/c)) } .

T.’s are distributed as the sum of n independent and
exponentially distributed r.v.’s S =n+n,+--+n,
with 7, having exponential parameters 4, >0.

The following theorem 2.1 gives the integro-differ-
ential equations for g(u,u,) when T,’s have a gene-
ralized Erlang (n) distribution.

Theorem 2.1 Let | and D denote the identity ope-
rator and differentiation operator respectively. Then
g(u,u,) satisfies the following equation for 0<u <b
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HKH%} + c;k“ D}g(u,uo)

(2.4)
uy—u
- J. g(u+y9u0)ﬁe_ﬂydy+efﬁ(”()*“)’
0
and
[1+£j|+iD g(u,uo)
k=1 /7,k ﬂk
2.5)
llofu

- .[ g(u+y=u0)ﬂe_ﬂydy+efﬂ(l’O*"),
0

uf(c-a) ug—u+(c—a)t
g, (uuy) = J' ine(i"w)tdt{o I g(u—(c—a)l+y,u0)ﬁe'ﬂydy+ J'

o

By changing variables in from Equation (2.6) and from
Equation (2.7), we have for O<u <b,

u u—x

1+§
uuo I * ””‘g,m (x,uo)dx, (2.8)
0
for k=1,2,---,n—1, and
“ ﬂ, l+é
gn u uo Ic a dx
0
2.9

Ll(] X 0
. I g(x+y,u0)ﬂe’ﬂydy+ .[ ﬂeﬂydy}.

0 ug—x

Then, differentiating both sides of from Equation (2.8)
and from Equation (2.9) with respect to u , one gets

(u=b)/c

for u>b.
Proof First, we rewrite g (u,u,) as g (u,u,) when
d

T,=S,-S,, with §, =0 in the surplus process (1.2)

with y=0. Thus, we have g, (u,u,)=g(u,u,). When
O<u<b,

4% (“»”o)
u/(c‘—a)

= J. }“kei(ﬂkm‘)tgkﬂ(”

0

2.6
—(c—a)t,uo)dz, 26)

for k=1,2,---,n—1, and

©

,Be'ﬁydy} (2.7)

u07u+(cfa)t

|:(1+/1£] I +%D}g,€ (”:”o) =8 (”’“0)’ (2.10)

k
for k=1,2,---,n—1, and

1) c—a
I+— I+
|:[ j’nj ﬂ’n

g —u
= J' g(u+y,uy)Be ™ dy+ e o),
0

Using from Equation (2.10) and from Equation (2.11),
we can derive from Equation (2.4) for g(u,u,) on
(0.5).

Similar to from Equation (2.6) and Equation (2.7), we
have for u>5

D}gn (1)

(2.11)

A g (b=(e—a)(1=(u=b)/c)uy)dr,  (2.12)

(“ b)/e (u=b)/c+b/(c-a)
g (uuy) I Ae (o) G (u—ctuy)dr+ .[
for k=1,2,---,n—1, and
g, (u,uy)

(ufb)/c

n

0 0

. uy—u+ct
= .[ de (i»,,m)tdt{ I g(u —ct+y,u0)ﬂe_ﬂydy+eﬂ(“°"*”’)}4.

(Ll*b)/C#»b/(C*a)

ug—b+(c—a)(t—(u=b)/c) , ,
LT o (e a) e (um)e) ) ey Pk

0

Again, by changing variables in Equation (2.12) and
Equation (2.13) and then differentiating them with re-
spectto u, we obtain for u>5b

1)
K“ﬂ'%D}gk(u,uo):g“l(u,uo), @.14)

k k

for k=1,2,---,n—1, and
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[ e ar (2.13)
(ub)e
) c
KH_/T,J | +/1_,,D:|g" (u,uo)
(2.15)

o —u

- I g(u +y:u0)ﬂ€_ﬂydy+ efﬂ(uoﬂl)'
0

Using Equation (2.14) and Equation (2.15), we obtain
Equation (2.5) for g(u,u,) on [b,).0
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It needs to be mentioned that from the proof of Lemma
2.1, we know that

8 (O+’u0)=0,gk (b+’u0):gk (bi,uo),k =23,--,n

Therefore, Equations (2.10), (2.11), (2.14) and (2.15)
yield

Remark 2.1 Using a similar argument to the one used
in Lemma 2.1, one can get that when the innovation
waiting times follow a common generalized Erlang(n)
distribution, the expected discounted dividend payments
V(u,b) satisfies the following integro-differential equa-
tion (see Liu ef al. [17]).

