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ABSTRACT 

Global incidence of dengue, a vector-borne tropical disease, has seen a dramatic increase with several major outbreaks 
in the past few decades. We formulate and analyze a stochastic epidemic model for the transmission dynamics of a sin-
gle strain of dengue virus. The stochastic model is constructed using a continuous time Markov chain (CTMC) and is 
based on an existing deterministic model that suggests the existence of a backward bifurcation for some values of the 
model parameters. The dynamics of the stochastic model are explored through numerical simulations in this region of 
bistability. The mean of each random variable is numerically estimated and these are compared to the dynamics of the 
deterministic model. It is observed that the stochastic model also predicts the co-existence of a locally asymptotically 
stable disease-free equilibrium along with a locally stable endemic equilibrium. This co-existence of equilibria is im-
portant from a public health perspective because it implies that dengue can persist in populations even if the value of the 
basic reproduction number is less than unity. 
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1. Introduction 

Dengue, a vector transmitted disease, has seen a dramatic 
increase in global incidence over the past decades [1,2]. 
Originally restricted to a handful of countries, dengue  
is now endemic in more than a hundred tropical and sub-
tropical countries worldwide [1-3]. With an estimated  
50 - 100 million cases and nearly 10,000 - 20,000 deaths 
annually, dengue ranks second to Malaria amongst dead- 
ly mosquito-born diseases [1,2,4-6]. The disease is caus- 
ed by one of four virus serotypes (strains) of the genus 
Flavivirus [2,3,7]. Most infected individuals suffer from 
dengue fever, a severe flu-like illness characterized by 
high fever, which poses only a limited threat to mortality 
[2,8]. The symptoms usually last for one to two weeks, 
after an initial incubation period of about 4 - 7 days [9]. 
A minority of infected individuals however, develops 
dengue hemorrhagic fever (DHF) resulting in bleeding, 
low levels of blood platelets and blood plasma leakage, 
or dengue shock syndrome (DSS) resulting in extremely 
low blood pressures. The risk associated with DHF and 
DSS is considerably higher, with mortality ranging from 

5% - 15% [3,5,9,10]. 
Dengue is transmitted to humans through mosquito 

bites. Female mosquitos of the Aedas genus, primarily 
Aedas aegypti, acquire the dengue virus through a blood 
meal from infected humans [2,11]. The dengue virus has 
an incubation period of about 7 - 10 days in the vector, 
and is then spread to susceptible humans who are bitten 
by the infected mosquito [9]. The virus also has an incu-
bation period of 4 - 7 days in the host [9]. While vectors 
never recover from infection with the dengue virus, the 
infection in hosts lasts only about one to two weeks [2]. 
Recovery from infection with one serotype of the dengue 
virus gives life-long immunity to that serotype but only 
temporary and partial immunity to other serotypes [2,4, 
12-14]. Secondary infection with a different serotype 
may result in Antibody Dependent Enhancement (ADE), 
which is speculated to increase the chances of DHF and 
DSS [4,12,13,15]. In this study however, we will con-
sider infection involving only a single serotype of the 
dengue virus. 

Historical records indicate the occurrence of dengue 
epidemics in North America, Asia and Africa in the late 
18th century [3]. Since then and up until the middle of *Corresponding author. 
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the 20th century, incidences of dengue fever have been 
rare [3]. Since the 1970’s however, there has been a 
marked increase in the number of dengue cases, as well 
as dengue epidemics, with the WHO claiming a 30-fold 
increase in the incidence of dengue between 1960 and 
2010 [2,3,8]. This dramatic increase is attributed to rapid 
urbanization, population growth and increase interna-
tional travel [8]. Dengue disease is currently endemic in 
nearly 110 countries in Southeast Asia, the Americas, 
Africa and the Eastern Mediterranean [2]. It is estimated 
by the WHO, that nearly 2.5 billion people are at risk of 
contracting the disease. Furthermore, nearly 50 - 100 
million cases and almost 20,000 deaths due to more se-
vere forms of dengue fever are reported globally every 
year, making dengue one of the deadliest mosquito- 
transmitted diseases [1,2,4-6]. 

