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ABSTRACT 

We present a novel cloud based IT framework, CloudTrack, for data driven intelligent transportation systems. We de- 
scribe how the proposed framework can be leveraged for real-time fresh food supply tracking and monitoring. Cloud-
Track allows efficient storage, processing and analysis of real-time location and sensor data collected from fresh food 
supply vehicles. This paper describes the architecture, design, and implementation of CloudTrack, and how the pro- 
posed cloud-based IT framework leverages the parallel computing capability of a computing cloud based on a large- 
scale distributed batch processing infrastructure. A dynamic vehicle routing approach is adopted where the alerts trigger 
the generation of new routes. CloudTrack provides the global information of the entire fleet of food supply vehicles and 
can be used to track and monitor a large number of vehicles in real-time. Our approach leverages the advantages of the 
IT capabilities of a computing cloud into the operations and supply chain. 
 
Keywords: Cloud Computing; Vehicle Routing; Supply Chain; Tracking; Hadoop 

1. Introduction 

Intelligent transportation systems (ITS) have evolved 
significantly in recent years. Modern ITS are driven by 
data collected from multiple sources which is processed 
to provide new services to the stakeholders. In a recent 
survey paper, Zhang et al. [1] describe how conventional 
intelligent transportation systems (ITS) have transformed 
into data-driven ITS. By collecting large amount of data 
from various sources and processing the data into useful 
information, data-driven ITS can provide new services 
such as advanced route guidance [2,3], dynamic vehicle 
routing [4], etc. 

Cloud computing has been implemented in various 
domains such as healthcare [5], education [6], smart 
grids [7], etc. Recent publications have demonstrated the 
benefits of cloud computing for intelligent transportation 
systems [8,9]. In our previous work [10], we demon- 
strated how cloud computing technologies can be used 
for massive scale sensor data collection and analysis for 
predicting faults in industrial machines. The successful 
adoption of cloud computing paradigm in various do- 
mains provides the motivation to implement a cloud- 
based framework for data driven intelligent transporta- 
tion systems. 

Collection and organization of data from multiple 
sources in real-time and using the massive amounts of 
data for providing intelligent decisions for operations and 
supply chains, is a major challenge, primarily because 
the size of the databases involved is very large, and real- 
time analysis tools have not been available. However, 
recent advances in massive scale data processing systems, 
utilized for driving business operations of corporations 
provide a promising approach to massive ITS data stor- 
age and analysis. 

In this paper we propose a cloud-based IT framework, 
CloudTrack, for data driven intelligent transportation 
systems. CloudTrack is built using proven open source 
cloud-based technologies that are already deployed in 
other domains. The proposed framework allows efficient 
storage, processing and analysis of real-time data col- 
lected from various sources. The global information 
available when utilizing a cloud-based IT environment 
allows a scalable, efficient, and optimized integration of 
the IT environment into the operations environment. 

Fresh food can be damaged during transit due to unre- 
frigerated conditions and changes in environmental con- 
ditions such as temperature and humidity, which can lead 
to microbial infections and biochemical reactions or me-  
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chanical damage due to rough handling. In emerging 
countries, such as in India that is second largest producer 
of fruits and vegetables in the world, as much as 30% - 
35% of fruits and vegetables perish during harvest, stor- 
age, grading, transport, packaging and distributions [11]. 
Since fresh foods have short durability, tracking the sup- 
ply of fresh foods and monitoring the transit conditions 
can help identification of potential food safety hazards. 
The analysis and interpretation of data on the environ- 
mental conditions in the container and food truck posi- 
tioning can enable more effective routing decisions in 
real time. Therefore, it is possible to take remedial meas- 
ures such as: 1) the food that has a limited time budget 
before it gets rotten can be re-routed to a closer destina- 
tions; 2) alerts can be raised to the driver and the dis- 
tributor about the transit conditions, such as container 
temperature exceeding the allowed limit and corrective 
actions can be taken before the food gets damaged. Ta- 
ble 1 provides a comparison of the published approaches 
for fresh food tracking. 

