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ABSTRACT 

The objective of this work is to present a boundary integral formulation for the static, linear plane strain problem of 
uncoupled magneto-elasticity for an infinite magnetizable cylinder in a transverse magnetic field. This formulation al-
lows to obtain analytical solutions in closed form for problems with relatively simple geometries, in addition to being 
particularly well-adapted to numerical approaches for more complicated cases. As an application, the first fundamental 
problem of Elasticity for the circular cylinder is investigated. 
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1. Introduction 

An early version of the present boundary integral for- 
mulation was suggested by one of the authors (M.S.  
Abou-Dina) for the study of certain problems in the elec- 
trodynamics of current sheets [1]. It was later on applied 
for the solution of a general problem of nonlinear gravity 
wave propagation in water [2]. Due to its efficiency, the 
method was used by the authors of the present work to 
study the static, plane strain problem of the linear Theory 
of Elasticity in stresses for bounded, simply connected 
regions [3]. The thermoelastic problem was later on treated 
along the same guidelines [4]. Recently, the authors pre- 
sented a boundary integral formulation for the static, lin- 
ear plane strain problem of uncoupled Thermomagne- 
toelasticity for an infinite cylinder carrying a uniform, 
axial electric current [5]. A new representation of the me- 
chanical displacement vector allowed to obtain the com- 
plete solution of the problem. 

The proposed method relies exclusively on the use of 
boundary integral representations of harmonic functions 
and is suitable for both the analytical and the numerical 
treatments of the problem. The numerical aspect of the 
proposed formulation was carried out by the authors for 
pure Elasticity [6]. An implementation of the method for 
boundaries with mixed geometries was investigated in [7]. 

In the present paper, the formulation presented in [5] is 

modified and adapted to fit the case of an infinite cylin- 
der of a magnetizable material, subject to an external, 
transverse uniform magnetic field. The first and the 
second fundamental problems of Elasticity are treated. 
An application is given for the first fundamental problem 
only for a circular region. This application is meant to 
stress the capability of the method to handle cases where 
analytical solutions are possible and to provide these 
solutions explicitely. The second fundamental problem 
may be treated in a similar way. 

2. Problem Formulation and Basic  
Equations 

Let D be a two-dimensional, bounded, simply connected 
region representing a normal cross-section of the infinite 
cylinder occupied by the elastic medium and let its boun- 
dary C have the parametric representation 

   , ,x x s y y s z 0.              (1) 

Functions  x s  and  y s  are assumed continuously 
differentiable twice on C. 

Here,  , ,x y z  denote orthogonal Cartesian coordina- 
tes in space with origin O in D and unit vectors  
respectively. Let 

, ,i j k
s  be the arc length as measured on C 

in the positive sense associated with , from a fixed 
point  to a general boundary point Q and is the unit 

D

0Q τ
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vector tangent to C at Q in the sense of increase of s .  
One has 

         , , , ,x s y s y s x s     τ n    (2a) 

where the dot over a symbol denotes differentiation w.r.t. 
s . Also, 

. k n τ                (2b) 

The unknown functions of the problem are assumed to 
depend solely on the two coordinates  ,x y . 

2.1. Equations of Magnetoelasticity 

The general equations of static, linear Magnetoelasticity 
may be found in [5]. In what follows, we shall quote 
these equations for non-conducting media, to be used 
throughout the text. The condition for the external mag- 
netic field is incorporated appropriately. 

2.1.1. Equations of Magnetostatics 
1) The field equations. 
Inside the body and in the absence of volume electric 

charges, the field equations of Magnetostatics in non- 
conducting media, written in the SI system of units, are: 

curl H 0               (3a) 

0div B                (3b) 

curl E 0               (3c) 

0,div D                (3d) 

where H is the magnetic field vector, B—the magnetic 
induction vector, E—the electric field vector and D—the 
electric displacement vector. 

The magnetic field arises from an external source, in 
the form of an initially uniform magnetic field. 

The equations of Magnetostatics are complemented by: 
2) The electric constitutive relation. 

, D E              (4a) 

where   is electric permitivity of the body, assumed 
constant, and    is the electric permittivity of vacuum, 
with value 

9 11
10 .

36π
F m      

3) The magnetic constitutive relations. 

