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ABSTRACT 

In this paper, we consider the dual risk model in which periodic taxation are paid according to a loss-carry-forward sys- 
tem and dividends are paid under a threshold strategy. We give an analytical approach to derive the expression of gδ(u) 
(i.e. the Laplace transform of the first upper exit time). We discuss the expected discounted tax payments for this model 
and obtain its corresponding integro-differential equations. Finally, for Erlang (2) inter-innovation distribution, closed- 
form expressions for the expected discounted tax payments are given. 
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1. Introduction 

Consider the surplus process of an insurance portfolio 
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          (1.1) 

which is dual to the classical Cramér-Lundberg model in 
risk theory that describes the surplus at time , where 

 is the initial capital, the constant  is the  

rate of expenses, and 
 

Y
N t

   is aggregate profits  

process with the innovation number process  N t

 1,2,T i 

 
being a renewal process whose inter-innovation times 

i Λ  have common distribution F . We also 
assume that the innovation sizes , independent 
of i , forms a sequence of i.i.d. exponentially 
distributed random variables with exponential parameter 

. There are many possible interpretations for this 
model. For example, we can treat the surplus as the 
amount of capital of a business engaged in research and 
development. The company pays expenses for research, 
and occasional profit of random amounts arises accord- 
ing to a Poisson process. 

 , 1iY i  
 , 1T i 

 0 

Due to its practical importance, the issue of dividend 
strategies has received remarkable attention in the lite- 
rature. De Finetti [1] considered the surplus of the com-  

pany that is a discrete process and showed that the opti- 
mal strategy to maximize the expectation of the dis- 
counted dividends must be a barrier strategy. Since then, 
researches on dividend strategies has been carried out 
extensively. For some related results, the reader may 
consult the following publications therein: Bühlmann [2], 
Gerber [3], Gerber and Shiu [4,5], Lin et al. [6], Lin and 
pavlova [7], Dickson and Waters [8], Albrecher et al. [9], 
Dong et al. [10] and Ng [11]. Recently, quite a few inter- 
esting papers have been discussing risk models with tax 
payments of loss carry forward type. Albrecher et al. [12] 
investigated how the loss-carry forward tax payments 
affect the behavior of the dual process (1.1) with general 
inter-innovation times and exponential innovation sizes. 
More results can be seen in Albrecher and Hipp [13], 
Albrecher et al. [14], Ming et al. [15], Wang and Hu [16] 
and Liu et al. [17,18]. 

Now, we consider the model (1.1) under the additional 
assumption that tax payments are deducted according to 
a loss-carry forward system and dividends are paid under 
a threshold strategy. We rewrite the objective process as 
   , 0R t t ,b . that is, the insurance company pays tax 
at rate  0,1   on the excess of each new record high 
of the surplus over the previous one; at the same time, 
dividends are paid at a constant rate   whenever the 
surplus of an insurance portfolio is more than b and 
otherwise no dividends are paid. Then the surplus pro- 
cess of our model 

*Supposed by the Jiangxi Agricultural University Youth Science Foun-
dation (No. 09003326). 
#Corresponding author.    , , 0bR t t   can be expressed as 

Copyright © 2013 SciRes.                                                                                  OJS 



Z. LIU  ET  AL. 137

 

 

                 
 

  

, ,

,

, ,
0

,

max

, ( )

b b

b

b b
s t

b

R s

R t b

R s

R t

 



 



 

 



  b

0t   , 0bR u   A

      
                

      

, ,
0

, ,
0

, ,
0

, ,
0

0d max

d max

,

d max

d max

d d 1 d max

,

d
d d 1 d

b b
s t

b b
s t

b b
s t

b b
s t

s tR t S t R s

R t S t R s

b

R t S t R s

R t S t R s

c t S t R t S t

R t
c t S t R t S t

 

 

 

 





 



 



 



 



 



  

 



 

 

     


     

1

1

1

1













      (1.2) 

 
 gfor , with . where 1  is the indi-  

cator function of event A  and  is the surplus   ,bR t


   

immediately before time . t
For practical consideration, we assume that the posi- 

tive safety loading condition  

1 1 ,c E Y E T

  , ,inf 0 : 0b bT t R t    ,bT  

t 

 
,

0

e d
bT

tD D t



0

           (1.3) 

holds all through this paper. The time of ruin is defined  

as  with  if  

 , 0bR t   for all . 0

For initial surplus , let  be  0u  

the present value of all dividends until ruin, and  
b

D

 

 
is the discount factor. Denote by  the expec- 
tation of , that is, 

 ,V u

  u ,, 0 .bV u b E D R            (1.4) 

It needs to be mentioned that we shall drop the sub- 
script   whenever   is zero. 

The rest of this paper is organized as follows. In Sec- 

tion 2, We derive the expression of u

   0,0,
0, : e u u

ug u u E 

  (i.e. the 
Laplace transform of the first upper exit time). We also 
discuss the expected discounted tax payments for this 
model and obtain its satisfied integro-differential equa- 
tions. Finally, for Erlang (2) inter-innovation distribu- 
tion, closed-form expressions for the the expected dis- 
counted tax payments are given. 