2. Current Challenges & Contributions 

Collecting and organizing location and sensor data from 
vehicles in transit and using the data for raising alerts 
about violation of certain conditions is a major chal- 
lenge for the following reasons: 1) wide coverage is 
needed for collection of location and sensor data from 
vehicles carrying fresh food supply; 2) data needs to be 
collected from a large number of vehicles in real-time to 
raise timely alerts; 3) the collected data is massive scale, 
since the real-time data from a large number of vehicles 
is collected simultaneously; 4) the massive scale data 
needs to be organized and processed in real-time; 5) the 

infrastructure used for data collection should be low cost 
and easily deployable to ensure wide popularity. The 
major contributions of this paper are: 1) We propose, 
CloudTrack, a framework for organization and analysis 
massive scale data generated by data-driven ITS (such as 
vehicle location and sensor data) in a computing cloud, 
that allows efficient collection of data on vehicle loca- 
tions and container conditions and creation of alerts 
based on the global information; 2) An efficient cloud- 
based deployment architecture for data driven ITS that 
leverages a distributed batch processing infrastructure; 3) 
A dynamic vehicle routing approach that is triggered by 
the alerts which are generated by CloudTrack. Cloud- 
Track can support a wide variety of dynamic vehicle 
routing algorithms; 4) A cloud-based vehicle location 
and container conditions tracking Software as a Service 
(SaaS). Vehicles can register with the CloudTrack ser- 
vice on-demand. CloudTrack is flexible to scale up or 
scale down resources based on the number of vehicles 
registered with the service; 5) A global approach to col- 
lect the data from a large number of vehicles at a cen- 
tralized location, which can be analyzed for detecting 
bottlenecks in the supply chain such as traffic conges- 
tions on routes, reorganization of assignments and gen- 
eration of alternative routes, and supply chain optimiza- 
tion. 

3. Deployment Architectures for Data 
Driven ITS 

Figure 1 shows a typical three tier web-based deploy- 
ment architecture used by conventional data driven intel- 
ligent transportation systems [12-14]. Tier-1 or the front 
end servers consists of the web servers, tier-2 consists of 

 
Table 1. Comparison of related work. 

Reference Data Collection Data Storage Data Analysis Control Mechanism Coverage & Scalability 

Pang et al. 
[12] 

 

Multiple sensor  
nodes in  
container, master 
sensor node in  
each vehicle. 

Relational sensor  
database in an 
operation center. 

Operation center. The user 
can monitor and track 
visualized data on 
webpage through the Data 
Visualization Engine. 

No automated control 
mechanism described. 

Global knowledge of the entire fleet 
captured in a relational database.  
Scalability is limited due to the use of 
the relational databases (management 
database and sensor database). 

Xi et al.  
[13] 

Multiple slave  
nodes in  
container, 
mother node,  
GPS receiver in  
each vehicle. 

Data logger and a  
local PC in the 
vehicle. Option for  
transmitting the 
data to a remote  
server. 

Local PC in the vehicle.  
Option for transmitting the 
data to a remote server  
monitoring center. 

No automated control 
mechanism described. 

Real-time miniature wireless  
monitoring system. No mechanism 
for capturing global knowledge of the 
entire fleet and scalability described.

CloudTrack 

Multiple sensor  
nodes in the  
container, one  
master node and 
one Android  
device in each  
vehicle. 

In the cloud.  
CloudTrack uses the 
Hadoop Distributed  
File System (HDFS) 
for storing the 
massive sensor and  
location data. 

CloudTrack (MapReduce 
jobs in the cloud). The  
real-time location and 
sensor data is continuously
analyzed by CloudTrack 
and alerts are generated  
when any abnormal 
conditions are observed. 

CloudTrack dynamic vehicle  
routing module and controller. 
Automated and passive control 
mechanism. Corrective measures 
are taken by generation of new 
routes based on the current 
locations of the vehicles. Alerts 
trigger the generation of new  
routes. 