, , 1, 2,3,i ij jB H i j           (4b) 

where the indices 1, 2 and 3 refer to the ,x y  and - 
coordinates respectively and a repeated index denotes 
summation. Here, ij

z

  are the components of the tensor 
of the relative magnetic permeability of the body, 
assumed to depend linearly on strain according to the law 

0 1 1 2 , , 1,2,3,ij ij ij ijI i j             (4c) 

where 0 1,  and 2  are constants with obvious phy- 
sical meaning, 1I  is the first invariant of the strain 
tensor with components ij  and ij  denote the Krone- 
cker delta symbols. Constant   refers to the magnetic 
permeability of vacuum with value 

7 110 H m .     

Expression (4c) may be deduced from general con- 
stitutive assumptions, but this will be omitted here. An 
electrical analogue for the dielectric tensor components 
under isothermal conditions may be found elsewhere [8, 
p. 64 and also 9] . 

We shall assume a quadratic dependence of strain on 
the magnetic field (magnetostriction). Upon substitution 
of (4c) into (4b) one may neglect, as an approximation, 
the third and higher degree terms in the magnetic field 
compared to the linear term. Therefore, 

0 . B H                 (5) 

The magnetic vector potential. 
In view of the geometry of the problem, the magnetic 

vector potential has a single non vanishing component 
along the axis: -z

 , .A x yA k  

In view of the property (3b) of the magnetic induction 
and taking (5) into account, the magnetic field vector 
may be represented in the form 

0

1
,curl

 
H A             (6a) 

where A  is the magnetic vector potential. It is usual, 
for the sake of uniqueness of the solution, to impose the 
condition 

0.div A                (6b) 

Since we are interested solely in plane problems, the 
magnetic field lies in the  , x y -plane and is inde- 
pendent in magnitude of the third coordinate . A 
vector potential producing such a field must be of the 
form 

z

 , .A x yA k               (7) 

This choice identically satisfies condition (6b), which 
means that function A still has some indeterminacy. In 
fact, it is defined up to an arbitrary additive constant. 

Equation (3a) reduces to 

0,y x
H H

x y

 
 

 
              (8) 

from which  

0.A                    (9) 
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at each point of the region D. 
In the present quasistatic formulation, in view of the 

fact that the electric and magnetic fields are uncoupled, 
there are no sources for the electric field. Therefore, 

, E E 0                (10) 

where  refers to free space surrounding the body.  
In the free space, the equations of Magnetostatics hold 

with 0 1    and 1 2 0   . Hence, 

0A                  (11) 

and one uses the following decomposition: 

.rA A A
                 (12) 

Function rA  represents the modification of the mag- 

netic vector potential in free space, due to the presence of 
the body. This function has a regular behavior at infinity. 
It is sufficient for the present purpose that this function 

vanish at infinity at least as    12 2x y
 

  with 0  .  

Function A  accounts for the unperturbed, original 
constant magnetic field. If the intensity of this initial 
field is 0H  and its direction is inclined at an angle   
to the x -axis, then 

 0 cos sin .A H y x  
         (13) 

The separation of the expression for A  into two 
parts as in (12) is of capital importance for the numerical 
treatment of the problem. 

The equations of Magnetostatics are complemented by 
the following magnetic boundary conditions: 

a) The continuity of the normal component of the 
magnetic induction. This reduces to the condition of con- 
tinuity of the vector potential, i.e. 

1, say on .rA A A G C
           (14) 

b) The continuity of the tangential component of the 
magnetic field (in the absence of surface electric currents). 
This implies 

2
0

1
, say on .rA AA

G
n n n


 

   
  

C      (15) 

These conditions, together with the vanishing con- 
dition at infinity of rA , are sufficient for the complete 
determination of the two harmonic functions A and rA . 

The magnetic field components are expressed as 

0 0

0 0

1 1
,

1 1
, 0

c

x

c

y z

A A
H

y x

A A
H H

x y

   

   

 

 

 
  

 

 
    

 

where Ac denote the harmonic conjugate to A. It follows  

from (16) that the function 
0

1 cA
 

 plays the role of a  

scalar magnetic potential. Thus, one may invariably 
proceed with the problem formulation using either the 
magnetic scalar or the magnetic vector potential. We 
shall use the latter. 

The solution of the electromagnetic problem thus 
reduces to the determination of two harmonic functions A, 

rA , subject to the boundary conditions (14) and (15). 

2.1.2. Equations of Elasticity 
1) Equations of equilibrium. 
In the absence of body forces of non-electromagnetic 

origin, the equations of mechanical equilibrium in the 
plane read 

 0, , 1,2,j ij i j             (17) 

where ij  are the components of the “total” stress ten- 
sor and j denotes covariant differentiation. It is worth 
noting here that the total stress tensor is sometimes 
decomposed into two parts: mechanical and electro- 
magnetic [10], in which case the boundary conditions 
may take different forms. 

