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ABSTRACT 

We built an artificial market model and compared effects of price variation limits, short selling regulations and up-tick 
rules. In the case without the regulations, the price fell to below a fundamental value when an economic crush occurred. 
On the other hand, in the case with the regulations, this overshooting did not occur. However, the short selling regula- 
tion and the up-tick rule caused the trading prices to be higher than the fundamental value. We also surveyed an ade- 
quate limitation price range and an adequate limitation time span for the price variation limit and found a parameters’ 
condition of the price variation limit to prevent the over-shorts. We also showed the limitation price range should be 
bigger than a volatility calculated by the limitation time span. 
 
Keywords: Artificial Market; Multi Agent Simulation; Financial Crash; Price Variation Limit; Short Selling Regulation; 

Up-Tick Rule 

1. Introduction 

Financial exchanges sometimes employ a “price varia- 
tion limit”, which restrict trades out of certain price ranges 
within certain time spans to avoid sudden large price 
fluctuations. For example, Tokyo Stock Exchange em- 
ploys two kinds of price variation limits that adopt dif- 
ferent time spans: one is “daily price limit” which re- 
stricts price fluctuations within a single trading day, and 
the other is “special quote”, which restricts within three 
minutes [1]. Most Asian stock exchanges (Tokyo, Taipei, 
Shanghai, Shenzhen, Seoul, and so on) employ the price 
variation limits, but many American and European stock 
exchanges do not because there is a debate over whether 
the price variation limit makes financial market more 
efficient or not. On financial markets, other regulations, 
“short selling regulation”1, “up-tick rule”2 and so on, also 

are debated over whether makes more efficient or not. 
Because so many factors cause price formation in ac- 

tual markets, an empirical study can not isolate a pure 
contribution of these regulations to price formation. There- 
fore, it is very difficult to discuss about a pure effect of 
these regulations only by results of empirical studies. An 
artificial market3 which is a kind of an agent based simu- 
lation will help us to discuss about this very well. There 
are several previous studies to discuss about regulations 
of financial market using artificial market simulations. 
Yagi et al. investigated effect of short selling regulations 
induce bubbles [4,5]. Westerhoff discussed effectiveness 
of transaction taxes, central bank interventions and trading 
halts [6]. Thurner et al. showed that as leverage increases 
price fluctuation becomes heavy tailed and display clus- 
tered volatility [7]. Kobayashi and Hashimoto showed 
that circuit breakers play an important role in controlling 
price fluctuations, while they also reduce the trading vo- 
lume [8]. Yeh and Yang investigated the effectiveness of 
price variation limits and showed that price variation li- 
mits help to reduce volatility and price distortion [9]. Mi- 

*It should be noted that the opinions contained herein are solely those 
of the authors and do not necessarily reflect those of SPARX Asset 
Management Co., Ltd. 
1Short selling is the selling of a stock that the seller doesn’t own. Short 
selling regulation is that any short selling is restricted. 
2Up-tick rule is that short selling except upon an up-tick of last traded 
price is restricted. 3Excellent reviews are [2,3]. 
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zuta et al. discussed effectiveness of price variation lim- 
its and argued that an artificial market model testing such 
regulations should be implementing a learning process to 
replicate bubbles, and showed that a hazard rate enables 
verification of whether the models can replicate a bubble 
process or not [10]. However, no simulation studies have 
investigated up-tick rules, and compared effects of the 
short selling regulation, the up-tick rule and the price va- 
riation limit using an artificial market model. These re- 
gulations are expected to be especially effective to pre- 
vent bubbles and crushes, so simulation studies investi- 
gating these regulations should use artificial market mo- 
dels replicating bubbles and crushes. 

We built an artificial market model and compared ef- 
fects of price variation limits, short selling regulations 
and up-tick rules. In the case without the regulations, the 
price fell to below a fundamental value when an econo- 
mic crush occurred. On the other hand, in the case with 
the regulations, this overshooting did not occur. However, 
the short selling regulation and the up-tick rule caused 
the trading prices to be higher than the fundamental value. 
We also surveyed an adequate limitation price range and 
an adequate limitation time span for the price variation 
limit and found a parameters’ condition of the price va- 
riation limit to prevent the over-shorts. We also showed 
the limitation price range should be bigger than a volatil- 
ity calculated by the limitation time span. The paper is 
structured as follows; in Section 2, we explain details of 
our artificial market model. In Section 3, we show results 
of simulations. The paper’s conclusions are presented in 
Section 4.  

