
J. Software Engineering & Applications, 2010, 3, 914-925
doi:10.4236/jsea.2010.310108 Published Online October 2010 (http://www.SciRP.org/journal/jsea)

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software
Development for Enterprises

Jindan Feng, Dechen Zhan, Lanshun Nie, Xiaofei Xu

Research Center of Intelligent Computing for Enterprises and Services, Harbin Institute of Technology, Harbin, China.
Email: Jindan.Feng@gmail.com, {dechen, nls, xiaofei}@hit.edu.cn

Received July 15th, 2010; revised August 3rd, 2010; accepted August 15th, 2010.

ABSTRACT

The enterprise software need adapt to new requirements from the continuous change management. The recent devel-
opment methods have increased the flexibility of software. However, previous studies have ignored the stability of busi-
ness object and the particular business relationships to support the software development. In this paper, a
coarse-grained business object based software development, BOSD, is presented to resolve this problem. By analyzing
the characteristics of variable requirement, business objects are abstracted as the separately-developed unit from busi-
ness process, and are assembled to system through their relationships. The methodology of BOSD is combined with
MDA (Model Driven Architecture) and implemented on the semiautomatic platform.

Keywords: Business Requirement Change, Business Object, Relationship, Business Process, Information Systems,

Flexibility, MDA

1. Introduction

Enterprises use information system to optimize their
management, and further enhance its competitive abili-
ties in the markets. There are many changes in the opti-
mization processes, such as the transformation from ex-
tensive management to intensive management, the trans-
formation from various objects to uniform business ob-
ject, and the transformation from disordered process to
normative process [1]. One of the major challenges in the
enterprise software is the adaptability at run time.

Currently, there are basically two types of factors to
flexible software development. The first factor includes
the potential changes of requirements and the discipli-
narian of these changes. The researchers consider that the
software adaptabilities focus on the business processes
[2,3], and the processes follow the special change pat-
terns [4]. The second factor is the proper development
approaches which support the disciplinarian. There are
three representative approaches to achieve the flexible
software: Component-Based Software Development
(CBSD), Model Driven Development (MDD), and Ser-
vice-oriented Software Development (SOSD).

The CBSD emphasizes the software architecture, on
which the software is iteratively assembled with different
grained components [5]. The software developed by

CBSD adapts to the changes of environment by reusing
the existing components [6]. The MDD is an approach
that generally separates the functionality from the im-
plementation from the perspective of separation concern.
The Computation-Independent Model (CIM), which is
composed of business-centric models, is transformed to
Platform-Independent Model (PIM) which represents
software design rather than the details on the technology
platform. The PIM is further refined to Platform-Specific
Model (PSM), which is implementation model on the
concrete platform. Finally, the software corresponding to
the PSM is produced by code generator [7]. The MDD
elevates the abstract level from codes to models. It makes
the software quickly adapt to the new requirements
through modifying the models. The approach depends on
two aspects, the first, the well-formed models which
have a directly effect on the correctness of the software
[8]; the second, the mature technologies of the mapping
and transformation among models [9]. However, the
MDD cannot be separately used, and must be combined
with the suitable modeling methodology to realize the
specification of enterprise software [10]. The SOSD
proposes that the service has a larger granularity than the
source code traditionally, and the service is considered
fundamental elements for developing applications [11].
The Business Process Execution Language (BPEL),which

BOSD: Business Object Based Flexible Software Development for Enterprises 915

defines the sequence of Web Services Description Lan-
guage (WSDL) interface, provides support for executable
and abstract business process. Hence, the web service
can be dynamic and flexible to meet changing business
needs.

The above mentioned approaches are essentially clas-
sified into two categories: business process oriented
software development approach and business object ori-
ented software development approach [12].

The business process describes the ordering of activi-
ties for the purpose of achieving business objectives in
the context of business organization and policy [13]. The
business process oriented software development is an
approach that focuses on the identifying business activi-
ties and decomposes the interaction of these business
activities. A business process is performed by coopera-
tion of a number of business resources called business
objects. For an explicit business objective, these business
activities are implemented and encapsulated into busi-
ness objects according to the relationships of their func-
tions [14]. The software based on business process can
support dynamic configuration of activities with specific
control styles such as the workflow [15].

The business object oriented software development is
an approach that identifies business objects and the rela-
tionships between them. And then the business objects
are assembled into the software as loosely coupled sys-
tems. A further benefit is that when the business process
changes, the software can rapidly reconfigured through
reusing the existing business objects to meet the changes
at reduced cost of development and modification [16].

Although the approaches are considered business proc-
ess-centric and business object-centric, respectively, they
are complementary to the design of software, and always
are used together [4,17,18]. In the combination of the
processes and objects, one of them is the more change-
able. As above mentioned, the business objects have
more stability than the process. However, there are many
different definitions of business object proposed pres-
ently. The general definition comes from Domain Task
Forces (DTF) of Object Management Group (OMG). The
Business Object is defined as a representation of a thing
active in the business domain, including at least its busi-
ness name and definition, attributes, behaviors, relation-
ships, rules, policies, and constraints. A business object
may represent, for example, a person, place, event, busi-
ness process, or concept. Typical examples of business
objects are: employee, product, invoice, and payment
[19]. The business object can be used to describe the
meta-model of enterprise [20]. A business object is also
seen as a “class” or a set of classes in the object-oriented
system, and further support a defined business area [21].
The existing definition of business object generally is

considered any objects which are the inputs and outputs
of business actions. The business objects generally refer
to the classes which cover the contents in the different
domains, such as business domain and software domain.
In fact, the objects play different roles in the phases of
business modeling, software design and software imple-
mentation etc. Therefore, business objects need to be
distinguished explicitly.