It is well-known that Equation (17) is satisfied if the 
only identically non-vanishing stress components xx , 

yy  and xy  are defined through the stress function U 
by the relations 

2 2

2 2
, ,

2

xx yy xy

U U U
.

x yy x
    

   
  

    (18) 

2) The constitutive relations. 
The generalized Hooke’s law may be derived con- 

sistently for an appropriate form of the free energy of the 
medium, using the general principles of Continuum Me- 
chanics. It reads [8, see also 9 for the electric analogue] 

    

 

1

2
0 1 0 2

1 1 2 1

1 1
,

2 2

ij ij ij

i j ij

E E
I

H H H

  
  

       

 
  

     
 

 (19) 

where 2
i iH H H  is the squared magnitude of the mag- 

netic field. In components, Equation (19) gives  

  

   

 

2
0 1 2

2
0 2

1 1 2

1

1 2

1
,

2

xx

x

y

E u v

x y

E u
H

x

H


 

   


  





  
      


   

 

 

  (20a) 

,

   (16) 
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    

 

 

2
0 2

2
0 1 2

1 1 2 1

1

2
1

,
2

yy

x

y

E u v E v

x y y

H

H


  

  

   





   
         

 

  

  (20b) 

  0 1

1
,

2 1 2xy x y

E u v
H H

y x
   


              

 (20c) 

where ,E   are Young’s modulus and Poisson’s ratio 
respectively for the considered elastic medium. 

3) The kinematical relations. 
These are the relations between the strain tensor com- 

ponents ij  and the displacement vector components 
. iu

 1
, , 1,2

2ij i j j iu u i j           (21a) 

or, in Cartesian components 

, ,

1
,

2

xx yy

xy

u v

x y

u v

y x

 



 
  

 

  
    

          (21b) 

where  and  stand for  and  respectively. u v 1

4) The compatibility condition. 
u 2u

The condition of solvability of Equation (21b) for 
and for given R.H.S. is u v

2 22

2 2
2 .yyxx xy

x yy x

   
 

  
         (22) 

These equations are complemented with the proper 
boundary conditions, to be discussed in detail in subse- 
quent sections. 

Equation for the stress function 
An equation for the stress function may be obtained 

from the general field equations written in covariant form 
[11]. For the present purposes, however, we prefer to 
derive this equation for the special, two-dimensional 
problem under consideration. Solving (20) for the strain 
components and using (18), one obtains 

 

 

 

2 2

2 2

2
1 2

2 2
0 1

2 2

1 1

1 2

1
1 2

2

1
,

2

xx

y x

E E u

x

U U
U

y x

H

H H


 



   

  








  
 

    
 

    
 

    
 

       (23a) 

 

 

 

2 2

2 2

2
1 2

2 2
0 1

2 2

1 1

1 2

1
1 2

2

1

2

yy

x y

E E v

y

U U
U

x y

H

H H


 



   

  








  

 
    

 

    
 

    
 

      (23b) 

and 

2

0 1

1

1 1 2

1
.

2

xy

x y

E E u v

y x

U
H H

x y


 

  

  
      

         

    (23c) 

Substituting from (23) into (22) and performing some 
transformations using the equations of Magnetostatics 
and (3), one finally arrives at the following inhomo- 
geneous biharmonic equation for the stress function : U

 
2 2

1 2

1 2 1
.

2 1 2
U H

   


         
    (24) 

The solution of (24) is sought in the form 

,c
pU x y U              (25) 

where   and   are harmonic functions belonging to 
the class of functions    2 1C D C DΙ , D  denotes the 
closure of D and superscript “c” denotes the harmonic 
conjugate. Function pU  is any particular solution of the 
equation 

 
2

1 2

1 2 1
.

2 1 2pU H
   


        
     (26) 

and may be expressed in the form of Newton’s potential 
after the function 2H  on the R.H.S. has been deter- 
mined. 

It follows from (25) that 

4 4
c

.P pU U
x y

 
      

 
U      (27) 

Using Equations (25) and (27), Equations (23a,b) may 
be cast in the form 

 
2

2
4 1

1 1 H

E u U E
M

x xx


 
  

    
   

   (28a) 

and 

 
2

2
4 1 ,

1 1

c

H

E v U E
S

y yy


 
  

    
   

   (28b) 

where 
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 2 2
0 1

11 1

2 2
H y xM H H

E

       
 

     (29a) 

and 

 2 2
0 1

11 1
.