The dengue virus (DENV), which causes dengue fever 
in humans, is a single positive-stranded RNA virus of the 
family Flaviviridae and genus Flavivirus [2,3,7]. The 
virus has four distinct serotypes, DENV1, DENV2, 
DENV3 and DENV4, each of which can cause the full 
spectrum of the disease [2,3,7]. Owing to the difficulty of 
developing an immunization against all four serotypes, 
there is currently no vaccine against the disease [6,8], 
[11]. Infection with and recovery from a particular sero-
type of the dengue virus grants life-long immunity to that 
serotype but only gives temporary and/or partial immu-
nity to the other serotypes [2]. This partial cross-immu- 
nity is the cause of antibody-dependent enhancement 
(ADE) in the setting of a secondary infection with a dif-
ferent serotype of DENV. ADE is hypothesized to be one 
factors leading to DHF and DSS, the more severe form of 
dengue disease [4,12,13,15]. 

The clinical symptoms and effects of dengue disease 
vary greatly. Nearly 80% of individuals suffering from a 
primary infection with DENV are asymptomatic or dis-
play only a mild, uncomplicated fever [2,8]. A minority 
of infected individuals suffer from DHF and DSS, the 
more severe forms of dengue disease [3,5,9]. As men-
tioned previously however, risk of DHF and DSS is as-
sociated primarily with secondary infection with a het-
erologous serotype of DENV [4,12,13,15]. In general, 
dengue disease is marked by three separate phases: feb-
rile, critical and recovery. The characteristic symptoms 
of dengue in the febrile phase are the sudden onset of 
high fever, rash, headaches and muscle and joint pains, 
which lead to the alternative name “breakbone fever” for 
dengue disease [8]. This phase of the disease is rarely life 
threatening and the associated mortality is quite low. 
Most individuals then progress to the recovery phase. 
However, a minority of individuals first pass through the 
critical phase of the disease. This phase lasts for one or 
two days and is marked by low blood pressure, leakage 
of blood plasma from the capillaries and decreased blood 

supply to organs. Severe cases of these symptoms are 
associated with DHF and DSS and the mortality in this 
phase of the disease is estimated to be as high as 5% - 
15% [3,5,8,9]. 

Over the past several years, a number of deterministic 
mathematical models have been proposed to analyze the 
transmission dynamics of dengue in urban communities 
[5,11-17]. L. Esteva and C. Vargas [14] have investi-
gated the coexistence of two serotypes of dengue virus 
using a deterministic ODE model. Moreover, Ferguson et 
al. [15] have investigated the effects of ADE on the 
transmission of multiple serotypes of dengue virus. In 
addition, Garba et al. [11] have shown the existence of a 
backward bifurcation in a standard incidence ODE model 
for a single strain of dengue virus. Garba et al. [12] have 
also explored the effects of cross-immunity on the trans-
mission dynamics of two strains of dengue virus. Simi-
larly, H. Wearing and P. Rohani [13] have investigated 
the effects of both ADE and cross immunity on multiple 
serotypes of dengue virus. Finally, Chowel et al. [18] 
have estimated the basic reproduction number for dengue 
using spatial epidemic data. 

In addition, over the past few decades, several stochas-
tic epidemic models for the spread of infectious diseases 
have also been proposed and analyzed [19-27]. An im-
portant qualitative difference between deterministic and 
stochastic epidemic models in general is the asymptotic 
dynamics [28]. Furthermore, stochastic models also al-
low for the possibility of disease extinction in finite time 
and therefore the expected time to disease extinction can 
be calculated [19,28,29]. It is also observed that stochas-
tic models better capture the uncertainty and variability 
that is inherent in real-life epidemics due to factors such 
as the unpredictability of person-to-person contact [27, 
29]. L. J. S. Allen [28,29] has explored the utility of sto-
chastic epidemic models by comparing them with deter-
ministic models. Despite, the utility of stochastic models, 
however, very little stochastic modeling has been per-
formed for the transmission dynamics of dengue virus 
(see [26] and the references therein). 