In this paper, the concepts of business object and their
relationships are proposed for the designing of enterprise
software. We present (1) an explicit definition of busi-
ness object; (2) the semantic completeness of business
object; (3) business object is considered the smallest
units of the business modeling, and the biggest units of
the software realization; (4) a business component is an
implementation of business object on the technology
platform, and is a coarse-grained component.

In short, there lack of the strict and systemic methods
to support the development of flexible software for en-
terprise. The potential requirements which occur in ap-
plication phase need to be considered adequately in the
software design phase. Aiming to adapt the more changes
in the field of business management, the software adjusts
itself locally by right of the reusability. The paper pro-
poses an approach of software development based on
business object, which is combined with the excellences
of the mentioned approaches (CBSD and MDD). The
approach is divided into three steps. First, we identify the
business objects which have relative stability, and are
regarded as separately-developed units of software. Sec-
ond, we analyze the relationships among the business
objects. Last, the business objects are composed into the
flexible software under the control of the relationships
mechanisms. The approach combined with the Model
Driven Architecture (MDA) should be supported by a
semiautomatic development platform. The paper at-
tempts to provide the methodology for business modeling
and its realization project for flexible software.

The structure of this paper is as follows. In Section 2,
the variable requirements are briefly introduced. In Sec-
tion 3, we present a definition of business object and the
relationships between them. In Section 4, we further dis-
cuss the modeling methodology based on business object,
and illustrate the details in our approach. The conclusion
is given in Section 5.

2. The Variable Business Requirement

The changes of business requirements bring some nega-
tive effects on enterprise software at run time, sometimes
even fatal impacts. For instance, 1) if a new data item is
added and considered the primary key of the data view in
the database, the software must adjust the relational
components to adapt the change; 2) If the dependence

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software Development for Enterprises

Copyright © 2010 SciRes. JSEA

916

relationships, (such as the state sequence of business
documents, the associations between the documents), are
changing in business system, the business process reen-
gineering work through information technology is also
needed for the new relationships. Therefore, if the soft-
ware has abundant adaptability and flexibility, it can en-
hance the reengineering efficiency and decrease the reuse
cost. In order to develop successfully flexible software
for enterprise, it’s primary problem for the software de-
velopers to understand accurately the business require-
ments and their changeable characteristics at run time.

In the real enterprises, business requirements always
changes continually, and the changes follows the par-
ticular rules. According to our experiences in software
development, we find that there are various changes of
the business process between the different enterprises,
which are in the same industry. In this section, we illus-
trate the variable requirements using the Purchase Order
as an example. There are the different processes of mak-
ing the Purchase Order, and every process represents a
sequence of creating Purchase Order in Figure 1. The
general routes is “submit Requirement  schedule Plan
 inquire Price  build Order” in Process 1. The op-
tional route shows that Purchase Order is refined directly
from the Requirement Bill in Process 2, and the route is
used for emergency requirements. With the improvement
of information degree in enterprise system, the contents
of Purchase Requirement in Process 4 can be imported
from the records of the material requirements in the
workshops, or obtained from computing the replenish-
ment amount for inventory. The different types of Pur-
chase Requirements, such as large facilities and produc-
tion materials in Process 4, will go through the different
approval processes.

Although there are different processes which are used
for creating the Purchase Order, the business documents
in the processes are limited to a certain scope, and they

are Requirement, Plan, Quotation Invoice and Order for
purchase. And then, the corresponding forms in each
Process have similar kernels, for example, the every Re-
quirement Bill contains the data items as follows: keys,
Need Department, Item Code, Need Amount and Date
etc. Sometimes, these data items may have the different
names, but the same semantics. According to the stan-
dardization degree, the assistant information in docu-
ments may exist or not, such as the data items used for
describing state transformation. Therefore, we find that
the documents are similar, and there are little differences
between them in the same business transactions.

From the analysis above we can know, the processes
of making purchase order are various, and essentially the
relationships between the documents are various. It’s
obvious that the business documents have relative stabil-
ity. The business documents are more stable than the
business processes. By analyzing the feature of business
process, we find that the processes also follow the rules.
The relationships between business objects are divided
into three types: approval process, association process
and integration process, and they are shown in Figure 2.
The approval process is one of the basic processes in the
lifecycle of business documents. The approval process is
a set of activities, including auditing and affirming. The
people at the different ranks run the activities corre-
sponding to their rights. The association process is com-
posed of the activities which deal with the many-to-many
relationship between two documents. The integration
process is an activity set to create new documents
through the computation based on one or more existing
documents. The computation rules are always compli-
cated, and need to be produced by hands. If these rela-
tionships are identified clearly, they are implemented
based on the particular patterns. Therefore, the difficulty
of assembly is reduced to a certain degree.

The business system is thought as dynamic network,

Create order

Purchase Plan

Quotation Invoice

Purchase Order

Inquiry price Transform
to Quo

Purchase
Requirement

Planning

Transform
to Order

Create order

Purchase Plan

Quotation Invoice

Purchase Order

Inquiry price

Purchase
Requirement

Planning

Create order

Purchase Plan

Quotation Invoice

Purchase Order

Inquiry price

Purchase
Requirement

Transform
to Order

Process 1

General
Manager

Create order

Purchase Plan

Quotation Invoice

Purchase Order

Inquiry price Transform
to Quo

Purchase
Requirement

Planning

Workshop material BOM Maintenance file
of equipment

Inventory

Approval process for material

Deputy General
Manager

Workshop
head

General
Manager

Approval process for equipmentManager of
equipment

Maintenance
Deputy General

Manager of power
Deputy General

Manager of finance

Trigger

Transform
to OrderProcess 2 Process 3 Process 4

Figure 1. The optional processes of creating purchase order.