2 2HS
E

       
 

x yH H     (29b) 

Function cA  is defined up to an additive arbitrary 
constant, which may be determined by fixing the value of 
the function at an arbitrarily chosen point of D . 

Introducing two new functions 

0 1

1 1

2
c

H x yA N H
E

        
 

H    (30a) 

and 

0 1

1 1
,

2H x yR
E

        
 

H H      (30b) 

it can be easily verified using the equations of Magne- 
tostatics that 

H HM N

y

 


 x
            (31a) 

and 

.H HR S

y x

 


 
            (31b) 

Equations (31), imply the existence of two single- 
valued functions Hu  and Hv  in D such that 

,H H
H H

u u
M N

x y

 
 

 
         (32a) 

and 

,H H .H H

v v
R

x y

 
 

 
S          (32b) 

with these notations, equations (28a,b) take the form 

 
2

2
4 1

1 1
HuE u U E

x x xx


 
  

    
    

   (33a) 

and 

 
2

2
4 1 .

1 1

c
HvE v U E

y yy


 
  

    
     y

   (33b) 

It is to be noted that the addition of a constant to the 
function cA  amounts to adding linear terms in y to Hu  
and linear terms in x to Hv , which do not alter (33a,b). 

A representation for the mechanical displacement 
vector components 

Differentiating (33a) w.r.t. y and integrating the result- 
ing equation w.r.t. x after using (31a) and (32a), one gets 

 

 

2

4 1
1

,
1

H

E u U

y x y y

uE
f y

y






  
   


    


 

 

      (34a) 

where  f y  is an arbitrary function of y. 
A similar procedure with (33b), using (31b) and (32b), 

yields 

   

2

1

4 1 ,
1

c
H

E v U

x x y

vE
g x

x x






 
 

   


   

  

  (34b) 

where  g x  is an arbitrary function of x. 
Substituting from (34a,b) into (23c), we find that this 

equation is identically satisfied if and only if 

    0,f y g x   

from which it follows that both functions are constants 
and therefore may be eliminated since their contribution 
represents a rigid body displacement. A similar argument 
holds for any constant added to the expression for cA . 
For the following procedure, it will be assumed that each 
one of these two functions has been completely deter- 
mined by assigning to it a given value at some arbitrarily 
chosen point in D . 

From (33a) and (34a) once, then from (33b) and (34b), 
by line integrations along any path inside the region D 
joining an arbitrary chosen fixed point 0M  (which may 
be arbitrarily chosen in D ) to a general field point M, 
one obtains 

 4 1 ,
1 1 H

E U E
u u

x


 


     
  

   (35a) 

and 

 4 1 ,
1 1

c
H

E U E
v v

y


 


     
  

   (35b) 

where 


0

d d
M

H H H
M

u M x N  y

,y

        (35c) 

and 


0

d d
M

H H H
M

v R x S          (35d) 

the integration constants being absorbed into functions 
  and c  which are yet to be determined. 

The mechanical displacement components u and v 
given by expressions (35a,b) are single-valued functions 
in D, since the line integrals in (35c,d) are path inde- 
pendent due to relations (32a,b). 
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3. Boundary Integral Representation of the 
Solution 

The problem now reduces to the determination of seven 
harmonic functions:  and , , , , ,c c

rA A A    c  (al- 
though the conjugate function  does not appear in 
the expressions given above for the stress and dis- 
placement functions, it will be required for the sub- 
sequent analysis within the proposed boundary integral 
method). 

c

We use the well-known integral representation of a 
harmonic function f at a general field point  ,x y  
inside the region D in terms of the boundary values of the 
function and its harmonic conjugate (after integrating by 
parts and rearranging) as 

 

   

,

1
ln ln d ,

2π
c

C

f x y

f s R f s R
n s

         s
 

  (36a) 

or, in the equivalent form 

 

   

,

1
ln ln d ,

2π C

f x y

f s R f s R
n n

         s
   (36b) 

where  is the distance between the field point R  ,x y  
in  and the current integration point D  , x y   on C . 