CloudTrack provides the global 
information of the entire fleet of food 
supply vehicles and can be used to 
track and monitor a large number of 
vehicles in real-time. CloudTrack has 
been designed to scale up on demand 
with very little effort. 
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Figure 1. Three-tier web-based architecture used by con- 
ventional data driven intelligent transportation systems. 
 
application servers and tier-3 consists of data-base ser- 
vers. Figure 2 shows a cloud deployment architecture 
used in our proposed framework. In this deployment 
architecture, tier-1 consists of the web servers and load 
balancers, tier-2 consists of application servers and tier-3 
consists of a cloud based distributed batch processing 
infrastructure such as Hadoop. Compute intensive tasks 
such as data processing are formulated as MapReduce 
jobs which are executed on Hadoop. This deployment is 
suitable for massive scale data analytics. Data is stored in 
a cloud based distributed storage such as Hadoop Dis- 
tributed File System (HDFS). The advantages of cloud- 
based architecture shown in Figure 2 as compared to the 
traditional web-based architecture shown in Figure 1, are 
as follows. 

3.1. Rapid Elasticity 

Cloud-based deployment architecture leverages the dy- 
namic scaling capabilities of computing clouds. Two 
types of scaling options are available for the cloud-based 
deployment, described as follows: 

1) Horizontal Scaling (scaling-out): Horizontal scaling 
or scaling-out involves launching and provisioning addi- 
tional server resources for various tiers of the deploy- 
ment. 

2) Vertical Scaling (scaling-up): Vertical scaling or 
scaling-up involves changing the computing capacity as- 
signed to the server resources while keeping the number 
of server resources constant. 

3.2. Massive Data Analysis 

Cloud-based distributed batch processing infrastructure  

 

Figure 2. Cloud-based architecture used by our proposed 
framework for data driven intelligent transportation sys- 
tems that leverages a distributed batch processing infra- 
structure. 
 
such as Hadoop allows processing large scale data. Thus 
Hadoop is well suited for location and sensor data analy- 
sis. The Hadoop Distributed File System (HDFS) allows 
storing large files as multiple blocks which are replicated 
on multiple nodes to provide reliability. The scale of lo- 
cation and sensor data is so large that it is not possible to 
fit the data on a single machine’s disk. HDFS not only 
provides reliable storage for large amount of data but 
also allows parallel processing of data on machines in a 
cluster. 

3.3. Ease of Programming 

Programming models used by cloud-based distributed 
batch processing infrastructures such as Hadoop allow 
parallel processing of data. For example, with Hadoop, 
the location and sensor data analysis algorithms can be 
implemented as MapReduce jobs. Scaling out the com- 
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putation on a large number of machines in a cluster is 
simple with Hadoop. The same computation that runs on 
a single machine can be scaled to a cluster of machines 
with few configuration changes in the program. 

3.4. Flexibility in Data Analysis 

Cloud-based distributed batch processing infrastructure 
such as Hadoop allows scaling the data analysis jobs up 
or down very easily which makes analysis flexible. With 
this flexibility in data analysis jobs, the frequency of 
analysis jobs can be varied. 

4. Proposed Cloud-Based IT Framework 

Figure 3 shows the proposed system architecture for 
real-time fresh food supply tracking and monitoring. The 
major hardware and software components of the pro- 
posed system architecture are described as follows: 

1) Sensor Node: Sensor nodes are deployed in the con- 
tainer carrying food for monitoring temperature, humi- 
dity, etc. 

2) Master Node: Master Node collects sensor data 
from the sensor nodes in the container and transmits the 
data to the Android Device using a USB or Bluetooth in- 
terface. 

3) Android Device: An Android operating system 
based mobile device is used for capturing the sensor data 
collected by the Master Node, capturing GPS location 
data using an in-built GPS sensor and transmitting the 
data over a Wireless Wide Area Network (WWAN) to 
the data center. 

4) Communication Infrastructure: The Android de- 
vices use cellular network technologies such as WIMAX, 
GPRS, EDGE, 3G, etc provided by a wireless service 
provider which have nationwide or even global coverage. 

5) Cloud Based Data Organization and Analysis Infra- 
sctructure: The data transmitted by the Android devices 
deployed in vehicles is collected and organized in a 
computing cloud. The proposed CloudTrack framework 
is used for data organization and analysis. 