BOSD: Business Object Based Flexible Software Development for Enterprises 917

Create order

Purchase Plan

Quotation Invoice

Purchase Order

Inquiry price Transform
to Quo

Purchase
Requirement

Planning

Workshop material BOM Maintenance file
of equipment

Inventory

Approval process
for material

General
Manager

Deputy General
Manager

Workshop
head

General
Manager

Approval process
for equipment

Manager of
equipment

Maintenance
Deputy General

Manager of power
Deputy General

Manager of finance

Trigger

Transform
to Order

Integration Process

Approval Process

Association Process

Figure 2. Three types of business processes.

and is composed of stable business documents and the
various business processes. If the software has been im-
plemented only using the approach based on the process,
it is difficult to adapt quickly to the new relationships.
Therefore, the approach is combined business objects
with business processes together in this paper. The proc-
ess-oriented requirement analysis is transformed into the
object-oriented software development in the approach.
First, requirement analysts understand the business proc-
esses in the enterprise, and identify the business docu-
ments. Second, the business objects are abstracted from
the documents by software designers. The objects are as
independent as possible, thus they can be reused for the
variable processes. Third, the connections between ob-
jects are built in the light of current requirements. Finally,
the business objects are realized to business components.
The business processes are transformed to the coopera-
tion relationships among the components, which are
supported by the workflow engine. By doing so, we en-
able to assemble the flexible software form the business
components and workflow engine.

3. Business Object

Basing on the business object from OMG, the business
documents and their relationships are identified to busi-
ness object and these three relationships in Figure 3,
respectively. And then, we separate the business seman-
tics of business object from its implementation.
Hence, our business objects differ from the objects of
OMG in the following aspects: 1) from the perspective of
software design, business object is a basic operation unit
of system, is a integration of the data and the operations
on them; 2) from the view of external application, busi-
ness object is an integrated body, including the informa-

Business
object A1

Business
object A2

Business
object A3

Business
object B1

Business
object B3

Business object B2

Data/General
Operation

Association
Operation

Association
Operation

R1

R5

R6
R2

R3
R4

Extended operation

Association
Path

Approval Path

Integration
Path

State
transformation

Path

End

Start

Extended
operation

Figure 3. The business objects and their relationships.

tion which are collected and transformed by the users,
the state transformations and operations which affect on
the information, and the state transformation is such as
start, running, end; 3) from the view of object-oriented
structure, business object has an identifier number, data
sets, operation sets, and its own lifecycle; 4) from the
view of representation format, the business object repre-
sents that some children tables are attached to a father
table; 5) from the software implementation view, busi-
ness object is implemented to business component with
the software technology.

The definition of business object is as follows:
Definition 1: Business Object (BO) is defined as a ba-

sic operation unit with the integral semantics in the field
of enterprise business. Business object is described as BO
= (BOID, DS, OPS, SS), where:

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software Development for Enterprises 918

1) BOID is the ID number of BO;
2) DS is the data sets. DS = {CDS, {ADS}}; CDS is the

core data set; ADS is assistant data sets. Every data set is
composed of numerous data elements, which have the
same or similar semantics. DS need satisfy the following
constraints: ① CDS ≠ ; ② d is a data element of the
DS. BO, XCDS, X = {d1, d2, d3, …}. But X, there
doesn’t exist more than one xi, xiX, which uniquely
determines the CDS of BO; ③ ADS = {ADS1,
ADS2,…,ADSi,…,ADSn}, ADSi = {dn | dn is data element,
dn  DS-CDS} and ADSi ∩ ADSj = , where i, j = 1, 2,
3…; ④ CDS ∩ ADS = ; ⑤ If ADS = , there is DS
= CDS;

3) OPS is the operation sets of BO. OPS = {GPS,
EPS}, GPS ∩ EPS = , GPS  . GPS is general opera-
tion set, EPS is extended operation set. An operation set
is composed of many associated operations. GPS = {op1,
op2, …, opi, …, opn}, where i = 1, 2, 3…; OPS need sat-
isfy the follow constraints: ① GPS  ; ② op is a
operation element of the OPS. BO, YGPS, Y = {op1,
op2, op3, …}. Y, there exists single one yi  Y, that
makes GPS exist uniquely; ③ If EPS = , then OPS =
GPS; ④ GPS acts on the CDS at least, else EPS deals
with CD or ADS.

4) SS includes the states and their transformation. SS =
{(Si, Ti)}, where Si = {sis, …,sij, …, sie}, sij is the middle
state in the Si. Si, there exists a start state called ss and a
end state named as se; Ti = { tij | tij = (sim, sin, p), opk  p, p
is a ordered set of opk, pOPS. tij represents that BO is
transformed from the present state sim to the next state
sin}.

BO is classified into different categories according to
their business functions in the certain industry, for exam-
ple, the class of Purchase Requirement, the class of
Equipment Maintenance, the class of Warehouse Entry
etc. Every category of BO is an abstract set of business
documents, which have the similar features. One of the
classes is further divided into children classes according
to the concrete semantics. For instance, the class of Pur-
chase Requirement has children classes as follows: the
requirement for production material, the requirement for
equipment, the requirement for office etc.