The harmonic conjugate of (36b) is 

     1
,

2π
c

C

d ,f x y f s f s s
n n

       
 

  (36c) 

where 

 
 

1tan .
y y s

x x s
 

 


 

The representation of the conjugate function is given 
by 

 

   

,

1
ln ln d ,

2π

c

c

C

f x y

f s R f s R
n s

         s
  (37a) 

or, in the equivalent form 

 

   

,

1
ln ln d ,

2π

c

c c

C

f x y

f s R f s R
n n

         s



  (37b) 

when point  ,x y  tends to a boundary point, relations 
(36a) and (36b) are respectively replaced by 

     1
ln ln d ,

π
c

C

f s f s R f s R
n s

       

     1
ln ln d ,

π C

f s f s R f s R
n n

  
s          (38b) 

If a function  ,g x y  is defined in the outer region 
 D , is harmon is region and vanishes at infinity  

t as  
C

at leas

ic in th
 12 2x y

 
  with 0  , it can be shown  

that the inte tion (36  replaced by gral representa b) is

 

   

,f x y

1
ln ln d ,

2π C

s
 

and 

  (38a) 

g s R g s R s
n n

          
  (39a) 

it being understood that the boundary values  g s  and  

 g s

n




R.H.S

calculated

 under the integral sign on the . are  

 at a point with parameter s  on the outer side 
of C . 

When the point  ,x y  tends to a undary point with 
pa

bo
rameter s, then (39a) is replaced by the integral re- 

lation 

     1
ln ln d .

π C

g s g s R g s R s
n n

            (39b) 

3.1. Solution for the Magnetic Vector Potential 

As noted above, each of the two functions cA  and c
rA  

 byis defined up to an arbitrary constant, to  fixed  
assigning a given value to the function at an arbitrarily 
chosen point in its domain of definition. 

In order to obtain the boundary values of the two 
ha

 be

rmonic functions A and rA , write down equation (38b)  

for  1

0

A s  and equatio (39b) for  r
n A s  then use  

the b  conditions (14) and (15) to lly get the oundary  fina
following integral equation for  A s : 

     0 ln d ,
C

A s A s R s G
n

 s
     (40) 

where 

  

0
0

0

11

π1







 


             (41a) 

and 

 

   0
1 2

0

1
ln ln d .

π 1 C

G s

G s R G s R s
n




       
 (41b) 

Equation (40) is the canonical form of the well-known 
linear Fredholm integral equation of the second kind for 
the determination of the boundary values of  A s . 
Having solved this integral equation, the boundary  
of 

values
 rA s  may then be obtained from (25a). Also  , using  
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(40) and its solution, Equation (38b) written for  A s  
is r  to the following Fredholm integral equation of educed

n: the first kind for the normal derivative of this functio

     1 1
ln d π ,

0 0C

A s R s G s A s
          (42)

n    
 

the solution of which allows to determine rA
n




 on the  

5). Tboundary using the boundary condition (1 hus, the 
boundary values of A and rA , as well as o al f their norm

 an
rywhere in space, while 

Eq

derivatives, may be determined. 
Finally, Equations (36b) d (39a) yield the values of 

the magnetic vector potential eve
uation (36c) gives the harmonic conjugate cA  in the 

body. 

3.2. Solution for the Stress and Displacement 
Components 

ield 
ever and in the region D occupied by the 
Having obtained the solution for the magnetic f

ywhere in space 
material, we now turn to solve the mechanical problem 
for the stress and the displacement components in D . 
The stresses are given through the stress function U  
from relations (20a,b,c), and these may be rewrit  
using expression (25) in terms of the harmonic functio  

, ,c    and the particular solution 

ten
ns

pU  in the form 
22 2 2

2 2 2 2
2 ,

c c
p

xx x y
yy y y y

  
   

) 
U      

      (43a

22 2 2

2 2 2
2

c

2
,p

yy

U
x y

xx x x x


      
    

   
   (43b) 

22 2 2

,
c

p
xy

U
x y

x y x y x y x y


     
    

       
     (43c) 

from which, using (21), one obtains 

 
2

1 2

1 2 1
4

2 1 2xx yy .H
x

  


        
      (44) 

Thus, once the magnetic field has been uniquely

m

 deter-  

ined, the derivative 
c

x y

 
   

 must be a uni-val- 
 

The mechanical displacement components are given 
 (35a,b), which may rewritten using (25) in 

te

ued function. 

from relations
rms of the harmonic functions , c   and   as 

 3 4
1

1

c
p

H

E
u x

 x
U E

y u
x x x 


   

 
 

   
   

    (45a) 

and 

 3 4
1

.
1

c

c
p

H

E
v x

y

U E
y v

y y y







   

 
 

   
   

   (45b) 

In view of the integral representations (37a,b) and 
expressions (43) and (45), it is sufficient for th
of the mechanical problem to determine the 
values of the harmonic functions  and 

e solution 
boundary 

 , ,c   c . 
unThis requires four independent  these - 

kn
 relations in

owns, two of which are obtained from relation (38a) 
written for   and   and the remaining two from the 
boundary conditions. As a matter of fact, other con- 
ditions will still be required to elim e poss e 
rigid body motion. Following [5], we formulate the 
conditions for the two following fundamental problems: 
The first fu amenta problem, where the stresses are 
specified on the boundary, and the second fundamental 
problem, where the displacements are specified on the 
boundary. 