The purpose of this study is to formulate and analyze a 
stochastic model for the transmission dynamics of a sin-
gle strain of dengue virus using a continuous time 
Markov chain (CTMC). The stochastic model is based on 
an existing deterministic model proposed by Garba et al. 
[11] with one minor but nevertheless important differ-
ence: contrary to the original deterministic model [11] 
and in line with previous studies of dengue virus such as 
[12,13], we will assume that exposed hosts and exposed 
vectors do not transmit the disease. In addition, the de-
terministic model [11] postulates the existence of a 
backward bifurcation for a subset of the model parame-
ters space. Therefore, a major aim of this study is to es-
timate the mean of each random variable in this region of 
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bistability using numerical simulations. These will be 
compared to the dynamics of the deterministic model 
[11]. A previous study on the effect of a backward bifur-
cation on the dynamics of a stochastic epidemic model is 
given in [26]. 

This paper is organized as follows. The second section 
contains a description of the deterministic model formu-
lated in [11] along with a discussion of the basic repro-
duction number 0  of the model as well as the condi-
tions for the existence of the backward bifurcation. In 
Section 3 we formulate the stochastic model as a con-
tinuous time Markov chain (CTMC) and discuss some 
basic properties of the stochastic model. Finally, Section 
4 contains the numerical simulations of the stochastic 
model. We conclude the paper by presenting a discussion 
of various directions in which to extend the current study. 

R

2. The Deterministic Model 

2.1. Model Formulation 

The deterministic model we have considered is a deter-
ministic vector-host ODE model that assumes a ho-
mogenous mixing of the host (human) and vector (mos-
quito) populations. The total human population at time t, 
denoted by , is divided into four mutually exclu-
sive classes comprising of susceptible humans 

 N t
 HS t , 

exposed humans , infected humans  HE t  HI t  and 
recovered humans . It is assumed that individuals 
who recover from infection with a particular serotype of 
Dengue gain lifelong immunity to it [12]. Similarly, the 
total vector population at time t is denoted by 

 R t

 VN t  
and is divided into three mutually exclusive classes com-
prising susceptible of susceptible vectors  tVS , ex-
posed vectors  and infected vectors  tVE  VI t . It is 
assumed that vectors (mosquitoes) infected with a par-
ticular serotype of Dengue never recover [12]. As men-
tioned previously in the introduction, we will modify the 
original model of Garba et al. [11] by assuming that ex-
posed humans and exposed vectors do not transmit the 
disease. 

The model assumes that the susceptible human popu-
lation  has a constant recruitment rate  HS t H  and 
natural death rate  . Susceptible individuals are in-
fected with Dengue virus (due to contact with infected 
vectors) at a rate H  and thus enter the exposed class 
EH. The exposed population  is depleted at the 
natural death rate 

 HE t
 . Additionally, exposed individuals 

develop symptoms and move into the infected class IH at 
a rate H . The infected population  HI t  is depleted 
via the natural death rate mu, the disease-induced death 
rate H  and the recovery rate of infected individuals 

H . Finally, the recovered population  decreases 
due to the natural death rate mu. 

HR t

Similarly, the susceptible vector population  VS t  

has a constant recruitment rate V  and a natural death 
rate V


 . Susceptible vectors are infected with Dengue 

virus (due to effective contact with infected humans) at a 
rate V  and thus move to the exposed vector class V . 
The exposed vector class V  is depleted at the natu-
ral death rate V

E
E t

 . In addition exposed vectors develop 
symptoms and move to the infected vector class VI  at a 
rate V . Infected vectors, in addition to the natural death 
rate   die at a disease induced death rate V . 

Mathematically, the modified determinstic model is as 
follows: 
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where,  
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The basic reproduction number for the model (2.1) can 
be calculated using the next generation operator method 
given in [30]. Hence, for the model (2.1),  is given 
by 

0R

2

0
1 2 3 4

HV V

H V

H

k k k
VC

R
k

 




          (2.2) 

where 1 H Hk    , 2 H H Hk      , 3k V V    
and 4 V Vk    . 