BO describes all of the semantics at the range of busi-
ness document. The semantics is partitioned into some
semantic dimensions. Every semantic dimension contains
three planes: data, operations and states. Every plane is
made up of two axes. The data plane is P(x, z), opera-
tions plane is P(x, y), and states plane is P(y, z). Thus,
semantic dimension is defined as BSD (id, BOID.ds,
BOID.op, BOID.ss), where BOID.ds  DS, BOID.op 
OPS, BOID.ss  SS. When the operation is triggered in
one dimension, the values of data and states will be
changed in the same semantic dimension. Figure 4 gives

an example to illuminate what is semantic dimension in
BO. The main semantic dimension of Purchase Re-
quirement is a cross section, which is composed of CDS,
GPS and Running state, where CDS = {Bill identifier,
Material item, Requirement amount, Requirement
date, …}, GPS = {Insert, Modify, Delete, Release, Per-
form, …} and Running state is set (S00,T00) = {{NewCre-
ated state, Released state, Running state, Finished state},
{(NewCreated state, Released state, Release), (Released
state, Running state, Perform)…}}.

We proceed to define the three relationships based on
the semantics partition, which are shown in Figure 2.
The definition of approval relationship is as follows:

Definition 2: Approval Relationship is defined as a
set of AP, is a series of the approval actions. The ap-
proval action is represented as a node. The AP = (StepID,
Precondition, Roles, Operation, Next StepID), where
StepID is the node identifier. This node is visited when
the precondition has been prepared. Roles = {role | role
has the rights to perform the approval operation}. Op-
eration = { a | a represents op  (a = accept or a = re-
ject)}, Next StepID = { b | b represents StepID, where b =
x iff Operation = accept, or b = y iff Operation = reject, x,
y  {StepID}}.

After the auditing people finish the operations, the val-
ues of auditing dimension will be updated, and than the
BO will be transformed to the next steps, in where the
transformation path are predefined in AP. There exist
many different approval paths for a BO, because the en-
terprises apply the extensive or intensive management
pattern.

The auditing relationship is an ordered route in the au-
diting dimension. For instance, the approval dimension
involves the following elements: ADSi = {approval ac-
tion ID, people name for approval, approval date, ad-
vice}, EPSi = {Query, Accept, Reject} in the approval
actionm, where m=1,2,3,…,n. (Sij,Tij) = {{Waiting State,
Accepted State, Rejected State}, {(Waiting State for Ap-
proval, Approving, Accept in the action1),…, (Approving,
Accepted State, Accept in the actionn)}}.

The approval relationship has effects on the inner of
one BO. On the contrary, the association and integration
relationships are built on the corresponding semantic
dimensions among Business Objects (BOs). When two
BOs are connected with the relationships of association
or integration, the any operation of BO may change the
state of the other BO.
For the association relationship between two BOs, a
middle BO named as Association Object bridges many-
to-many relationship of data. In Figure 4, BO3 is an as-
sociation object between BO1 and BO2. The association
object is a virtual object for software designer, is not an
entity which is transacted by the business people.

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software Development for Enterprises 919

BO1.SS

BO1.DS

BO1.OP

Basic Content
Dimension

BO1-BO2
Associate
Dimension

ADS
i

(S
ij ,T

ij)

E
P

S
i

CD
S

(S
00 ,T

00)

G
PS

BO1

x

y

z

BO2.OP

BO2.SS

BO2.DS

BO2-BO1
Associate
Dimension

ADS j

(Sjj,Tjj)

EPS
j

BO2

x

y

z

BO1.ADSi+BO2.ADSj

BO1.EPSi+BO2.EPSj

BO1.(Sij+Tij)+BO2.(Sjj+Tij)

Associate Object’s
Basic Content

Dimension

BO3

z

x

y

BO4.SS

BO4.DS

BO4.OP
CDS=F(BO1.CDs)

(S00,T00)

G
PS

BO4

EPS={Y,N}

Examine and Approve
Dimension

Basic Content
Dimension

z

x

y

Figure 4. Business semantic dimensions.

Definition 3: Association Relationship.
BO1, BO2BO, if BO1 is associated to BO2, the fol-

lowing condition must be prepared:
1) There is BO2-oriented semantic dimension named

as BSD1 (BO1.ASS, BO1.ADSi, BO1.EPSi, BO1. (Si,Ti)). At
this moment, the every element of this tuple has special
semantics. The data element of BO1.ADSi is associated to
the data element of BO2. The EPSi is an operation set,
which connects the data mapping from BO1 to BO2.
BO1.(Si,Ti) represents the association states in this di-
mension of BO1, whose values will be changed because
of this mapping.

2) BO2 also has the BO1-oriented semantic dimension,
named as BSD2 (BO2.ASS, BO2.ADSj, BO2.EPSj,
BO2.(Sj,Tj)), the others are similar to (1).

3) There exists one association object, represented as
BO3 (BO3, BO3.DS, BO3.OPS, BO3.SS), Where BO3.CDS
= BO1.ADSi  BO2.ADSj; BO3.GPS = BO1.EPSi 
BO2.EPSj; BO3.SS = {(S0, T0), BO1.(Si, Ti), BO2.(Sj, Tj)},
it is composed of the Running States (S0,T0) in BO3 and
association states.

The core data set of association object is composed of
data in these BOs which associate with each other. There
are three types of associations according to the functions
of data items, such as the association between data items,
the association between keys, the association between
keys and attributions. In association object, the ADS
contains data elements as follows: Creator, Creating
date, the Last Modifier, the Last Modifying Date etc. In

the complex system, the association is bidirectional and
transmissible. For example, the Process 1 in Figure 1
shows that there is a direct association between the Pur-
chase Requirement and Purchase Plan. The numerous
records of materiel requirement are combined into one
purchase task of Purchase Plan. And then the Purchase
Order is transformed from the Purchase Plan. Thus, the
indirect association between the Requirement and Order
is connected. The object of Purchase Requirement can
build many direct or indirect association paths with the
other objects in its lifecycle. The subsequent records in
the business process can be traced to the sources along
the paths. By doing so, the intensive management keeps
at the fine granularity in the enterprise.