2 o c—a
I [1+—]I+
kl{ A A

D}V(u,b)

2.17)
=JAV(u+y,b),Be_ﬂydy,0<u<b
0
and
- KH%}H— } (u,b)
- k (2.18)
:J‘ u+yb)ﬂeﬂydy+B u>b
0
with

L o
B l+— |k=1,2,-,n. (2.19
o ;m&,ll[ 1,} 19

1

In addition, the boundary conditions for ¥ (u,b) are
as follows:

L3 S c—a
I t+=r+
i=1 ﬂ"i Zi

D}V(b‘,b)

k
:HKHiniD}V(b*,b) B,  (2.20)
i=1 7 i
k=12,---,n,
k o c—a v
]‘l[{ 17_ I+ 7 D}V(O b)=0, 221)
k=1,2,,n-1,
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M, (s) ~Sll-ss) o

with Equation (2.19).

With the preparations made above, we can now derive
analytic expressions of the expected 7 -th moment of the
accumulated discounted tax payments for the surplus

process {RN7 (t),tZO}. We claim that the process

{RN, (¢),> 0} shall up-cross the initial surplus level u
at least once to avoid ruin.
Now, let

gs(u)=E, [e"s’" J

denote the Laplace transform of the first upper exit time
7, , which is the time until the risk process

{R (1),t> 0} starting with initial capital u reaches a

new record high for the first time without leading to ruin

(2.22)

before that event. In particular, g,(u):= 1;&1 gs(u) is

the probability that the process {Rb (1),t> 0} reaches a
new record high before ruin. Then the closed-form
expression of the quantity g, (u) can be calculated as
follows.

When u>b,g5(u)=g(u,u). When 0<u<b,using
a simple sample path argument, we immediately have,

V(u,u):g(3 (u

or, equivalently

)Tﬂe_ﬁyV(u+y,u)dy,

V(u,u
g ()= 1) (223)
J.ﬁe'ﬂyV(u + y,u)dy
0
Let 0,=0 and define
o, :inf{t >0,,'R,, (1) ror<1?<>§R b (s )}, (2.24)

to be the # -th taxation time point. Thus,

M, (u,b):=E, [(DM )]
[[ e (R, (o )—Ry,m1>)1{gn<wj"]

7}11

(2.25)
denotes the # -th moment of the accumulated discounted
tax payments over the life time of the surplus process
{R,,().t>0}.

We will consider a recursive formula of M, (u,b) in
the following theorem 2.2.
Theorem 2.2 When 0<u <b, we have

Bl
e ' dS+J.Me|_,{(I gus (1))dt

(s) u 8(n-1)5 (s)

ds|, (2.26)
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and when u >b, we have

Mn (u’b)

ny 2 M, (s) ~Sli-sslr  (227)
=g () [ Te T

1_7 u g(n—l)b‘ (S)

Proof Given that the after-tax excess of the surplus
level over u at time 7, is exponentially distributed
with mean (1-y)/8 due to the memoryless property of
the exponential distribution. By a probabilistic argument,
one easily shows that for u >0

M, (u,b)
gm;(u)]gie_%AE [D/a(u+x)+Lx]n dx
ol=7 ’ -7
N | EE e
né ul—}/ 7,0 1_7/
(2.28)
Differentiating with respect to u yields
M) (u,b)
gmf (u) ﬂ
= +—(1-g,s(u)) | M, (u,b
[gms(u) 1—7( ol ))J (")

gnb (u) 1_7/
- ny g”(s (U) Mnfl (u’b)
1=7 8o (1)
(2.29)
When 0<u<b,wehave
b
’71.(1 e (’))d[
M, (u,b)zgm; (u)e s
(2.30)

' C+ﬂ”me£iw»w
1_711 g(,,_[)ﬁ(s)

When u > b, the general solution of Equation (3.20)
can be expressed as

5
M — [ (1=gns (1))dt
M, (1.8) = g ()| 22D o2

g)15 (OO)
L ]c M, (s) Elmsso)
1_}/ u g(nfl)ﬁ (S)

Copyright © 2013 SciRes.
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Due to the facts that M, (o) <o and
0<g,s () <o, wehave for u>b

M, (u,b)

ny = M, (s) -%i(l-gmym)dr (2.32)
=g (u) [ e T

1_7 u g(n—l)(? (S)

Now, it remains to determine the unknown constant C
in Equation (3.20). The continuity of M (u,b) on b
and Equation (3.22) lead to

s

o0 _i — o
C= ny Mn—l (S) e 1*7{(1 gm)(,))d[

=7 ds. (2.33)
1=y E(n-1)s (S)

Plugging Equation (2.33) into Equation (2.30), we
arrive at Equation (2.26). o

The special case n=1 leads to an expression for the
expected discounted total sum of tax payments over the
life time of the risk process

.
2 s ()
M, () =g, (u)[e " ds.