It follows from [30] that the following lemma holds. 
Lemma 1. The system (2.1) has a locally asymptoti-

cally stable disease-free equilibrium (DFE) given by  

0 ,0,0,0, ,0,0VH

V 
 

 


 
 

, whenever . The DFE  0R 1

given by 0  is locally unstable whenever .  0

It should be pointed out however, that we have not 
proven that the DFE is globally asymptotically stable for 
values of the basic reproduction number 0 . Indeed, 
as shown in the next section, this is not true. 

1R

1



R
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

1 2k R



2.2. Backward Bifurcation 

As mentioned in the introduction, Garba et al. proved 
that the deterministic model presented in [11] undergoes 
a backward bifurcation for certain values of the model 
parameters. Since the model (2.1) considered in this 
study is a special case of the model considered by Garba 
et al. in [11], it follows easily that model (2.1) also un-
dergoes a backward bifurcation. This is detailed in 
Theorem 1. 

Theorem 1. Define the constants  and  as 
follows: 

0 0,a b 0c

 
 

0 3 4 2

2

H H

HV H V H H

a k k k
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 2 2 2 2
0 1 2 3 4 01V Hc k k k k R    

Then, the system (2.1) has:   
 A unique endemic equilibrium if . 0 0

 A unique endemic equilibrium if 0 0b  , and 0 0
0 1c R  

c   
or . 2

0 0 04 0b a c 
 Two endemic equilibria if  and  

. 
0 00, 0c b 

2
0 0 04 0b a c 

 No endemic equilibrium otherwise.  
Furthermore, if case 3) from above holds and we 

define  as follows CR

2
0

2 2 2
0 1 2 3 4

1
4C

V H

b
R

a k k k k  
 


       (2.3) 

then a backward bifurcation of the system (2.1) occurs 
for values of the basic reproduction  such that  0R

0

Proof. By setting 
1CR R  .  

,H V 0   , the result follows 
readily from the proof of Theorem 1 in [11].  

As a consequence of Theorem 1, the model (2.1) does 
not possess a globally asymptotically stable DFE for 

. Indeed, it is clear that for certain values of 

0 , there is a simultaneous co-existence of a locally 
asymptotically stable DFE alongside a locally asymp-
totically stable endemic equilibrium. Thus, lowering the 
value of the basic reproduction number  to less than 

unity is no longer a sufficient condition to ensure disease 
elimination. From an epidemiological perspective, this 
possibility is extremely important because it implies that 
the dengue virus can persist in a population even when 

0 1R 
1R 

0R

0 1R  . 

3. The Stochastic Model 

We now formulate an analogous stochastic model using a 
continuous time Markov chain. Our main purpose in this 
study will be to explore the dynamics of the stochastic 
model using numerical simulations in the region of bista-
bility predicted by Theorem 1 and compare them to the 
corresponding results from the deterministic model (2.1). 
It has been observed [25] that for epidemic models ex-
hibiting backward bifurcation, the deterministic and sto-
chastic versions of the model do not always have similar 
dynamics. This difference is all the more important since, 
it is also observed that stochastic models better capture 
the uncertainty and variability that is inherent in real-life 
epidemics due to factors such as the unpredictability of 
person-to-person contact [27,28]. 

Model Formulation 

Following [29], we assume the total population size to be 
bounded. We denote the bound by K. Let  t , 

        , , , ,t t t t         t  and  t  denote 
discrete random variables for the number of susceptible 
hosts, exposed hosts, infected hosts, recovered hosts, 
susceptible vectors, exposed vectors and infected vectors 
respectively. Furthermore, let  and  0,t 

           
   

, , , , ,

0,1, 2,3 ,

t t t t t t

t K 
     



     



,
 

with  
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The continous-time stochastic dynamical system  
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,
 

is a multivariate process with a joint probability function 
with 

 

                    , , , , , , : Prob , , , , , , , , , , , ,
h h h v v v h h h v v vs e i r s e ip t t t t t t t t s e i r s e                i    (3.1) 

where  

 , , , , , , 0,1, 2,3, ,h h h v v vs e i r s e i K Λ  and h h h v v vs e i r s e i K       . 