Definition 4: Integration Relationship.
BO1, BO2BO, there exists BO1(BO1, BO1.DS,

BO1.OPS, BO1.SS) and BO2(BO2, BO2.DS, BO2.OPS,
BO2.SS). There is not less than one d = F(BO1.d1,…,
BO1.dn) in BO2.CDS, where F is formula used for com-
puting value of BO2. Thus, there exists the integration
from BO1 to BO2.

In real enterprise, the part values of business object are
obtained from many business objects through the com-
plex computation. Therefore, the definition 4 can be ex-
tended. If there are integration relationships in the BO1,
BO2, …, BOn and BOj, BOj (BOj, BOj.DS, BOj.OPS,
BOj.SS) must satisfy that there exists no less than one
data item d = F(BO1.d1, …, BOi.dk, …, BOn.dn), where F
is formula used for the computation from BOi to BOj,
1inj. Generally, the formula F is various in different
enterprises. Therefore, the implementation of F is second
development by the programmers. The operation patterns
of integration are classified into Push Integration and
Pull Integration. The pattern called Push Integration
need satisfy the following constraints: 1) the lifecycle of
BO1 is earlier than BO2; 2) the operator in BO1 is used for
triggering the integration; 3) the BO1 starts the integra-
tion, and BO2 receives the messages. On the contrary, the
Pull Integration is that the trigger operation belongs to
BO2, and BO2 is defined as active object.

4. BOSD

4.1. Basic Thinking

In this section, we propose the software development
approach that combines business object and business
process together. The basic thinking is shown in Figure
5.

In the phase of requirement analysis, the consultators
firstly analyze the management patterns and further build
the models through researching the actuality of enterprise.
First, the decision model is planar model which is an
extended GRAI-GRID model. The decision model is

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software Development for Enterprises

Copyright © 2010 SciRes. JSEA

920

is a set of documents. The ACTION’ defines the set of
activity, which is executed by the ORG and acts on the
ORDER. Finally, the information objects are abstracted
from business documents which are used in the process
models. Thus, the function-oriented requirements are
collected clearly.

Management
pattern

Business
process

Bill of Document
/Information Object

Requirement Analysis Phase

Business
object

Business Action Business process

Analyze and Abstract

Design

Business
Component

The executable workflow model
(workflow engine)

Implement

Transform

Software Design Phase

Software Implementation Phase

Management Model
/Decision Model

Implement

Aiming to enhance the independence of business ob-
ject, the functions acting on the information objects are
combined with the information objects to business object
in the phase of software design. The business objects are
connected to business processes by the business actions.
For designing the flexible software using this approach,
the approval, association and integration relationships are
implemented by the particular approach in Figure 6. The
software development is followed these steps: 1) the
business component corresponding to the special BO is
developed independently; 2) the inner relationships, such
as the approval process and state transformation, are
firstly considered to implementation; 3) when the whole
business object is designed clearly, we connect them us-
ing the association relationship. And we define the state
transformation which is affected by the associations un-
der the control of association mechanism; 4) at last, the
complicated integration relationship is developed by the
extended mechanism, including automatic data import,
computation and carrying forward etc.

Figure 5. The process of BOSD.

defined as Decision Model = (H/P, FUNC, ORDER, De-
cisionCenter), where, H/P is row and FUNC is columns;
H/P represents the different decision granularity, and is
used for defining the time span (such as year or month)
or different decision layers (such as stratagem layer, tac-
tics layer and operations layer); A business target is gen-
erally realized by the collaborative activities, each of
which is executed respectively by the different depart-
ments. FUNC is a set of functions. FUNC is described as
a set of relationships, which are used for realizing a
common target. The DecisionCenter is a cross cell of the
row and column, and is defined as {order | order =
f(h/p,func), h/pH/P, funcFUNC}. The order repre-
sents an instruction, which is always saved in the busi-
ness document. Second, we can produce the business
process models through tracing the physical transforma-
tion from the materials to the products. The business
process in the requirement analysis phase is defined as
follows: Process Model = (IP, ORG, DOC, ORDER,
ACTION’), where the IP is the information entity, repre-
sents an instruction or document in process model. The
IP = {ip | ip = order or ip = doc and orderORDER, doc
 DOC}. The ORG represents the department set. DOC

In the development phase, business components are
transformed from BOs, the relationships between them
are implemented to executable workflow model. Thus,
the workflow model is defined as (BO.DS, BO.AT, CON,
ATRelation, RoleSet), where the BO.DS is the set of data;
BO.AT represents the activity set, is mapping to the
BO.OPS. CON = {conditionx→y | condition is the trans-
formation condition from the activity x to y}; The ATRe-
lation is the transformation rules, is defined as ATRela-
tion = { f | y=f(x) iff conditionx→y=true, xBOi.AT,
yBOj.AT, i,j=1,…,n}; RoleSet is the roles which take
part in the BO.AT.

Purchase Plan

Quotation Invoice

Purchase Order

Purchase
Requirement

General
Manager

Purchase Plan

Quotation Invoice

Purchase Order

Purchase
Requirement

Deputy General
Manager

Workshop
head

General
Manager

Manager of
equipment

Maintenance

Deputy General
Manager of power

Deputy General
Manager of finance

Create order

Purchase Plan

Quotation Invoice

Purchase Order

Inquiry price Transform
to Quo

Purchase
Requirement

Planning

Transform
to Order

Step (4)

Purchase Plan

Quotation Invoice

Purchase Order

Purchase
Requirement

Workshop material BOM Maintenance file
of equipment

Inventory

Trigger

Step (3)Step (2)Step (1)

Figure 6. The steps of building the relationships between BOs.

