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ABSTRACT

We review on Zariski 3-algebra model of M-theory. The model is obtained by Zariski quantization of a semi-light-cone
supermembrane action. The model has manifest N =1 supersymmetry in eleven dimensions and its relation to the

supermembrane action is clear.
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1. Introduction

Recently, structures of 3-algebras [1-3] were found in the
effective actions of the multiple M2-branes [4-12] and
3-algebras have been intensively studied [13-29]. It had
been expected that structures of 3-algebras play more
fundamental roles in M-theory than the accidental struc-
tures in the effective descriptions, and 3-algebra models
of M-theory were proposed [30-34].

In this paper, we review one of the models, called
Zariski 3-algebra model of M-theory. This model has
manifest A =1 supersymmetry in eleven dimensions
and the relation to the supermembrane action is clear. We
start with the fact found in [32] that the supermembrane
action in a semi-light-cone gauge is a gauge theory based
on a 3-algebra that is generated by the Nambu-Poisson
bracket [13,14]. The gauge theory’s thirty-two super-
symmetries form the A =1 supersymmetry algebra in
eleven dimensions. By performing the Zariski quantiza-
tion, the action is second quantized and we obtain Zariski
3-algebra model of M-theory.

2. Supermembrane Action in a
Semi-Light-Cone Gauge

In this section, we review the fact that the supermem-
brane action in a semi-light-cone gauge can be described
by Nambu bracket, where structures of 3-algebra are
manifest. The 3-algebra models of M-theory are defined
based on the semi-light-cone supermembrane action.

The fundamental degrees of freedom in M-theory are
supermembranes. The covariant supermembrane action
in M-theory [35] is given by
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where
M,N =0,---,10,a, 8,7 =0,1,2,G, =HZHﬂM

and
" =a, X" —%@rMaa\P .

¥ isa SO(1,10) Majorana fermion.
This action is invariant under dynamical supertrans-
formations,

N =¢,,
SXM =—i¥rMe.
These transformations form the A =1 supersym-
metry algebra in eleven dimensions,
[51, 52] XM = —ZiQFMez,
[6,,6,]¥ =0.

O]

®)

The action is also invariant under the x -symmetry
transformations,

¥ = (1+T)x (o),

M M Q)
SXM =ivr (1+F)K(G),
where
1
=———e?mtnn'r,,,,. (5)
3!5 attp iy L LMN
IMP



M. SATO 33

If we fix the x -symmetry (4) of the action by taking 2y - g, (6)
a semi-light-cone gauge [32] we obtain a semi-light-cone supermembrane action,

i afy | v I wTrVv 15 N7 md N7
Swz =] d%[\/—G e & [Wrwaa\y[ngny + TGP0, - W0, WPT ay\y}\yruaa‘f'aﬂx '0, X’ n @
where

G,y =h,, + 1L, T =3, X* — - BT#3, W,
2

pu?

and h,,=0,X 'aﬁx, . quadratic order in 9,X* and &,¥ butexactly in X',
In [32], it is shown under an approximation up to the that this action is equivalent to

ScI deadﬁ(—%{x ! ’ XJ ’ X K}z _%(Ayab {(l’a:wb: X ! })2 +%A_%EﬂMAyabA/cd Aﬂef {gpa,wc’q]d}{(pb,(pe,(pf}

. : ®)
I = a I —
—E‘PF”AHab{(p ,¢b,w}+z\1’r” {X',XJ,‘P}),
where 1,J,K =3,---,10 and is a SO(1,2)xSO(8) Majorana-Weyl fermion satisfy-
ing (6). E“ is a Levi-Civita symbol in three dimen-

{0%.0°.0°} = 0,0%0,0°0,¢° sionsand A is a cosmological constant.
(8) is invariant under 16 dynamical supersymmetry
is the Nambu-Poisson bracket. X' is a scalar and ¥ transformations,

SX' =i, 5A, (o, d):%zrﬂr, (X' (o)¥ (")~ X" (") ¥ (o)),

)
O =-A{0%. 0" X' }r”r,e—%{x XX KT e,
where T'y,e =—¢ . These supersymmetries close into gauge transformations on-shell,
[51-52] X'= Ay {‘/’clfﬂd X '},[51,(3‘2] A {‘Pa#’bl}
= Aab {¢a’(pb' A/ch {¢C ’ ¢)d !}} - A,uab {q)a’(pb ’ Acd {¢C ’ (pd !}} + 2i€_2FV610:v1 (10)
[6,,6,]% = Ay {0, 0", ¥} +(ie_21"”q1“” —iéFKLqFKLJOW,
where gauge parameters are given by Oh =0 and O" =0 are equations of motions of
Ay = 26T 6 A — TG e X3 Xy A, and W, respectively, where
Of = Awl0™. 0" A (0.0}~ A (0°.0° A {0 0"}
y i (o
+EM(—{X',Aab{qoa,(ﬂb,X.},}+§{‘P,Fi‘1’.}j. (11)
0" = T"A {goa,;ob,\P}+%r,J (X', x?, %}
(10) implies that a commutation relation between the tions.
dynamical supersymmetry transformations is This action is invariant under a translation,
8,6,—6,6,=0 (12) oX'(o)=n',6A(c,0")=n"(c)-n"(c"), (13)
up to the equations of motions and the gauge transforma- where 7' are constants.
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The action is also invariant under 16 kinematical su-
persymmetry transformations

W =¢, (14)

and the other fields are not transformed. € is a constant
and satisfy T'y,é=¢. é and e should come from
sixteen components of thirty-two AN =1 supersym-
metry parameters in eleven dimensions, corresponding to
eigen values =1 of I',,, respectively. This A =1

supersymmetry consists of remaining 16 target-space
supersymmetries and transmuted 16 « -symmetries in
the semi-light-cone gauge [32,36,37].