2. Artificial Market Model 

We built a simple artificial market model on the basis of 
the model of [11]. The model treats only one risk asset 
and non-risk asset (cash) and adopts a continuous double 
auction4 to determine a market price of the risk asset. The 
number of agents is . At first, at time , an agent 1 
orders to buy or sell the risk asset; after that at 

n 1t 
2t   an 

agent 2 orders; at , an agent  or- 
ders respectively. At , going back to the first, 
the agent 1 orders, and at 

3, 4, ,t 
1t n 

, 1,
,

2, , 3,

1
log ft t

e j j j h j jt
i j

j
i

P
r w w r w

w P

 
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
t


 ,    (1) 

where ,i j  is weight of term  of the agent , and is 
determined by random variables of uniformly distributed 
in the interval 

w i j

 ,max0, iw  at the start of the simulation 
independently for each agent. fP  is a fundamental va- 
lue that is constant.  is a market price of the risk as- 
set at time . (When the dealing is not done at ,  
remains at the last market price , and at 

tP
t t

t

tP
11tP   , 

t
fP P ). t

j  is a noise determined by random variables 
of normal distribution with an average 0 and a variance 
  r. ,  is a historical price return inside an agent’s 
time interval 

t
h j

j , and  , log jtt t
h jr P P

 . j  is de- 
termined by random variables uniformly distributed in 
the interval  max1,  at the start of the simulation inde- 
pendently for each agent. The first term of Equation (1) 
represents a fundamental strategy: an agent expects a po- 
sitive return when the market price is lower than the fun- 
damental value, and vice verse. The second term of Equ- 
ation (1) represents a technical strategy: an agent expects 
a positive return when historical market return is positive, 
and vice verse. After the expected return has been deter- 
mined, an expected price is 

 , expt t t
e j e j,P P r .               (2) 

We modeled an order price ,  by random variables 
of uniformly distributed in the interval  

t
o jP

 , ,,t t
e j d e j dP P P P  , where d  is a constant. A mini-

mum unit of a price change (tick size) is 
P

P , we round 
off a fraction of less than P . Buy or sell is determined 
by a magnitude relation between the expect price  
and the order price , that is,  

,
t

e jP

,

When , the agent orders to buy one share.  

t
o jP

t
, ,e j o j
tP P

tP P
When , the agent orders to sell one share.  , ,e j o j

Agents always order only one share. Our model adopts 
the continuous double auction, so when an agent orders 
to buy (sell), if there is a lower price sell order (a higher 
price buy order) than the agent’s order, dealing is imme- 
diately done. If there is not, the agent’s order remains in 
the order book. The remaining order is canceled at c  
after the order time. Agents can short selling freely. The 
quantity of holding positions is not limited, so agents can 
take any shares for both long and short positions to infin- 
ity.  

t

tn 3, 4

3,n

,

,

, n

n n2,t n     , an 
agent  orders respectively, and this cycle is 
repeated. Note that time  passes even if no deals are 
done. An agent  determines an order price and buys or 
sells by the following process. Agents use a combination 
of fundamental value and technical rules to form expec- 
tations on a risk asset returns. An expected return of the 
agent  is 

2,3, , n

j

t
j We also developed a model implementing a learning 

process of agents. Every agent learns just before every 
ordering. If there is only the first term (representing a 
fundamental strategy) or second term (representing a 
technical strategy) in Equation (1), an expected return 

 , 1, 2t
i jr i   at time  of an agent  is t j

4A continuous double auction is an auction mechanism where multiple 
buyers and sellers compete to buy and sell some financial assets, re-
spectively, in the market, and where transactions can occur at any time 
whenever an offer to buy and an offer to sell match [12]. 

1, 2, ,,logt t tt
j f j h jr P P r r ,            (3) 

respectively. We define , log lt tt t
l jr P P   where  is lt
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a constant evaluation term. ,i j  is changed when both 
 and  are the same signs, 

w

,
t

i jr ,
t

l jr

 , , ,max ,
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On the other hand, when both  and  are oppo- 
site signs, 

,
t

i jr ,
t

l jr

, , ,i j i j i j i jw w u w  ,



,            (5) 

where ,  is random variables of uniformly distributed 
in the interval (0,1) for each ,  is constant. Be- 
sides this process, ,i j  is reset, random variables of uni- 
formly distributed in the interval ,maxi , occurring 
with small probability, . In this way, agents learn bet- 
ter parameters and switch to the investment strategy that 
estimates correctly: the fundamental strategy or technical 
strategy. 