BOSD: Business Object Based Flexible Software Development for Enterprises 921

4.2. Development Framework

The methodology introduced in Section 4.1 is very enor-
mous and need to be supported by software technology.
Hence, we choose the platform named as ICEMDA (In-
teroperable Configurable Executable Model Driven Ar-
chitecture) [22,23] to implement this thinking. The plat-
form has been developed mostly and is shown in Figure
7. There are five phases using this platform to develop
the software for enterprise as follows: building the CIM
for business requirement, building the PIM for the soft-
ware design, and building the PSM for implementation
on particular platform, generating the components from
PSM, and assembling the components to a system.

The models in the requirement analysis phase are
structured as decision model, business process model,
information model and organization model on the sup-
port of using graphical modeling tools [24] on the CIM
layer. The models on the CIM level are semi automati-
cally transformed to the models on the PIM level, which
involves business object models, BO-based workflow
model, role-dependent model and data model. The three
relationships above mentioned are described detailedly in
the BO-based workflow model on the PIM layer. And
then the PIM is refined to the PSM on J2EE platform,
such as business component model (the model for com-
ponent implementation) based on a specific software
pattern, the executable workflow model, and the de-
ployment model which defines the assembly of business
component and workflow model. The business compo-
nent is produced from the Platform-specific component
model by code generator [25], and then can be secondly
developed for meeting the special requirements. In the
system for enterprise, the workflow engine parses the

workflow models, and then choreographs the compo-
nents to supply the different services to the clients.

4.3. BO and Relationships Expression

We illustrate the expression of BO and the relationships
using a purchase management system. The business ob-
jects of purchase system are purchase requirement, quo-
tation, purchase plan, purchase order, arrival notice and
advice of settlement etc.

According to the definition 1, the contents of BO are
described by the graphical platform-independent models
in Figure 8. There are four types of platform-independent
models which correspond to the data, state and operation
set in Definition 1, and they are the data diagram, state
diagram and class diagram. The use case diagram is
mapping to the role-dependent model, which represents
the roles act on the business objects in the workflow
model.

The relationships between BOs in the Section 3 are
described by a special relationship object called BOR
(Business Object Relationship). The BOR can be imple-
mented into three instances: association object, auditing
object and integration object. And the BOR is also made
up of the rules from the views of the data, operations and
states. We can define the BOR = {fR(BOi, BOj) | fR = (r1

 …  rk), r1, …, rk  R}, R = { r | r = f(xsm, xsn),
xsmBOi.XS, xsnBOj.XS, 1 m  |BOi.XS|, 1  n 
|BOj.XS|, where x = d |op |s, X = D|OP|S }. The Process
4 in Figure 1 is modeling to the class diagram, which is
shown in Figure 9. The bold lines represent the source
process, and every BO has its own auditing object, just
like the Auditing 2 for materiel. The graphical model is
used for understanding easily, and further the model is

Figure 7. The ICEMDA framework.

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software Development for Enterprises 922

CDS primary Key

<BO> CDS / Entity 1 <BO> ADS2 / Entity 3

<CDS primary key> (FK)
<ADS2 PK>

<BO> ADS1 / Entity 2

<CDS primary key> (FK)
<ADS2 PK>

<BO> ADS3/ Entity 4

<CDS primary key> (FK)
<ADS3 PK>

includes

includes includes

BO:IDEF1x Diagram

BO: State Diagram

State1 State2

State3 State4

BO: use case Diagram

<<include>>

<<include>>

<<extend>>

<<extend>>

Use case name

Role name

User 1 User 2

Role-specific
object

Role-specific
data set

Data set

Operation
set

Role-specific
operation set

BO: Class Diagram

Class 1 Class 2

Class 3 Class 4

Figure 8. The BO platform-independent model.

<<BO>>
No3:Purchase plan

<<BO>>
No4: Quotation Invoice

<<BO>>
No5: Purchase Order

<<BOR>>
Integration 1-2

<<BOR>>
Association 1-2

<<BOR>>
Association 2-3

<<BOR>>
Association 3-4

<<BOR>>
Association 4-5

<<BO>>
No1:Workshop material

<<BOR>>
Auditing 2 for materiel

<<BO>>
No2:Purchase requirement

Figure 9. The class diagram of BOs.

saves as the file in XML (eXtensible Markup Language).
Thus, the BOR is expressed as the fragment of XML.

When the Purchase Requirement is arranged into Pur-
chase Plan, the association relationship between them
has been built. It’s defined as the following XML list:

<associationSet>
<ass AssBOId="No2-No3">

 <AssedObject BOId="No2"

 name=”Requirement”
assString="Need_code,Material_code,
Material_name,needNum">
</AssedObject>

 <AObject BOId=" No3"
 name=”Purchase Plan”

assString="Plan_code,Material_ID,PlanNum">
</AObject>

 <assCondition>
Material_code = Material_ID
</assCondition>

</ass>
</associationSet>
The second example is that Purchase Order is ap-

proved by the appropriate roles, each of which has the
permission right according to the material type or money
amounts. Thus the approval relationship of Order can be
described as:

<ApprovalPath BOId="No5">
<step StepId="start"

personString="dept manager"
condition="money<=50000 and money>0 or ma-
trial belongto 'steel'"
nextStep="accept?first:goback"></step>

<step StepId="first"
personString="assistant manager"
condition="money<=100000
and money>0"

nextStep="accept?second:goback">
</step>

<step StepId="second" ...></step>
<step StepId="end" personString="manager"

condition="money>100000"
nextStep="accept?gonext:goback"></step>

</ApprovalPath>
The third example: when the material in workshop

lacks abruptly, the record of Requirement No2 is
achieved through importing the data of Workshop Mate-
rial Requirement. For supporting this process, that inte-
gration relationship between these objects need be prede-
fined. When the delivery date is satisfied, the integration
formula F = {Order.needNum = ∑ Requirement. Mate-
rial-Num}. The operator used for triggering the Pull In-
tegration is defined as follows:

<extendOpSet>
<extendOp opID="ExtendedOP"

opName="import from Workshop Material Re-
quirement ">

<whereRun BOId=”Order”></whereRun>
<! —Pull Integration-->
<function> Order.needNum = sum (Requirement.