4. Conditions for the Uniqueness of the  
Solution 

4.1. Conditions for Eliminating the Rigid Body 
Trans

inate th ibl

nd l 

lation 

Following [5], 

       

 

3 4 0,0 0,0 0,0p

x x
E

   
      (46

 0,0 0,0 0T H

U



a) 

and 

1
u u


  

   

   

   

3 4 0,0

0,0 0,0

0,0 0,0 0.
1

c

p

T H

U

y y

E
v v





 


 
 

    

   (46b) 

In terms of the boundary values of the unkn
monic functions, condition (46) becomes 

own har- 

     

       

     

0 0

0 0

3 4 ln ln

d

2π 0,0 0,0 0,0
1

c

C

p
T H

2 2
+ c

s R s R
n s

s

U E
u u

x





  

x s x s
s s

n sR R

         
           




 
       



  (47a) 

and 
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     

       

     

0 0

2 2
0 0

3 4 ln ln

+ d

2π 0,0 0,0 0,0
1

c

C

c

p
T H

s R s R
n s

y s y s
s s

n sR R

U E
v v

y





          
            

 
     



s








e 

  (47b) 

wher

    
1

2 2 2
0 .R x s y s          

4.2. Conditions for Eliminating the Rigid B
Rotation 

This condition, like the first two, is applied only for the 
first fundamental problem. We shall require that 

ody 

   0,0 0,0 0,
u v

y x

 
 

 
 

or, using (45), 

     

  0,
2 1 H HN R


  



which may be written in terms of the boundary v

4 1 0,0 0,0c
hET

y
  


      (4

1 E



8) 

alues of 
the unknown harmonic functions as 

         

 

2
0 0

2
d

π

1

c

H H

y s y s
4 1

C

s s s
n sR R

E
N R



         

 


(49) 

4.3. Additional Simplifying Conditions 

  of the boundary, 
in order to determine th f the arbitrary 
integration constants appearing throughout the solution 
process. These additional conditions have no phy
implications on the solution of the problem. For de
concerning these additional conditions, the reader is 
kindly referred to [3]. 

 first order 

 



We shall require the following supplementary conditions 
to be satisfied at the point 0 0Q s 

e totality o

sical 
tails 

1) The vanishing of the function U and its
partial derivatives at Q  0

0,
U

U
x y

 
  
 

          (50a) 

or, equivalently, 

U

0,
U U

U
s n

 
  
 

          (50b) 

which, in terms of the boundary values of the unknown 
harmonic functions, give 

           0 0 0 0 0 ,0c
px y U a 0        (51a) 

         

        

0 0 0 0 0

0 0x 0 0 ,0 0

c

pc

x y

U
y a

s

   


     



 


  (51b) 

and 

       
     

     

0 0 0 0

0

c

c

x y  

  0 0

0 0 ,0 0pc

y

U
x a

n




   







     (51c) 

2) The vanishing of the combination 

 



         0 0 0 0 0c cx y 0.         (51d) 

is last additional condition amounts to determining 
the value of 

Th
c  at and is chosen for the uniformity 

of presentation as in [5
Let us finally turn to the boundary condit

to the equations of Elasticity. For this, we consider 
separately two fundamental boundary-value problems. 

4.  
In this problem, we are given the force distribu
boundary C of the domain D. Let 

0Q  
]. 

ions related 

3.1. The First Fundamental Problem
tion on the 

x y nf f f f   f i j τ n  

denote the external force per unit length of the boundary. 
Then, at a general boundary point Q the stress vector is 
taken to satisfy the condition of continuity 

n σ f  

or, in components 

and .xx x xy y x xy x yy y yn n f n n f         (52) 

The force f  is divided into two parts: 

,ex H f f f               (53) 

where exf  is the force of non electromagnetic origin 
and Hf  is the force due to the action of the magnetic 
field, per unit length of the boundary. The second force 
may b pressed in terms of the Maxwellian stress e ex
tensor σ  as 

H
f σ n,              

w

  (54) 

ith 

2 .ij
         (55) 

1
ij i jH H H      σ

bst

2 

Su ituting for ,xx xy   and yy  in terms of the 
stress function U  and for xn  and yn  and taking con- 
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ditions (51) into account, the last two relations yield 

      ,sayY s      (56a) 
0

d
s

ys f s s
x

   
 
U

and 

     
0

d ,s
s

x

U
s f s s X s

y

    
 

 (56), o
a s st

ay      (56b) 

Using expressions ne may easily obtain the tan- 
gential and norm l derivative  of the ress function U  
at the boundary point Q . 