(2.34)
-y u

forall u>0.

3. Explicit Results for Erlang(2) Innovation
Waiting Times

In this section, we assume that W,’s are Erlang(2) dis-
tributed with parameters 4, and 4,. We also assume
that 4 <A, (without loss of generality).

Example 3.1 Note that

_ o -By ~p(ug—u)
(ﬂl D)[ J g(u+y,u0),Be dy+e ] G.0)

0
= ﬁg (M, uO )
Applying the operator ( pl- D) to Equations (2.4)
and (2.5) gives

(B —D)ﬁKH%JI + C;“ D}g(u,uo):ﬁg(u,uo),

k=1 % %

0<u<b,
(3.2)
and
(B1- D)ﬁ[[H%}I +/1iD}g(u,uO) = Bg (u,u,),
u=b,
(3.3)

The characteristic equation for Equation (3.2) is

(ﬁ_r)HHH%}

2
k=1 %

C;“r} y (3.4)

k
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without loss of generality, we assume that 4, <A4,. We
know that Equation (3.4) has three real roots, say 7,7,
and r; which satisfies

and

ﬁ>r,>0>;ﬂ2>—ﬂ“+5>—£—+é
c—a c—a
c-a c-«a

With ¢ replace c—«a in Equation (3.4), we get the
characteristic equation of Equation (3.3), whose roots are
denoted by r,,r, and 7, with

>, >0>r >— >——>r

PRNCIEES ASL
_AFS Ao
C C

ﬂeﬂ“ﬂ

b b 3b
ec +e%c, +e% ey -

_alsh _ a6 _
e*c, —e¢cy = 0.

ne +rne, +re =0.

b

141

¢y

(3.8)

Apply Equation (2.10) together with Equations (2.3)
and (3.5) when k=1, we get

3.9)

Insert Equation (3.5) into Equation (2.4), we have

er3uﬂ
Wi

'B_

eVzuo
L+ ﬂ C

h p-n

(c—a)rec +(c—a)ne™c, +(c—a)rec

p-r

In addition, plugging Equations (3.5) and (3.6) into
Equation (2.16) yields

=1 (3.10)

Thus, we have (3.11)
) —cre®c, —cree, —crec, =0,
g(uuy) =ce™ +c,e™ +ce™,0<u<b,  (3.5)
and
and
ﬂer]b IBerzb ﬂe'3b ﬂemb
g(u,uy) =ce™ +cse™ +ce™ uzb, (3.6) ¢+ c G c,

) B-n B-r ﬂ £ ﬂ—r4 312
where ¢,c,,c;,¢,,¢5,¢, are arbitrary constants. To de- B ﬁeréb (.12)
termine the arbitrary constants, we insert Equations (3.5) -5 — =0.
and (3.6) into Equation (2.3) and obtain B B