Figure 4 shows the architecture of the CloudTrack 
framework for real-time fresh food supply tracking and 
monitoring. CloudTrack is based on Hadoop [15] which 
is a framework for running applications on large clusters 
built of commodity hardware. Hadoop comprises of two 
major components: 

1) Hadoop Distributed File System (HDFS): HDFS 
stores files across a collection of nodes in a cluster. Large 
files are split into blocks (64 MB by default) and each 
block is written to multiple nodes (default is three) for 
fault-tolerance [15]. 

2) MapReduce: MapReduce is a parallel data proc- 
essing model which has two phases: Map and Reduce. In 
the Map phase, data is read from a distributed file system 
(such as HDFS), partitioned among a set of computing 
nodes in the cluster, and sent to the nodes as a set of 
key-value pairs. The Map tasks process the input records 
independent of each other and produce intermediate re-
sults as key-value pairs. The intermediate results are 
stored on the local disk of the node running the Map task. 
When all the Map tasks are completed, the Reduce phase 
begins in which the intermediate data with the same key  

 

 

Figure 3. Proposed system architecture for real-time fresh food supply tracking and monitoring. 
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Figure 4. Proposed framework for real-time data organization and analysis in a computing cloud-CloudTrack. 
 
is aggregated. 

4.1. Data Collectors 

The Data Collectors in the CloudTrack framework col- 
lect the streaming time-series data from the master nodes 
in the vehicles. Each incoming data stream is mapped to 
one of the Data Collector nodes as shown in Figure 4. 
Each Data collector node has a Data Aggregator, Data 
Filter and Data Archiver module. Since the raw location 
and sensor data comes from a large number of vehicles in 
the form of data streams, the data has to be preprocessed 
to make the data analysis using Hadoop more efficient. 
The Hadoop MapReduce data processing model works 
more efficiently with a small number of large files rather 
than a large number of small files. The Data Collectors 
buffer, preprocess and filter the streaming data into larger 
chunks (called Sequence Files) and store it in HDFS. 
Data Collectors use Hadoop’s Sequence File class which 
provides a persistent data structure and serves as a con- 
tainer for multiple records. Since HDFS and MapReduce 
are optimized for processing large files, packing records 
into a Sequence File makes processing of data more effi- 
cient. The Data Aggregator aggregates streams of loca- 
tion and sensor data into Unstructured-Sequence Files on 
the local disk of the Data Collector node. The Data Filter 
converts the Unstructured-Sequence Files into structured 
records by parsing the records (lines) in Unstructured- 
Sequence Files and extracting the sensor readings. The 
Data Filter also filters out bad records in which some 
sensor readings are missing. The Data Archiver moves 
the Structured Records to HDFS. 

4.2. Alerts Creation Module 

The data collected is processed to generate alerts based 
on the user specified filters for alerts creation. This 
Alerts Creation Module collects the alerts into an alerts- 
base (alerts database) which is organized into a manage- 
able structure in HDFS. Real-time alerts are created us- 
ing the real-time location and sensor data collected in a 
small time window. Offline alerts can also be created 
from the past location and sensor data. 

4.3. Alerts Retrieval Module 

The Alerts Retrieval Module retrieves the alerts for dis- 
playing them in the CloudTrack dashboard. The user can 
search for a particular vehicle by vehicle number, vehicle 
type, arrival or departure locations. The Alerts Retrieval 
Module then retrieves the alerts for that particular vehi- 
clefrom the alerts-base. 

4.4. Controller 

The Controller module sends the new routes generated 
by the Dynamic Scheduler to all the vehicles. Alterna- 
tively, the vehicles can also pull the new routes and addi- 
tional information on the nearby vehicles from the con- 
troller. 