         

         .

U
,s x s Y s y s X s

s
U

s y s Y s x s X s
n


  




  


 

 
    (57) 

or, in terms of the unknown harmonic functions 

         
       

         

c

c

x s s y s s s

x s s y s s

pU
x s Y s y s X s s

s

   

   

 

      (58 ) 


   


 

a

and 

         

       
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n

   


   



 

 

  (58b) 

Equations (58), together with relation (38) written for 
 s  and  s : 

     1
ln ln d

π
c

C

s s R s R
n s

    s
         (59a) 

and 



     1
ln ln d

π
c

C

s s R s R
n s

           s , (59b) 

form a set of four integro-differential relations, the solu- 
tion 
(51) p  the boundary values of the unknown har- 
monic functions  and  and their harmonic con- 
jugates. The full termin  of these functions
the domain D (an  hence he biharmonic part of the 

s function U hen ieved by substitution into 
the Equation (37 written r  and . The stress 
function U is final  obtai  by ng he pa
integral 

of which under the set of conditions (47), (48) and 
rovides


de
d

) is t
) 
ly


ation
of t

 ach
 fo

ned

 inside 

stres

 addi


up t rticular 

pU . 

4.3.2. The Second Fundamental Problem 
In this problem, we are given the displacement vector on 
the boundary C   the do ain D . Let this vector be 
denoted 

.x y nd d d d

of m

   d i j τ n  

Multiplying the restriction of xpression (45a) to the 
boundary C  by 

e
 x s  and that of expression (45b) by 

 y s  an dding, one gets d a

          
         
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c
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1 H H
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p
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s
E
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
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 
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  

 

 

 

e m
ssion  by

  

Similarly, if on ultiplies the restriction of expre- 
 (45a) to the boundary

    




 

  (60a) 

 C   y s  and that of 
expression (45b) by  x s  an bt ne obtains d su racting, o

          
         
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y s s x s s

x s s y s s s
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n





   
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
     

 

 

 

  (60b) 

These last two relations may be conveniently rewritten 
as 

          
        

        

3 4 c

c

x s s y s s

x s s y s s

1
p T H

s

U E
s d s d s d s

s   







  

   

      

and 

 

    (61a) 
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     
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,
1

c
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p H
n n

y s s x s s

x s s y s s s

U E
s d s d s

n





   


     

 

where 

          (61b) 

 Hd s  and  H
nd s  

respectivel
, the Car

are the tangential and nor- 
mal s y, calculated at boundary 
points, vector tesian components of which 

 component
of the 

are  ,u x yH  and  ,Hv x y
) (or (61a

 given by equations (35c,d). 
0a,b ,b)), together with (59a,b) 

form the required set of simultaneous integro-differential 
equations for the determination of the boundar
the unknown harmonic functions Φ and Ψ and 
harmonic conjugates. The full solution of the problem 
proceeds as for the first fundamental problem. 

e circ e ellips
an

 

Equations (6

y values of 
their 

4.4. Practical Use of the Method 

In practice, if the form of the boundary is simple enough 
(e.g. th le or th e), one may attempt to find 

alytical forms for the solution as shown below in the 
application. However, for more complicated boundaries, 
one has to recur to numerical approaches. In this case, 
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the differential and integral operators appearing in the 
equations are to be discretized as usual and the problem 
of determination of the boundary values of the unknown 
functions reduces to finding the solution of a linear 

ll solution inside system of algebraic equations. The fu
D  is then obtained by numerical integration of boun- 
dary integrals of the type (36) [cf. 6,7]. 

In a later stage, if it is required to determine boundary 
values of some unknown functions (for example, the 
boundary displacement for the first fundamental problem 
or the boundary stresses for the second fundamental 
problem), this may be achieved at once if the solution is 
obtained analytically as in the worked examples. Other- 
wise, if a numerical approach is adopted, the calculation 
may proceed by calculating the first and the second 
derivatives w.r.t. x  and y  of the required functions 
on the boundary in terms of derivatives taken along the 
boundary and then substituting these into the proper 
expressions (for example, expressions (43) for the 
stresses and (45) for the displacements). 