A commutation relation between the kinematical su-
persymmetry transformations is given by

5,6, -6,6, =0. (15)

A commutator of dynamical supersymmetry transfor-
mations and kinematical ones acts as

(5251_5152)xI (O') =igl'¢, E77(;1(5‘251_5152)'0‘#(O-'OJ) :lzglrﬂrl (XI (O')_ X' (o"))€2 57761(0-)_7751(0-,)' (16)

where the commutator that acts on the other fields van-
ishes. Thus, the commutation relation is given by

55555

n?

(17)

where ¢, is a translation.
If we change a basis of the supersymmetry transforma-
tions as

8'=5+6,6'=i(5-9), (18)
We obtain

5,0, — 8,8, =3,

550, — 0,05 =6, (19)

530, — 8,03 =

These thirty-two supersymmetry transformations are
summarised as A =(5",5") and (19) implies the A =1
supersymmetry algebra in eleven dimensions,

AN ~AA, =6, (20)

%0 = () TX (012

F

3. Zariski Quantization

In this section, we review the Zariski Quantization and
apply it for the semi-light-cone supermembrane action
(8). In [34], it is shown that the Zariski quantization is a
second quantization and the Zariski quantized action re-
duces to the supermembrane action if the fields are re-
stricted to one-body states.

First, we define elements of linear spaces M, by

X, = 2(Va] IHCLIER N
where the basis Z, are labeled by polynomials
u=u(x,x,) in the valuables x,x, with real or com-
plex coefficients. The summation is taken over all the
polynomials of two valuables {u(x,x,)}-Z, satisfies
Z,, =aZ, where a is a real (complex) number. The
coefficients Y, (o) are functions over 3-dimensional
spaces. Summation is defined naturally as linear spaces.

The quantum Zariski product e, is defined as

S (VR 2V o)z,

=0 Vg J

r=0 Uy (22)
[ D@ |- S ez e,
Uy Vo UgVo
Any polynomial can be decomposed uniquely as B
u=auu,---u, , where a is a real (complex) number Zu®n 2 —abg’((uluz Ui )% (Un 1l - UN))’ (23)
and u. are irreducible normalized polynomials. : :
i . where v=bu,,, Uy, Uy -x, isdefinedb
Z,e,Z, isdefined by Mtz TN y
1
(uluz"'UM )Xh (UM+1UM+2 - N) :N_ Z “EUG (24)
eSy
where S, is the permutation group of {1, 2, N} * s the Moyal product defined by
( ) vy 0 0 0 o 0 0
f = I111 '212__, ir Jr o — , 25
9= z ! ‘ ax ax ox  OX; OX;,  OX; J (29)
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where i, and j, runfrom1lto2. £ isdefined by

C(i(ﬁ) u,] =3 (Vi) z,. (26)

r=0 r=0

We define derivatives on M, by derivatives with
respecttoo' (i=1,2,---,p) as

’ " . 6 6
X0 X0 XL, = X
- ¥ v (o)

o
Up Vo, Wo o

where i, j,k=12,3. By definition, the bracket is
skew-symmetric. By using the above properties, one can

(aB[xv.z], | =[[ABX], Y.z| +[x[ABY] .z] +[xv.[ABzZ] ]

o

for any A,B,X,Y,Z e M,. Thus, the Zariski quantized
Nambu-Poisson bracket has the same Nambu-Poisson

’
_'Xh oh—Xh .h

X, =Y (VA TS (0)2, . @)
oo o o 0o T '
One can show that the quantum Zariski product is
Abelian, associative and distributive, and the derivative
is commutative and satisfies the Leibniz rule [34].
We define the Zariski quantized Nambu-Poisson
bracket by

0

"
)(h

loa
] (28)

— Ve (O-) 25" Y\;;Oo (O-)Zuo 0 Ly Luy»

v
CTJ 0

show that it satisfies the Leibniz rule and the fundamen-
tal identity;

(29)

’
*n *h

structure as the original Nambu-Poison bracket.
We define a metric for X,, X, e M, by

(X3 X3) = (X, 0, X3) = [dPa (X, &, X, ) = T [dPoYy o)V, (0)((Z,, 1 2,,))

Up Vo

where ((Z,,)) is defined by
((z,))=aif w=az*, otherwise((z,))=0,  (30)

where a is a real (complex) number and z is a nor-
malized polynomial, whose monomial of the highest total
degree has coefficient 1.

This metric is invariant under a gauge transformation

1

Ssugm :<_E[XI ,xJ,xK]i —%(Aiab (ool X' ] )2

_Lgrea
2

The Zariski quantization preserves the supersym-
metries of the semi-light-cone supermembrane theory,
because the quantum Zariski product is Abelian, associa-
tive and distributive, and admits a commutative deriva-
tive satisfying the Leibniz rule.

4. Conclusion

Zariski 3-algebra model of M-theory has manifest
N =1 supersymmetry in eleven dimensions because
Zariski quantization preserves the supersymmetry of the

Copyright © 2013 SciRes.

Ug Vo

= ¥ [@or (o) ()2 e T (2,))

generated by the Zariski quantized Nambu-Poisson
bracket [34] as

([6xt ], )+ (k[ ], ) =0 @y
. *n

By performing the Zariski quantization of the super-
membrane action in a semi-light-cone gauge (8), we ob-
tain

—% E AL AL A [ 00, 05.00 | [20.0500 ],

h h

(32)

ol e, wpem, (X ] )

supermembrane action in the semi-light-cone gauge. The
relation between the model and the supermembrane ac-
tion is clear: If the fields are restricted to one-body states,
the model reduces to the supermembrane action.
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