We further assume that the stochastic process is time homogeneous. Thus, using the notation of [28], 

          , , , , , , , , , , , , , , , , , , , , , , , , , ,,
h s h e h i r v s v e v i h h h v v v h s h e h i r v s v e v i h h h v v vs i e i i i r i s j e j i j s e i r s e i s i e i i i r i s j e j i j s e i r s e ip t t t p               t    , 
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and therefore, the probability of transition from the state  , , , , , ,h h h v v vs e i r s e i  to the state  

 , , , , , ,h s h e h i r v s v e v is i e i i i r i s j e j i j        
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
 

   
   

 

, , , , 0,0,0,0,0,0, 1

1

, , , , , , 0,0,0,0,0,0,0

otherwise

i r s e i

H h H h H h h H h

H h V V v V v s e i r s e i

V v V v V v

i i j j j

s s e e i

i r s s i i i i j j j

e e i t o t

o t

    

    

   





















  
       


      


       
 

 

where  

       , , , , , , , , , , , , ,h s h e h i r v s v e v i h h h v v vs i e i i i r i s j e j i j s e i r s e ip t p t           

In order for the probabilities to be meaningful (non-negative and bounded by 1), the following is assumed: 

    0 1H V H H H H V V V V V V K t                                  . 

 
Since all the parameters are positive, a small value of 
 ensures that the above condition is satisfied.  t

Although, we now have the infinitesimal transition 
probabilities in hand, it is difficult to express the transi-
tion matrix and the generator matrix in easily expressible 
forms. One possible solution to this problem is given in 
[19] and we will make use of this later. Our stochastic 

model has seven independent discrete random variables 
and it is therefore even more cumbersome to express the 
associated transition and generator matrices. We there-
fore desist from this exercise for now. 

We now assume that the stochastic process satisfies 
the Markov property [28]: 

 

              
              
             
             

           

Prob , , , , , ,

0 , 0 , 0 , 0 , 0 , 0 , 0 ,

, , , , , , , ,

, , , , , ,

Prob , , , , , ,

t t t t t t t t t t t t t t

t t t t t t t

t t t t t t t

t t t t t t t t t t t t t

              

      



             



      

      

      

      

      

      

      

      

      

         

              , , , , , ,

t

t t t t t t t




            
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Using the Markov property and the infinitesimal tran-

sition probabilities, we can express the state probabilities 
at time  in terms of the state probabilities at time t. 
For the sake of simplicity, we assume that the total 
population at time t is less than the upper bound K and 
furthermore that none of the random variables is zero. 

The purpose of these two assumptions is to ignore nu-
merous tedious sub-cases.  

t   Proposition 1. Assume 1h h h v v vs e i r s e i K        . 
Further assume that none of the variables sh, eh, ih, r, sv, ev, 
iv is zero. Then, the state probabilities    , , , , , ,h v v vs e i r s e ip t

h h
 

satisfy the following difference equations  

t

 

   

             

               

, , , , , ,

1, , , , , , 1, , , , , ,

1, 1, , , , , , 1, 1, , , ,

, 1, , , ,

1

1 1

h h h v v v

h h h v v v h h h v v v

h h h v v v h h h v v v

h h h v

s e i r s e i

H hs e i r s e i s e i r s e i

H Hs e i r s e i s e i r s e i

s e i r s

p t t

p t t o t p t s t o t

p t s t o t p t e t o

p



 

 

   



 

              

            

                

                

     

, , , 1, 1, , ,

, , 1, , , , , , , 1, , ,

, , , , 1, , , , , , 1, ,

1 1

1 1

v v h h h v v v

h h h v v v h h h v v v

h h h v v v h h h v v

h H he i s e i r s e i

H hs e i r s e i s e i r s e i

Vs e i r s e i s e i r s e

t e t o t p t i t o t

p t i t o t p t r t o

p t t o t p

 