u
i k

0, w
w

m

We investigated effectiveness of price variation limits, 
short selling regulations and up-tick rules. In this study, 
we modeled these regulations as follows. Price variation 
limits were modeled that any agents can freely order a 
price from plt t

plP P
    to plt t

plP P 
, where pl  is 

a constant time span, and 
t

plP
plt t

  is a constant price. Any 
order prices of buy above plP P 

 are changed to 
plt t

plP P


t t
 

pl

, and any order prices of sell under 

plP P
    are changed to plt t

plP P
pl



t t
. This prevents 

trading that prices outside , plt t
pl plP P P

   P

tP

 . 
Short selling regulations were modeled that agents which 
do not have the risk asset can not order to sell. Any 
agents have initially one unit risk asset. Up-tick rules 
were modeled when an agent which do not have the risk 
asset tries to order to sell a price not greater than , the 
order price is changed to tP P

000,

. 

3. Simulation Result 

In this study, we set   1n  1,max 1,w  2,max 10,w   
, 3,mw ax 1 max 10,000,   0.03,     

 
1000,dP 

10,000,ct  1P 
P 

,   l   

pl  pl . We also investigated two 
cases: the fundamental value 

4,k 
1000

0.01, tm 10,000,
50,000,t 

fP  was fixed to 10,000 (con- 
stant fundamental value); fP  was 10,000 until  

 and changed to 7000 after  
(sharp declining fundamental value). We ran simulations 
to  . 

1t 

t

00,



000

10,0

100,000t 

00,000

3.1. Verification the Model 

In many previous artificial market studies5, the models 
are verified to see whether they can explain the stylized 
facts such as a fat-tail6, volatility-clustering7, and so on. 

Table 1 lists stylized facts in each case. We used returns 
for 100 time units’ intervals to calculate the statistical 
values for the stylized facts8. In all runs, we can find that 
both kurtosis and autocorrelation coefficients for square 
returns with several lags are positive, which means that 
all runs replicate stylized facts.  

In the actual financial markets including bubbles 
(crushes), the probability that a run, sequence of observa- 
tions of the same sign, of positive (negative) returns will 
end should decline with the length of the run  [17,18]. 
A hazard rate 

i
 H i  is used for the test of bubbles or 

crushes.  H i  represents the conditional probability 
that a run ends at , given that it lasts until . Empirical 
studies show that 

i i
 H i  decline with the length of run 

 if observation data include bubble or crush phenom- 
ena [17,18]. This means that the bubble (crush) returns 
tend to continue to be positive (negative) and this ten- 
dency becomes stronger as runs of positive (negative) 
returns become longer. In the Table 1, 

i

 H i  represents 
the conditional probability that a negative return run ends 
at , given that it lasts until . When hazard rates i i

 H i  declined increasing i , the simulation can repli- 
cate a significant crush like those occurring in actual 
markets. In the case of the constant fundamental value 
with a short selling regulation,  H i  declined. This in- 
dicates that some small crushes occurred even though 
there was no crush-inducing trigger. In the case of the 
sharp declining fundamental value, except the case of im- 
plementing the price variation limit,  H i  declined 
shallowly. These cases replicated big crushes like those 
occurring in actual markets. 

3.2. Time Evolutions of Prices 

Figure 1 shows time evolution of market prices in the 
case of the constant fundamental value. In the case with- 
out regulations and with the price variation limit, the 
market prices oscillated around the fundamental value, 
10,000. This indicates that the market was efficient. On 
the other hand, in the case with the short selling regula- 
tion, bubbles and crushes occurred repetitively, and the 
prices were almost higher than the fundamental value. 
This result is consistent with previous studies [4]9. In the 
case with the up-tick rule, the prices were almost higher 
than the fundamental value although the amplitudes are 
less than those of the case with short selling regulation. 

Figure 2 shows time evolution of prices in the funda- 
mental value fP  changed at  from 10,000 to 
7000, which was the new fun amental value. In the case  

100,000t 
d   

8In this model, time passes by an agent just ordering even if no dealing 
is done. Therefore, the returns for one tick (one time) include many 
zero returns, and they will bias statistical values. This is the reason we 
use returns for 100 time units. 
9Yagi et al. showed lager amplitudes of bubbles and crushes than those 
of this study [4]. However, we confirmed the amplitudes were smaller 
and same as those of this study when initial cash was decreased. 