2. Main Results and Proofs 

 Let 
 ,0,u u

 denote the Laplace trans-  
form of the upper exit time 0 , which is the time 
until the risk process    , > 0R t tb  starting with initial 
capital  u u  u b0  up-crosses the level 0  for the 
first time without leading to ruin before that event. In  

   0 0 0
0

, : lim ,g u u u u
 

  is the probability that  particular, 

   , > 0bR t t  up-crosses the level the process 0u b

 0,

 
before ruin. 

For general innovation waiting times distribution, one 
can derive the integral equations for g u u
u b

. When 
 , 
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It follows from Equation (2.1) and from Equation (2.2) 

that 0 ,g u u  is continuous on   as a function of 
 and that 

00,u
u

 0, . 0 , 0,  0 0,g u g b  u g b u

1T

    (2.3) 

For certain distributions F , one can derive integro- 
differential equations for 0 ,g u u  and  ,bV u . Let us 
assume that the i.i.d innovation waiting times have a 
common generalized Erlang n

T

1 2:S

 distribution, i.e. the 

i ’s are distributed as the sum of n independent and 
exponentially distributed r.v.’s n n     Λ  
with 



i  having exponential parameters  0i .  
The following theorem 2.1 gives the integro-differ- 

ential equations for  , 0g u u i when T ’s have a gene- 
ralized Erlang  n

I
 distribution. 

Theorem 2.1 Let  and D  denote the identity ope- 
rator and differentiation operator respectively. Then 
 0,u u 0 u b satisfies the following equation for g    
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for . 
u u  0,k as Proof First, we rewrite g g u u

1

d

i n kT S S

 when  

  0 0S with   in the surplus process (1.2)  

   1 0 0, ,gwith 0 . Thus, we have  u u g u u
0 u b
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By changing variables in from Equation (2.6) and from 

Equation (2.7), we have for 0 u  ,  

     1 0, d ,k0
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Then, differentiating both sides of from Equation (2.8) 
and from Equation (2.9) with respect to , one gets 
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Using from Equation (2.10) and from Equation (2.11), 
we can derive from Equation (2.4) for  0,g u u  on 
 0,b . 

Similar to from Equation (2.6) and Equation (2.7), we 
have for  u b
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Again, by changing variables in Equation (2.12) and 

Equation (2.13) and then differentiating them with re- 
spect to , we obtain for   
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for , and 

    (2.15) 

Using Equation (2.14) and Equation (2.15), we obtain 
Equation (2.5) for  0,u u ,b  on  .□ g
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It needs to be mentioned that from the proof of Lemma 
2.1, we know that  

    0 00 , 0, , ,k k k 0 , 2,3, , .g u g b u g b   u k n  Λ  

Therefore, Equations (2.10), (2.11), (2.14) and (2.15) 
yield 
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Remark 2.1 Using a similar argument to the one used 
in Lemma 2.1, one can get that when the innovation 
waiting times follow a common generalized Erlang  n

 ,V u b

 
distribution, the expected discounted dividend payments 

 satisfies the following integro-differential equa- 
tion (see Liu et al. [17]). 
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With the preparations made above, we can now derive 
analytic expressions of the expected -th moment of the 
accumulated discounted tax payments for the surplus  

   , , 0bR t t  . We claim that the process  process 

   , 0R t t  u,b  shall up-cross the initial surplus level  
at least once to avoid ruin. 

Now, let  

  : e u
ug u E 
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denote the Laplace transform of the first upper exit time 
 , which is the time until the risk process  
   , 0R t t  u

 

b  starting with initial capital  reaches a 
new record high for the first time without leading to ruin  

 0
0

: limgbefore that event. In particular, u g u 
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the probability that the process b  reaches a 
new record high before ruin. Then the closed-form 
expression of the quantity g u  can be calculated as 
follows. 
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denotes the -th moment of the accumulated discounted 
tax payments over the life time of the surplus process 
   , 0bR t t ,

We will consider a recursive formula of 
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 in 
the following theorem 2.2. 
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Proof Given that the after-tax excess of the surplus 
level over u  at time u  is exponentially distributed 
with mean  1  
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 due to the memoryless property of 
the exponential distribution. By a probabilistic argument, 
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Differentiating with respect to  yields 
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When , the general solution of Equation (3.20) 
can be expressed as 
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Now, it remains to determine the unknown constant C 
in Equation (3.20). The continuity of  ,M u b  on b  
and Equation (3.22) lead to  
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Plugging Equation (2.33) into Equation (2.30), we 
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rive at Equation (2.26). □ 
The special case 1n   leads to an expression for the 
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3. Explicit Results for Erlang(2) Innovation 
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The characteristic equation for Equation (3.2) is  
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without loss of generality, we assu  that me 1 2  . We 
know that Equation (3.4) ha
and 3r  which satisfies  

s three real roots, say 1 2,r r  

1 2
1 2

3 .r
c c

1 2

0r r
c c

  