G +e+e =0, (3.7) Some calculations give
o = n=rn )/ﬂ
1 s
I’:«, —7‘2 e’l”O 4 ’"1 _7}, erzuo + 7'2 —h er3u0
B-n B-n -
_ (n-n)/B
C, = s
r} 2 e"l“O + rl 3 ) + 2 1er3u0
B-r —h -n
e = (”2 _”1)/,3
3 5
i Zenuo+ri_’3 er2u0+r2_ ler;uo
B=n B=r B-r
o i=n)eV6 (nnn )+ (n —n) e (ws, )+ (7 —fa)e "6, (11 75.7,) (3.13)
=
_Cﬂeqb(’ﬂ}_rz erlu0+r]_r3 r2u0+ 2 );uoj 6+r5_r4j
B-n B-n B-n ﬂ s P
b
e = (r2—r1)er3 61(”3>r4’r6)+(r _’3) rz’rzw 6)+(’3_r2 e’ 61(’%”4”’6)
S =
cﬁerg et 4 n—n e"2to + n = g3t s + 5—n
IB h p-n ﬂ 7y ﬁ o B
o o (i=n)e6 (rorun )+ (n =1 )e” 9(”2»”4: 1)+ (r _’3)6 '0,(.7.75)
=
Cﬁerf,b(r n elito 4 h-n e 4 = r3u0J( _rs s 15 _F4J
B B B B~ ﬂ i Bt
Copyright © 2013 SciRes. 0JS
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with gs(u). By Equations (3.6) and (3.13), we have for
c(n-1) (e=a)r-cn “=t
0= S L (1) =)
! / 3.14 pu rsu 3
or ~(c—al)r (.14) L) (D) 4L (D) 315
T a BN w, h—h rzu+r2_rl el
A= pn Tpn" T pn
Remark 3.1 Now, we give the explicit results for with
; (b)_(n—rz)e"’b(% (rorsoms) +(r =11) €™ @ (rursm) + (1 —13) €™ 6, (1,757
4 - b
_cﬂemb[’%_’%+V4_’”s+rs_r4J
- p-rn B-r
) (b)—(r2 —1)€" G (1357 )+ (1 =13 )€™ 8 (o1 r ) + (5 =15 ) €76, (17375 (3.16)
5 = R .
_cﬂersh(’%_”s+r4_r6+r5_r4J
p-rn P-r B-r
; (b)_(rl—rz)e’3b91(r3,r4ars)+(r3—4)6’21’91(rz,r4,r5)+(rz—rs)er‘bﬁl (r7s75)
(D)= )
_Cﬁersb(”s_rs+”4_’”6+’”5_’”4j
B-r, p-r p-r
For 0<u <b, using the explicit expressions of V(b,b) in Liu ef al. [17], we obtain
V(u,u
g (1) = )
J.,Be’ﬂyV(u +y,u)dy
0
(3.17)
cr. +0)r, cr, +0)r. .
[( ;_r6)6—( ;_rs)SJ((%—G)G”“+(n—rz)e’z"+(rz—r1)63)
- L(r—n)e" +5L(r—nr)e™ +1(rn—r)e™
with
I :ﬁ93(l’5)—ﬂ'93(”6)+02 (i.5.6).i=1,2.3, (3.18)
ﬁ_rf) ,3—1”5
where
Hz(n’rj’rk):c(rk—rj)n+((c—a)ri—crk)r/+(crj—(c—a)rl.)rk’
ﬂ_’} :B_r,‘ ﬂ_rk
1<i<j<k<6,
and

93(",-J,-)=(0rj+5)ri _((C_“)rf+5)rj 1<i<j<6.

IB - ﬁ -r j
We point out that when the innovation times are exponentially distributed, one can follow the same steps to get the

explicit expressions of g (u), which coincide with the results in Albrecher et al. (2008).

Example 3.2 (The expected discounted tax payments.) Following from Equation (2.34) of Theorem 2.2 and Remark
3.1, wehave for O<u<b,

Copyright © 2013 SciRes. 0JS
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£(C;’5+5)r6—(cr6+5)r5]((r3—r2)e"‘"+(rl—ig)er2”+(r2—r1)er3“)
oy B—r B-r
Ml (Z/l,b) - nu ru ru
-y ll(lg—rz)e +lz(r1—r3)e +l3(r2—r1)e
o o
; S (Crs"" )r6 _(CV()“F )rS ((’%_rz)em"‘(”i_%)erzt'{'(rz_I’i)erﬁ)
p B B
xjexp - I 1- - - dr pds
' -y ll(}g—rz)e”'+lz(q—r3)e'2’+l3(r2—r)1e'3’
(C?‘S "ré‘)}"()_(cr() +6)r5]((7‘3—7'2)erlu+(Vl—7’3)erzu+(7’2—}’i)er3u)
+ v ﬁ_r6 ﬂ_rs (319)
1-y L(r—n)e" +L(n—r)e™ +L(rn—r)e™
; , (cr5+5)r6 _(cr6+5)l’5 ((73—1"2)@“[+(I”1—I”3)€r2t+(l”2—rl)er3t)
ﬂ ﬂ_rs ,3—}”5
xjexp J. 1- - - - dr »ds
) 1-y° L(r—n)e" +5,(rn-r)e” +1(rn—1)e"
0 t 15t 1ot
vexpl Y J- - L (b)e™ +1(b)e™ +1;(b)e arl
-y n-n et ’i_”zerzt rz_”lery
B-n B-n B-n
And, for u>b, we have
U r5u e o s t rst el
M, () - y o L(b)e™ +1(b)e™ +1 (b)e" exp _ﬂj . 1, (b)e™ +15(b)e™ +1(b)e" alds,  (320)
1_7/ n—n e 4 n—n rztl+r2_rl e u 1—}/,, =0 uw h=hB m h—h e
B-n p-n B-r B—n B-r B-r

Then we can get that when W,’s are Erlang (2) dis-
tributed with parameters A4, and A,, the expresses of
gs(u) can be given by Equations (3.15) and (3.17) and
the expected discounted tax payments can be given by
Equation (3.20).
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