5Excellent reviews are [2,3]. 
6This means that the kurtosis of price returns is positive. There are 
empirical studies for the fat-tail [13,14]. 
7This means that the square returns have positive autocorrelation, and 
the autocorrelation slowly decays as its time separation becomes larger
There are empirical studies for the volatility-clustering [14-16]. 
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Table 1. Stylized facts in each run. 

Constant Fundamental Value  10,000  Sharp Declining Fundamental Value   10,000 7000 
 Non- 

Regulation
Price Variation 

Limit 
Short Selling 
Regulation

Up-Tick 
Rule 

Non- 
Regulation

Price Variation 
Limit 

Short Selling 
Regulation 

Up-Tick 
Rule 

Kurtosis 5.39 5.39 7.28 9.37 4.96 8.15 9.21 9.27 

 Lag         

1 0.13 0.12 0.10 0.15 0.24 0.14 0.09 0.18 

2 0.11 0.10 0.09 0.12 0.21 0.13 0.09 0.16 

3 0.09 0.09 0.07 0.10 0.19 0.11 0.07 0.15 

4 0.07 0.07 0.07 0.09 0.18 0.11 0.07 0.14 

5 0.06 0.06 0.06 0.08 0.18 0.10 0.06 0.14 

Autocorrelation 
Coefficient for  
Square Return 

6 0.05 0.05 0.05 0.07 0.18 0.10 0.06 0.13 

 i         

1 55% 55% 52% 70% 55% 55% 51% 70% 

2 53% 52% 48% 72% 50% 53% 47% 70% 

3 49% 49% 45% 72% 45% 50% 44% 65% 

4 47% 47% 41% 71% 40% 48% 41% 52% 

5 44% 46% 40% 65% 34% 46% 38% 38% 

Hazard Rate 

6 44% 45% 37% 61% 28% 44% 35% 25% 
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Figure 2. A time evolution of market prices in case that the 
fundamental value is sharply declining .  fP 10,000 7000

Figure 1. A time evolution of market prices in case that the 
fundamental value is constant . fP 10,000

  
bounds were investigated by previous studies [19]. On 
the other hand, in the case with regulations, the price 
variation limit, the market price took longer to reach the 
new fundamental price  7000fP   than in the case 

without regulations, the price went far 6000 beyond the 
new fundamental value, in other words, an overshoot 
occurred. After this overshoot, the price rebounded to the 
new fundamental value. Such the overshoots and re-  



T. MIZUTA  ET  AL. 19

without the regulations, but the bubble almost vanished. 
In the case with the short selling regulation and the up- 
tick rule, small bubbles and crushes occurred repetitively 
after the prices converged as same when the fundamental 
values were constants. The price variation limit preven- 
ted both such small bubbles and the overshoots. The 
most efficient market, an ideal market, prevents over- 
shoots and achieves immediate convergence to the new 
fundamental value. However, this study shows that no 
market achieves both at once. 

3.3. Switching Strategy 

Figures 3 and 4 show a time series of fundamental  

strategy weights 1, ,j i j
j i j

w w
 
 
 
   and technical  

strategy weights 2, ,j i j
j i j

w w
 
 
 
   in case of the  

sharp declining fundamental value, without regulations 
and with the price variation limit, respectively. Figure 3 
shows that, during the crush from about  to 

, the technical strategy weight increased and 
the fundamental strategy weight declined. This is consis- 
tent with empirical studies [20,21] that show that inves- 
tors tend to switch from the fundamental to the technical 
strategy during a crush because the fundamental strategy 
looses during an overshoot, declining the price less than 
the fundamental value. Figure 4 shows that, in contrast 
to in the case without regulations, during the crush the 
technical strategy weight did not increase but the funda- 
mental strategy weight did. The price variation limit re- 
stricted agents switching to the technical strategy and  
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Figure 3. Time series of a fundamental strategy weight and 
a technical strategy weight in case without any regulations. 
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Figure 4. Time series of a fundamental strategy weight and 
a technical strategy weight in case with the price variation 
limit. 
 
sprevented overshoots occurring10. 

3.4. Survey Adequate Price Limitation 

Next, we investigated optimization of ,pl plP t . The 
price variation limit prevents overshoots but also causes 
converging speed of market prices to the fundamental 
value to go slower. The most efficient market, an ideal 
market, prevents overshoots and achieves immediate 
convergence to the new fundamental value. However, no 
market achieves both at once. To make amplitude of an 
overshoot smaller, market prices converge to fundamen- 
tal prices more slowly. On the other hand, if you speed 
up converging speed of market prices to the new funda- 
mental value, occurrence of an overshoot is unavoidable. 
Therefore, it is important to search for better parameters, 

,pl plP t , preventing overshoots and not trying to make 
the converging speed much slower. 