  

 

 

 

            

          

h t 

t



   

               

               

                
, , , , 1, 1, , , , , , 1, 1

, , , , , 1, , , , , , , 1

, , , ,

1

1 1

1 1

v

h h h v v v h h h v v v

h h h v v v h h h v v v

h h h

V vi

V v V vs e i r s e i s e i r s e i

V v V V vs e i r s e i s e i r s e i

s e i r s

t s t o t

p t s t o t p t e t o t

p t e t o t p t i t

p



 

  

   

 

     

           

              

      

     
, , 1

,

v v v H V h H h H h h H h H h V ve i

V v V v V v V V v

t s s e e i i r

s e e i t o t o t

        

    

            
          

o t

  



s

 

 

where    , , , , , , 1, , 1h h h v v vs e i r s e i K Λ
The remaining cases, which result from removing the 

previous assumptions, are straightforward to calculate. 
Some properties of the Markov chain can now be dis-

cussed. The Markov chain is reducible, with two impor-
tant communication classes [28], given by  

    : ,0,0,0, ,0,0 where , 0,1, 2, ,h v h vD s s s s K    

and  

   
 

: , , , , , , where , 0,1, 2, ,

, , , , 1,2,3, , .

h h h v v v h v

h h v v

E s e i r s e i s s K

e i r e i K









,

t

t

t

t

t

t







 

 

Furthermore, E is not closed since, for example, 

  . On the other hand, D is closed 
since 

 1 ,0,0,0,1,0,0 , 1,1,0,0,1,0,0 0p  

   

   

   

   

   

,0,0,0, ,0,0 , 1,0,0,0, ,0,0

,0,0,0, ,0,0 , 1,0,0,0, ,0,0

,0,0,0, ,0,0 , ,0,0,0, 1,0,0

,0,0,0, ,0,0 , 1,0,0,0, ,0,0

,0,0,0, ,0,0 , ,0,0,0, ,0,0
1

h h v

h h v

h h v

h h v

h h

s s s sv

s s s sv

s s s sv

s s s sv

s s s sv v

p

p

p

p

p



















 

Since E is an open class, all states in E are transient. 
Hence and in view of D being the only closed communi-
cation class, all sample paths will eventually be absorbed 
into the communication class D. However, while D is 
indeed a closed class, it does not contain an absorbing 
state since     ,0,0,0, ,0,0 , ,0,0,0, ,0,0

1,
h hs s s sv v

p t  hs ,  

 0,1, 2, , .vs K    
In view of the above discussion, the following theorem 

is established. 
Theorem 2. The CTMC is a reducible chain with no 

absorbing states. However, all sample paths are eventu-
ally absorbed in the closed class  

    : ,0,0,0,h vD s ,0,0 where , 0,1, 2, ,h vs s s K   . 

The two communication classes D and E correspond to 
the disease-free and endemic stages of the disease re-
spectively. Therefore, the above result indicates that 
every sample path is eventually absorbed into the dis-
ease-free class and therefore, irrespective of parameter 
values, the stochastic model will always converge to a 
disease-free state. This is in direct contrast to the deter-
ministic case in which a unique endemic steady state 
solution always exists for 0 . Thus, the determinis-
tic case allows for the possibility of the disease having an 
endemic equilibrium, depending on the value of a thresh- 
old parameter, while the stochastic model always pre-
dicts an eventual disease-free equilibrium. Furthermore, 
disease extinction takes place in finite time in the sto-
chastic case while in the deterministic case a disease-free 
equilibrium is only approached asymptotically. Depend-
ing on the value of 0  however, the sample paths for 
the stochastic model might remain in the endemic class E 
for a very long time. As a consequence, for most practi-
cal purposes, the stochastic model follows closely the 
behavior of the corresponding deterministic model for 
the majority of time. This can be demonstrated using 

1R 

R
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numerical simulations. 