MaterialNum)
</function>

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software Development for Enterprises 923

<condition> Order. needNum, Order. time
</condition>

…
</extendOp>

</extendOpSet>

5. Related Works

Several researchers have done work on developing en-
terprise software based on business object. Typical ap-
plications are requirement engineering, software design
and implementation. Generally, the business object is
used for implementation of business logic, which is
composed with appropriate presentation object or web
application to become an integrative application for the
terminal clients. However, with the improvement of the
enterprise software, business object is considered impor-
tant object type. The business object type, technical ob-
ject type and application object type are three types of
objects based on the principle of separation of concern
[26]. And then the business objects are specialized to
common business objects, industry specific business ob-
jects, company specific business objects and user specific
business objects according to the individual requirements
of the different roles [27]. Therefore, the business objects
are defined as components of the enterprise software that
directly represent the business model. The largest granu-
larity of business objects are cooperative business object
(CBO) [28]. The CBO is considered the end product of
the development process and cooperates with other ob-
jects to perform some desired task.

The different business objects have different applica-
tion scenarios, therefore the characteristics of business
object are diversity. In Table 1 we give the comparisons
between our business object and the common BO from
OMG and the CBO from O Sims [28]. On one hand, the
BO in this paper is lower level than the OMG’s BO. On

the other hand, the BO in this paper, which is the compo-
sition of many fine-grained objects, is one kind of the
smaller scale CBO. These fine-grained objects always
cooperate partially to meet the requirement in the range
of business documents. The software development based
on the different BOs is also comparatively diversity. We
compared our BOSD to the business process-based
methodology which is proposed by Somjit and Dentcho
[14] under the background of Figure 1. The number of
BOs in Figure 1 is twenty, including eight BOs, eight
auditing objects, four association objects and four inte-
gration BORs; the number of BO is eight in the method
proposed by Somjit. Although they are coarse-grained
objects, the reconfiguration cost of BOSD is mostly half
of the other method. We only modify the information of
the BORs to meet the processes changes.

According to the comparison above mention, our busi-
ness objects are closest to the component-based imple-
mentation for enterprise software. A benefit of our ap-
proach is that it defines clearly the relationships between
the business objects. The model for software design
which is composed of business objects and the relation-
ships is easily transformed on the MDA platform.

6. Conclusions

In this paper, aiming at the problem that current flexible
software development methods lack of the systemic
methodology and technology support, we present an ap-
proach based on coarse-grained business object. By ana-
lyzing the changeability of business processes and stabil-
ity of business objects, we abstract an independent busi-
ness object as the unit of development and reconfigura-
tion. The three relationships among business objects are
defined to describe the variable business processes. Thus,
the business objects are assembled to system through
their relationships. The implementation of this approach

Table 1. Comparisons between the BOs in literatures.

 OMG’s BO BOSD’s BO Sims’s CBO

Counterpart in real enterprise concept Business document The integration application for the user

Software lifecycle All phases design phase All phases

Abstract degree High Low Low

Architecture undefined defined open

Independence — Y Y

Granularity — large larger

Reusable Y Y Y

Easy to program — N N

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software Development for Enterprises 924

is supported by the ICEMDA platform.

In conclusion, there are several innovations in the
method presented in this paper, as follows: 1) analyze the
variable features of the enterprise system, and find out
the flexible software can be composed of the changeable
business processes and stabile business objects; 2) pre-
sent an explicit definition of coarse-grained business ob-
ject; 3) make clear the typical relationships between the
business objects; 4) present an method for the flexible
software development based on the stable business object,
which is implemented by the MDA.

Future works includes: further research on the other
relationships between business objects, automatic identi-
fication from the business processes, complete the auto-
matic transformation from the PIM to PSM on the plat-
form ICEMDA, etc.

7. Acknowledgements

This work is supported by State 863 High-Tech Program
(No. 2009AA04Z153) and State Natural Science Foun-
dation (No. 60773064) of China. The author would like
to thank reviewer’s helpful suggestions for revising this
paper.

REFERENCES

[1] J. Kramer and J. Magee, “The Evolving Philosophers
Problem: Dynamic Change Management,” IEEE Trans-
actions on Software Engineering, Vol. 16, No. 11, 1990,
pp. 1293-1306.

[2] W. J. Kettinger and V. Grover, “Special Section: Toward
a Theory of Business Process Change Management,”
Journal of Management Information Systems, Vol. 12, No.
1, 1995, pp. 9-30.

[3] D. Kim, M. Kim and H. Kim, “Dynamic Business Proc-
ess Management Based on Process Change Patterns,”
Proceedings of the 2007 International Conference on
Convergence Information Technology, Gyeongju, 2007,
pp. 1154- 1161.

[4] P. Soffer, B. Golany and D. Dori, “Aligning an ERP Sys-
tem with Enterprise Requirements: An Object-Process
Based Approach,” Computers in Industry, Vol. 56, No. 6,
2005, pp. 639-662.