Table 2 lists minimum prices from new fundamental 
value (max price minus 7000) for various ,pl plP t , and 
Table 3 lists reaching times to new fundamental value 
divided by 1000 for various ,pl plP t . The reaching 
times are measured from a time when fundamental value 
is decreased, 100,000t  . “--” shows the case where 
market price could not reach the new fundamental price 
until 600,t 000 . Table 2 indicates that when pl  is 
longer and/or 

t

plP  is smaller, overshoots are smaller. 
On the other hand, Table 3 indicates that when pl  is 
shorter and/or 

t

plP  is larger, converging speed to the 
fundamental value is faster. hese tables suggest that the  T       

 

10In the cases of the short selling regulation and the up-tick rule, the 
results were same as the case of the price variation. 
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Table 2. Minimum prices from new fundamental value for various ,pl plP t . 

tpl Minimum Price from New  
Fundamental Value 1000 2000 3000 4000 5000 7000 10000 15000 20000 25000 30000

100 −1064 −546 −312 −214 −155 −111 −69 −46 −− −− −− 

200 −1180 −1141 −835 −540 −405 −234 −149 −88 −66 −53 −40 

300 −1213 −1159 −1136 −908 −702 −441 −258 −144 −105 −73 −51 

400 −1154 −1140 −1169 −1175 −958 −632 −399 −156 −105 −78 −74 

500 −1180 −1198 −1151 −1228 −1094 −820 −528 −282 −195 −137 −65 

700 −1134 −1148 −1171 −1170 −1135 −1122 −774 −481 −201 −105 −74 

1000 −1141 −1112 −1202 −1169 −1148 −1191 −1199 −726 −561 −361 −132

1500 −1172 −1196 −1209 −1157 −1181 −1186 −1165 −1189 −841 −755 −379

2000 −1157 −1135 −1166 −1169 −1157 −1164 −1147 −1143 −1160 −788 −540

2500 −1137 −1172 −1132 −1156 −1120 −1164 −1158 −1112 −1186 −1144 −910

⊿Ppl 

3000 −1146 −1188 −1118 −1146 −1160 −1158 −1108 −1126 −1131 −1131 −1149

 
Table 3. Reaching times to new fundamental value divided by 1000 for various ,pl plP t . 

tpl Reach Time to New Fundamental  
Value (×1000) 1000 2000 3000 4000 5000 7000 10000 15000 20000 25000 30000

100 40 65 94 126 159 223 325 479 -- -- -- 

200 39 39 50 64 78 109 155 231 306 380 455 

300 39 39 39 46 55 73 103 155 204 254 303 

400 39 39 39 39 44 57 78 120 158 198 236 

500 39 39 39 39 39 48 64 95 124 152 180 

700 39 39 39 39 39 39 48 67 92 117 143 

1000 39 39 39 39 39 39 39 50 64 77 91 

1500 39 39 39 39 39 39 39 39 46 53 61 

2000 39 39 39 39 39 39 39 39 39 45 54 

2500 39 39 39 39 39 39 39 39 39 39 41 

∆Ppl 

3000 39 39 39 39 39 39 39 39 39 39 39 

 
faster convergence to the new fundamental price and the 
smaller overshoot are not compatible. To make ampli- 
tude of a overshoot smaller, market prices converge to 
fundamental prices more slowly. On the other hand, if 
you speed up converging speed of market prices to fun- 
damental value, occurrence of an overshoot is unavoid- 
able. In an area of the lower left of Table 3, values are 
very similar, about 39,000. This value is almost the same 
as the converging speed to the fundamental value without 
the price variation limit, . In the case without the price 
variation limit, it took about 39,000 for a price to rise to 

7000 from 10,000, so 

v

3000 39,000 0.077$.v    Sha- 
dow areas in Tables 2 and 3 satisfy an inequality con- 
straint,  

0.077pl

pl

P
v

t


  .             (6) 

Table 2 shows that overshoots did not occur in this 
shadow area. Therefore, Equation (6) is a condition for 
the price variation limit to prevent overshoots. In the left 
term of Equation (6) (further to upper right in these ta- 
bles) bubbles are smaller but the converging speed  
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slower. In this sense, the market is less efficient. When 
we design the price variation limit, it is important that the 
parameters satisfy Equation (6) and the left term is not 
much smaller than the right term. 