4. Numerical Simulations 

Our purpose in this section is to explore the dynamical 
behavior of the stochastic model for values of the model 
parameter, which result in a backward bifurcation and 
produce a region of bistability. The behavior of the sto-
chastic model in this region is important due to the public 
health implications of the backward bifurcation. As men-
tioned previously, the existence of a backward bifurca-
tion in model (2.1) results in the possibility of a locally 
asymptotically stable endemic equilibrium even for val-
ues of 0 . Therefore, lowering the value of the basic 
reproduction number below unity is no longer a suffi-
cient condition for disease elimination. Moreover, as 
mentioned in [25], the dynamics of a stochastic epidemic 
model does not necessarily agree with its deterministic 
counterpart in this region of bistability. 

1R 

For the purpose of numerical simulations, we will 
formulate our stochastic model as a discrete time Markov 
chain (DTMC) and employ a constant time step t . 
This simplifies many of the numerical simulations and 
allows us to calculate the numerical mean, which is not 
possible when using a CTMC with random, exponen-
tially distributed interevent times. As mentioned in [19], 
if the time step  is small enough, the DTMC pro-
vides an excellent approximation to the original formula-
tion of the stochastic model as CTMC. 

t

For the numerical simulations in this section, the fol-
lowing parameter values were chosen [11]: 

10; 30; 0.0195; 0.014;

0.53; 0.2; 0.2; 0.99;

0.057; 0.07

H V V

H V H H

V HVC

 
   


     

   

 

 

This results in a value of R0 = 0.855 and Rc = 0.571 
and thus we have 0 . Therefore, in view of 
Lemma 1 and Theorem 1, the deterministic model (2.1) 
now has a locally asymptotically stable disease-free 
equilibrium (DFE) as well as a locally asymptotically 
stable endemic equilibrium. We point out however, that 
these parameter values are not necessarily realistic from 
a biological and epidemiological point of view. 

1cR R 

We numerically simulate 500 sample paths to estimate 
the mean of each discrete random variable  t , 

. The follow-
ing initial conditions were chosen: 

           , , , , ,t t t t t           t

Initial Population:  

             
 

0 , 0 , 0 , 0 , 0 , 0 , 0

580,10, 2000,0,580,10,2000 .
             

 

For these initial conditions, the behavior of the sto-
chastic model closely follows that of the deterministic 

model (2.1) as shown in Figure 1. Despite the value of 
R0 being less than unity, we see that the stochastic model 
predicts that the disease will remain endemic in the host 
population. As a consequence, the behavior of the sto-
chastic model suggests that lowering the value of R0 to 
less than unity is no longer a sufficient condition for dis-
ease elimination. 

On the other hand, the following initial conditions re-
sult in the stochastic model as well as the deterministic 
model (2.1) tending towards the DFE: 

Initial Population:  

              
 

0 , 0 , 0 , 0 , 0 , 0 , 0

580,10, 200,0,580,10, 200 .
            

 

In this case, both the deterministic model (2.1) and the 
stochastic model predict that the disease will be elimi-
nated from the host population in time, as shown in Fig-
ure 2. 

The behavior of both the stochastic and the determi-
nistic model is therefore highly dependent on the initial 
conditions. We therefore conclude that due to the exis-
tence of the backward bifurcation in model (2.1), disease 
elimination or persistence in the region of bistability is 
dependent on the initial conditions of the system. If a 
sufficient number of infectives are present in the popula-
tion, then both the stochastic as well as the deterministic 
model predict that there is a possibility that the disease 
will persist, despite R0 being less than unity. Figures 3 
and 4 display the forces of infection for the two different 
initial conditions. 

5. Uncertainty Analysis of R0 and Rc 

The values of R0 and Rc depend on the variables HV , C
, , , , , , ,H H H H V V V        and V . While, determi-

nistic models implicitly assume that the model parame-
ters are not stochastic in nature, an element of uncer-
tainty is always associated with estimates of these pa-
rameters due to factors such as natural variation, errors in 
measurements and lack of measuring techniques. In gen-
eral, uncertainty analysis quantifies the degree of confi-
dence in the parameter estimates by producing 95% con-
fidence intervals (CI) which can be interpreted as inter-
vals containing 95% of future estimates when the same 
assumptions are made and the only source of noise is 
observation error. This enables us to estimate the prob-
ability of 0 1cR R  , while taking into account the un-
certainty associated with estimates of the model parame-
ters. Our purpose in this section is to estimate the likeli-
hood of a backward bifurcation in model (2.1) for our 
chosen parameter values. 