[5] G. Pour, “Moving toward Component-Based Software
Development Approach,” Proceedings of the 27th Tech-
nology of Object-Oriented Languages (TOOLS 27), Bei-
jing, China, 1998, pp. 296-300.

[6] J. Kotlarsky, I. Oshri, K. Kumar and J. van Hillegersberg,
“Towards Agility in Design in Global Component-Based
Development,” Communications of the ACM, Vol. 51, No.
9, 2008, pp. 123-127.

[7] Architecture Board ORMSC, “Model Driven Architecture
(MDA),” OMG document number ormsc/2001-07-01.
2001. http://www.omg.org/cgibin/doc?ormsc/2001-07-01.
pdf.

[8] E. Breton and J. Bézivin, “Model Driven Process Engi-
neering,” Proceedings of the 25th Annual International
Computer Software and Applications Conference (COMP-
SAC 25th), Chicago, Illiois, 2001, pp. 225-230.

[9] J. Koehler, R. Hauser, S. Kapoor, F. Y. Wu and S. Ku-
maran, “A Model-Driven Transformation Method,” Pro-
ceedings of the 7th Enterprise Distributed Object Com-
puting Conference, Brisbane, Queensland Australia,
16-19 September 2003, pp. 186- 197.

[10] M. P. Gervais, “Towards an MDA-Oriented Methodol-
ogy,” Proceedings of the 26th Annual International
Computer Software and Applications Conference (COMP-
SAC 2002), England, 26-29 August 2003, pp. 265-270.

[11] M. Keith, H. Demirkan and M. Goul, “Service-Oriented
Software Development,” Proceedings of the 2009 Ameri-
cas Conference on Information Systems (AMCIS 2009),
2009, America, p. 100.

[12] P. Wohed, W. Vander Aalst, M. Dumas and A. Ter, “On
the Suitability of BPMN for Business Process Modeling,”
Business Process Management, Vol. 4102, 2006, pp. 161-
176.

[13] D. Hollingsworth, “The Workflow Reference Model,”
Technical Report, Workflow Management Coalition,
TC00-1003, December 1994.

[14] A. Somjit and B. Dentcho, “Development of Industrial
Information Systems on the Web Using Business Com-
ponents,” Computers in Industry, Vol. 50, No. 2, 2003, pp.
231-250.

[15] S. Arbaoui, J. C. Derniame, F. Oquendo and H. Verjus,
“A Comparative Review of Process-Centered Software
Engineering Environments,” Annals of Software Engi-
neering, Vol. 14, No. 1-4, 2002, pp. 311-340.

[16] R. Sangwan, C. Neill, M. Bass and Z. E. I. Houda, “Inte-
grating a Software Architecture-Centric Method into Ob-
ject-Oriented Analysis and Design,” Journal of Systems
and Software, Vol. 81, No. 5, 2008, pp. 727-746.

[17] I. Reinhartz-Berger, D. Dori and S. Katz, “OPM/
Web-Object-Process Methodology for Developing Web
Applications,” Annals of Software Engineering, Vol. 13,
No. 1-4, 2002, pp. 141-161.

[18] H. Liu and D. P. Gluch, “Conceptual Modeling with the
Object-Process Methodology in Software Architecture,”
Journal of Computing Sciences in Colleges, Vol. 19, No.
3, 2004, pp. 10-21.

[19] W. Kozaczynski, “Architecture Framework for Business
Component,” Proceedings of the 5th International Con-
ference on Software Reuse, Canada, 2-5 June 1998, pp.
300-307.

[20] A. Karakaxas, B. Karakostas and V. Zografos, “A Busi-
ness Object Oriented Layered Enterprise Architecture,”
Proceedings of the 11th International Workshop on Da-
tabase and Expert Systems Applications, Greenwich,
London, U.K., 4-8 September 2000, pp. 807-810

[21] M. Tsagias and B. Kitchenham, “An Evaluation of the
Business Object Approach to Software Development,”
Journal of Systems and Software, Vol. 52, No. 2-3, 2000,
pp. 149-156.

Copyright © 2010 SciRes. JSEA

BOSD: Business Object Based Flexible Software Development for Enterprises 925

[22] L. Nie, X. Xu, C. David, Z. Gregory and D. Zhan,
“GRAI-ICE Model Driven Interoperability Architecture
for Developing Interoperable ESA,” The International
Conference on Interoperability for Enterprise Software
and Applications, United Kingdom, 12-15 April 2010, pp.
111-121.

[23] D. Zhan, J. Feng, L. Nie and X. Xu, “ICEMDA: An In-
teroperable Configurable Executable Model Driven Ar-
chitecture,” Chinese Journal of Electronics, Vol. 36, No.
12A, 2008, pp. 120-127.

[24] J. Li, D. Zhan, L. Nie and X. Xu, “Design and Imple-
mentation of a MOF Based Enterprise Modeling Tool,”
I-ESA, China, 2009.

[25] J. Feng, D. Zhan, L. Nie and X. Xu, “Pattern Based Code

Generation Method for the Business Component,” Chi-
nese Journal of Electronics, Vol. 36, No. 12A, 2008, pp.
19-24.

[26] R. Shelton, “Business Objects Response from Open En-
gineering Inc. to OMG BODTF RFI-1,” http://www.
OMG.com/OMG Document bom/97-10-07

[27] C. Casanave, “Business-Object Architectures and Stan-
dards,” Proceedings of the 10th Annual Conference on
Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’95), USA, 1995.

[28] O. Sims, “Business Objects: Delivering Cooperative Ob-
jects for Client-Server,” The IBM McGraw-Hill Series
McGraw-Hill Book Company, 1994.

Copyright © 2010 SciRes. JSEA