5. The Circular Cylinder 

As an illustration of the proposed scheme, we present 
here below the solution of a problem which can be 
handled analytically, namely the infinite, non-conducting, 
circular elastic cylinder pla ed in a transverse constant 
external magnetic field. 

Let the normal cross-section of the cylinder be 
bounded by a circle of radius a  centered at the origin of 
coordinates, with parametric equations 

c

   cos , six s a y s a  n , π π,     

where 
s

a
   
 

 is the polar angle in the associated  

polar system of coordinates  ,r  . 
Let a circular cylinder of a weak electric conducting, 

magnetizable material be placed in an external, tran- 
sversal constant magnetic field 0H , which we take 
along the x -axis. 

5.1. Solution for the Equations of Magnetostatics 

The solution for the magnetic vector potential component 
ned foll

ceding section in the form: 
is obtai owing steps similar to those of the pre- 

0
0

0

2 sin ,
1

A H a
a

 r 





       (62a) 

0
0

1
sin sin ,

a
A H a r


0

01
H

r
     

     (62b) 





where 0H  is the intensity of the applied magnetic field. 
*The linear part in r in the expression for A  is just the 

function A  in the general formulation of the problem. 

Choosing cA  to vanish at the origin, one gets 

0
0

0

2 c
1

c r
A H a

a


os . 


 


       (62c) 

The corresponding magnetic field components are 

0 0

1 2
, 0

1x yH H
H 

, 


         (63a) 

2
0

0 0

11
1 cos 2 ,

1x

a
H

H r



2
11 a




0

0 0

sin 2
1yH

H r





     

) 

or, related to the system of polar coordinates 

        
 (63b

   
   

0 0 0 0

1 2 1 2
cos , sin ,

1 1rH H
H H  

 
  

 
  (64a) 

2
0

0 0

11
1 c

1r

a
H

H r


os ,




          
    (64b) 

2
0

0 0

11
1 s

1

a
H

H r


in



           

 


   (64c) 

Also, 

 

2
0

0 1 2

0

1 1
2 c

2 1

H
r

H
u r

E


os 2 ,   


     
  

  (65a) 

 

2
0

0 1 2

0

1 1
2 s

2 1

H H
u r

E


in 2       (65b) 


    
  

The boundary values of the magnetic field outside the 
body are used to calculate the Maxwellian st
components for the formulation of the boundary con- 
di  elasticity. One obtains 

ress tensor 

tions of

 
   

2
2 20
0 02

0

1 1 cos 2
1

rr

H
,  




       

σ    (66a) 

 

2
0 0

2

0

2
sin 2

1
r

H


 





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
σ .       (66b) 

5.2. The Elastic Solution 

Turning now to the determination of the stresses and 
displacements, one has 

 
0

1 2 2

0

21 2 1
,

1 2 1
p

E
U

  
 

         
 

where we have introduced the dimensionless parameter 
2
0

0 ,
H

E






  
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from which one obtains 
2

,p

r
U D

                (67) 1 a 
 

with 

   

2
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1 1 2 2

0

1 2 1 Ea  

The restrictions of the function  and  and of 
o r ssed 
ons in th lar an e 
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s 
the boundary a

e po


e expre

gl
their harmonic conjugates t
as general Fourier expansi   of 
the system of polar coordinates  ,r  . For t  
under consideration: 
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Inside the body: 
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 
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 
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         
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The stress function inside the domain  is then U  D

 

 

 
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,
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 
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       
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   (68) 

g
 yield 

The four simplifyin  conditions taken at the point 
 ,0a

 
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Of the two conditions expressing the suppression of 
the rigid body translation, one is identically satisfied, 
while the other gives 

  0 13 4 0.aa c    

The suppression of the rigid body rotation is iden- 
 satisfiedtically . 

There remains now the boundary conditions to be 
satisfied, which may be simply written as the conditions 
of continuity of the two stress components rr  and r  
related to the system of polar coordinates  ,r  : 

* *and at .rr rr r r r a        

The stress components  and ,rr r   may be 
calculated from in the em dinates as 
follows: 
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The first of the elastic boundary conditions then gives 
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while the second one yields 
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e stress components are 
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                 (69c) 

Finally, the mechanical displacement components are 
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