Figure 5 showed that several in the same pl plP t , 
 and  200, 5, 2000, 50pl pl pl plP t P t     

20,000,  500P t  pl pl . When pl plP t  is same, it 
seemed that the time evolution of market prices tend to 
be similar from Tables 2 and 3. However, in Figure 5, 
only in the case of pl , the market prices 
declined a little and did never reach to the new funda- 
mental value by the simulation end time, . 
This implicated that even if 

200,  5P t pl 

500,000t 
pl pl  is same, when P t

pl  and P plt  are too small, the market become to be 
inefficient prevented converging to the new fundamental 
value. Table 4 showed ratios of reaching to new funda- 
mental value by simulation ends to 100 times simulation 
runs for various small ,plP t pl , and tplV , volatilities 
calculated by pl

11. A shadow area satisfies an inequality 
constraint Equation (6), 

t

pl pl . Table 4 shows 
that the inequality constraint Equation (6) was not related 
whether or not the price converged to the new funda- 
mental value. An upper right area above the solid line 
shows 

P t v

pl tpl  is satisfied. In this area, the market 
price never converged to the new fundamental value. 
Therefore, not only Equation (6) but also a condition, 

P V 

pl tpP V  l ,                   (7) 

is needed to effective price variation limits, which make 
markets efficiently. 

4. Conclusion and Future Study 

We built an artificial market model and compared effects 
of price variation limits, short selling regulations and 
up−tick rules. In the case without the regulations, the  

price fell to below a fundamental value when an eco- 
nomic crush occurred. On the other hand, in the case 
with the regulations, this overshooting did not occur. 
However, the short selling regulation and the up-tick rule 
caused the trading prices to be higher than the funda- 
mental value. We also surveyed an adequate limitation 
price range and an adequate limitation time span for the 
price variation limit and found a parameters’ condition of 
the price variation limit to prevent the over-shorts. We 
also showed the limitation price range should be bigger 
than a volatility calculated by the limitation time span.  

One future study is to a find way to recommend actu- 
ally good parameters of the price variation limit to real  
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Figure 5. A time evolution of market prices in the same 

pl plP t . 

 
Table 4. Ratios of reaching to new fundamental value by simulation ends to 100 times simulation runs for various small 

,pl plP t , and , volatilities calculated by tplV plt . 

tpl Ratio of Reaching to New Fundamental  
Value 5 10 20 50 100 200 500 1000 2000 5000 

Vtpl (Volatility by tpl) 0.01% 0.01% 0.02% 0.02% 0.04% 0.05% 0.06% 0.08% 0.09% 0.10%

1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

5 84% 83% 80% 87% 2% 0% 0% 0% 0% 0% 

10 99% 100% 100% 100% 99% 100% 25% 0% 0% 0% 

20 100% 100% 100% 100% 100% 100% 100% 100% 100% 0% 

50 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

⊿Ppl 

100 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
   

 

11The volatilities were standard deviation of returns of market prices within plt .
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stock exchanges. We cannot observe actual  shown in 
Section 3.4. Tokyo Stock Exchange employs two kinds 
of price variation limits that adopt different time spans: 
one is “daily price limit”, which restricts price fluctua- 
tions within a single trading day, and the other is “special 
quote” which restricts within three minutes [1]. We can 
interpret that the special quote that has a shorter time 
span determines  and the daily price limit that has a 
longer time span prevents bubbles. Thus, where parame- 
ters of the daily price limit are ,1 ,1

v

v

,pl plP t  and those of 
the special quote are ,2 ,2,pl pP t l , when these parameters 
satisfied 

,1 ,2

,1 ,2

pl pl

pl pl

P P

t t

 
 ,            (8) 

these price variation limits can prevent bubbles. However, 
the left term of Equation (8) should be not so smaller 
than the right term as we suggested in Section 3.4. For 
example,  minutes,  yen,  

 minutes, and  yen for stocks that 
have prices from 1000 yen to 1500 yen in Tokyo Stock 
Exchange. Therefore, Equation (8) is strongly satisfied 
but the left term of Equation (8) is much smaller than the 
right term. It is possible that the daily price limit is too 
tight (  minutes is too large or  
yen is too small) or the special quote is too loose 
(  minutes is too small or  yen is too 
large). However, this study could not discuss such actual 
parameters. This is a future work. 

,1 300plt 

,1 300

,1 300plP 
30

,2 30plP 

,2 3plt 
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