We use the Latin Hypercube Sampling (LHS) to quan-
tify the uncertainty in R0 and Rc as a function of the 7 
model parameters , , , , , ,HV H H H VC V       and V .    

Copyright © 2013 SciRes.                                                                                  AM 



A. KHAN  ET  AL. 

Copyright © 2013 SciRes.                                                                                  AM 

670 

  

 

Figure 1. Comparison of the dynamics of the deterministic model (2.1) and the stochastic model. 
 

 

Figure 2. Comparison of the dynamics of the deterministic model (2.1) and the stochastic model. 
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Figure 3. The steady state behavior of the force of infection λV for the two different initial conditions. 
 

 

Figure 4. The steady state behavior of the force of infection λH for the two different initial conditions.   
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eliminate the phenomenon of the backward bifurcation. It is assumed that the recruitment rates V  and  H  

are constants. The assumed distributions of the model 
parameters used in the two analyses are mentioned in 
Table 1. The symbols   and   stand for the normal 
and gamma distributions respectively. Figure 5 displays 
the assumed distributions of each of the seven model 
parameters along with the resultant distribution of 0 . 
The probability that 0c  for the given parame-
ter values and distributions is 15%. Thus, for the as-
sumed parameter values, there is a non-trivial possibility 
of a backward bifurcation in the model (2.1). 

R
1R R

The numerical mean of each discrete random variable 
is calculated using Monte Carlo simulations. It is found 
that the numerically calculated means are in excellent 
agreement with the corresponding results from the de-
terministic case for parameter values, which result in the 
backward bifurcation. Therefore, both the stochastic 
model as well as the deterministic model in [11] predict 
the co-existence of a locally asymptotically stable dis-
ease-free equilibrium along with an endemic equilibrium 
for certain values of 0 1R  . As a consequence, the sto-
chastic model indicates that the disease may persist in the 
population even if 0 1R  . 6. Discussion 
 

We formulate a stochastic model, based on an existing 
deterministic ODE model, for the transmission dynamics 
of dengue virus using a continuous time Markov chain. 
The deterministic model is known to undergo a backward 
bifurcation for certain values of the model parameters 
and consequently presents the possibility of the co-exis- 
tence of both a locally asymptotically stable DFE along 
with a locally asymptotically stable endemic equilibrium 
for certain values of the basic reproduction number less 
than unity. It is important to note that the deterministic 
model (2.1) undergoes a backward bifurcation as a con-
sequence of both the use of standard incidence, as op-
posed to mass action, as well as inclusion of the vector 
dynamics. Thus, removing the vector dynamics from 
model (2.1) and using a direct transmission model as 
suggested in [13], or using a mass action model [11] will  

Table 1. Model parameters along with assumed values and 
distributions. 

Parameter Mean, variance (dist) 

   0.0195,0.003   

H   0.53,0.1   

H   0.99,0.005   

H   0.20,0.05   

V   0.20,0.05   

V   0.014,0.002   

V   0.0057,0.0005   

HVC   0.07,0.002   

 

 

Figure 5. Assumed distributions of the model parameters generated using 100,000 iterations. 
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The current study focuses on a model for the spread of 

single strain dengue virus. However, as demonstrated by 
Garba et al. in [12], a model for the transmission dynam-
ics of two strains of dengue with temporary cross immu-
nity and ADE, also allows for the possibility of backward 
bifurcations. One possible extension of the current study 
therefore, is to formulate an analogous stochastic model 
corresponding to the deterministic model presented in 
[12] and explore the dynamics of the stochastic model for 
values of the model parameters which produce the bifur-
cation.  
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