 



 
      

  
 

 
 

   
 

 

Wi  replace cth c   in Equation (3.4), e get the 
charact  equation of Equation (3.3), whose roots are 

4 5,r r  and 6r  with  

w
eristic

ted by deno

1 2
4 5 60r r r

c c

   


 

 
       

 1 2

c c

 
  

 

Thus, we have 

3
3e ,0 ,r u  1 2

0 1 2, e er u r ug u u c c c   u b     (3.5) 

an

5 6
6 , ,r u

d 

  4
0 4 5, e e er ur ug u u c c  c u b     

2 3 4 5 6, , , , ,c c c c  are arbitrary constants. To de- 
e arbitrary constants, we insert Equatio

and (3.6) into Equation (2.3) and obtain 

c 

31 2 4

5 6

1 2 3 4

5 6

e e e

e e 0.

r br b r b r b

r b r b

e c c c c

c c

  

  

1k

   (3.6) 

where 1c c
termine th ns (3.5) 

1 2 3 0,c c               (3.7) 

and 

       (3.8) 

Apply Equation (2.10) together with Equations (2.3) 
and (3.5) when  , we get  

1 1 2 2 3 3 0.r c r c r c                (3.9) 

Insert Equation (3.5) into Equation (2.4), we have 

1 0 2 0 3 0

1 2 3
1 2 3

e e e
1.

r u r u r u

c c c
r r r

  
  

  
  

   (3.10) 

In addition, plugging Equations (3.5) and (3.6) into 
Equation (2.16) yields 

      31 2

5 64

1 1 2 2 3 3

4 4 5 5 6 6

e e e

e e e 0,

r br b r b

r b r br b

c r c c r c c r c

cr c cr c cr c

      

   
  (3.11) 

and 

31 2 4

5 6

1 2 3 4
1 2 3 4

5 6
5 6

e e e e

e e
0.

r br b r b r b

r b r b

c c c c
r r r r

c c
r r

   
   

 
 

  
   

  
 

  (3.12) 

Some calculations give 
 

 

 

 

     

1 0 2 0 3 0

1 0 2 0 3 0

1 0 2 0 3 0

3 2

1
3 2 1 3 2 1

1 2 3

1 3
2

3 2 1 3 2 1

1 2 3

2 1
3

3 2 1 3 2 1

1 2 3

1 2 1 3 5 6 3 1 1 2
4

,
e e e

,
e e e

,
e e e

e , , e ,

r u r u r u

r u r u r u

r u r u r u

r b r b

c
r r

r r r

r r
c

r r r r r r

r r r

r r
c

r r r r r r

r r r

r r r r r r r r r
c

  



  



  

 




 
  




  
 

  




  
 

  

  


     

3 2r r

r r r r


 

           

1

1 0 2 0 3 0

3 2 1

5 1 0

5 6 2 3 1 1 5 6

3 2 1 3 6 5 4 6 5 42 1

1 2 3 4 5 6

1 3 4 6 1 3 1 2 4 6 3 2 1 1 4 6
5

3 2

1

, e , ,
,

e e e e

e , , e , , e , ,

e e

r b

r u r u r ur b

r b r b r b

r b r u

r r r r r r

r r r r r r r r r rr r

r r r r r r

r r r r r r r r r r r r r

r r
c

r



     

  




 

      
             

    






4

2 1

c

r r
c





           

2 0 3 0

3 2 1

6 1 0 2 0 3 0

1 3 6 5 4 6 5 42 1

2 3 4 5 6

1 3 4 5 3 1 1 2 4 5 2 3 1 1 4 5

3 2 1 3 6 52 1

1 2 3 4

,

e e

e , , e , , e , ,

e e e e

r u r u

r b r b r b

r u r u r u

r r r r r r r rr r

r r r r r

r r r r r r r r r r r r r

r r r r r rr r

r r r r

    

  

   

     
           

    

   
       

1 2
6

r b

r r
c

c


4 6 5 4

5 6

,
r r r r

r r 
  

    

          (3.13) 

Copyright © 2013 SciRes.                                                                                  OJS 



Z. LIU  ET  AL. 142 
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Remark 3.1 Now, we give the explicit results for 
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For 0  ,V b b  in Liu et al. [17], we obtain 
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oint out  expone llow the same steps to get the 
explicit ex

We p that when the innovation times are ntially distributed, one can fo
pressions of  g u , which coincide with the results in Albrecher et al
e 3.2 (The expected discounted tax payments.) Following from Equat
ve for 0 u b  , 

. (2008). 
Exampl ion (2.34) of Theorem 2.2 and Remark 

3.1, we ha
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And, for u b , we have 
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Then we can get that when iW ’s are Erlang (2) dis- 

tributed with pa 1

     (3.20) 

rameters   and 2 , the expresses of 
 g u  can Equations (3.15) and (3.17) and 

the expecte  tax payments can be given by 
Equation (3.20). 
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