4.5. Dynamic Vehicle Routing Module 

The Dynamic Vehicle Routing Module generates routes 
for the vehicles based on the real-time data collected in 
order to minimize the spoilage of fresh food. Deviations 
in the planned schedule occur due to changing traffic 
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conditions. Moreover, there may be changes in the con- 
tainer conditions such as an increase in temperature due 
to a fault in the cooling system, etc. With CloudTrack it 
is possible to have a global view of all the vehicles in 
transit. The Dynamic Vehicle Routing Module creates 
new routes for the vehicles when alerts occur. For exam- 
ple, a vehicle that is bound to miss the deadline for a 
scheduled destination and has a limited time window left 
before the spoilage of food starts, can be re-routed to a 
closer destination. The knowledge about the state vari- 
ables of the vehicle (such as truck capacity, location, 
speed, container temperature, etc.) and the vehicles near- 
by is important for creation of new routes. The routes are 
generated to minimize the food spoilage and the costs 
involved in transportation. Savings come due to sharing 
of transportation costs on common routes by better utili- 
zation of vehicles and better re-routing of vehicles in the 
event of delays. 

Instead of proposing new algorithms for vehicle rout- 
ing (which is an established area of research within 
transportation systems), our effort behind CloudTrack is 
to provide a cloud-based framework that supports a wide 
variety of vehicle routing algorithms within a cloud ar- 
chitecture. We now describe a typical use case of dy- 
namic vehicle routing. We have used Tabu Search [16] 
algorithm for the use case. CloudTrack is flexible to 
support other dynamic routing algorithm as well. For the 
use case we have chosen Tabu Search as it has been ap- 
plied widely for various types of optimization problems, 
with very good results. 

Figure 5 shows an example of food supply vehicle 
routing. The routing problem involves a set of food sup- 
ply pickup points (shown as sources) and the delivery 
points (shown as destinations). The sources can be either 
collection centers for fresh food produce or warehouses 
where food is temporarily stored before distribution. The 
destinations can be either retail stores where fresh food is 
sold or warehouses where the food is kept refrigerated 
before it is transported to other locations. The problem 
described in this section involves a number of vehicles 
which can start and end their routes at different locations. 
The number of routes in the problem is equal to the 
number of vehicles. Each vehicle has a limited capacity 
and can serve a limited number of delivery points. An 
initial schedule is obtained such that each delivery point 
is visited only once by one of the vehicles. The Cloud- 
Track framework is used to monitor the real-time data 
captured from all the vehicles and the vehicle routes are 
updated if there are changes in conditions that can lead to 
spoilage of food supply during transit. 

Figure 6 shows an example of a dynamic schedule 
which is generated after analysis of real-time data from 
the vehicles. The example shows a scenario where the 
vehicle on route-1 generates an alert for a delayed deliv-  

 

Figure 5. Example of an initial schedule. 
 

 

Figure 6. Modified schedule based on real-time alerts. 
 
ery to destination-3. This alert triggers the creation of a 
new routes in which the vehicle-1 is re-routed to destina- 
tion-4, vehicle-2 is re-routed to destination-3 and vehi- 
cle-3 is re-routed to destination-6. 

We now describe the mathematical model for the ve- 
hicle routing problem shown in Figure 5. Figure 7 shows 
the time sequence of a route. The parameters involved in 
the model are as follows: 

N is the total number of destinations, K is the number 
of vehicles, M is the maximum number of destinations 
that can be served by a vehicle on one route, Di is the 
time taken to travel from source to destination-i, Tmk0 is 
the start time of the mth trip of vehicle k, Tmk1 is the 
reaching time at the destination for the mth trip of vehicle 
k, Tmk2 is the end time of the mth trip of vehicle k, Si is the 
handling time at destination-i, Ri is the time window for 
delivery at the destination-i, Wi0 is the start time of the 
time window at destination-i and Wi1 is the end time of 
the time window at destination-i. Xikm  {0,1} is the 
decision variable where i 


  {1, …, N}, k  {1, ..., K}, 

m 


  {1, ..., M}. Xikm = 1 if destination-i is served by 
vehicle k on its mth trip and 0 otherwise. The objective 
function that represents the total cost of transporting the 
food supply is defined as follows: 

 1 1
1 1 1 1

N K M N

i ikm i mk
i k m i

iF D X T W
   

           (1) 
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Figure 7. Time sequence of a route. 
 
where αi is lateness penalty coefficient associated with 
destination-i. The objective function involves the trans- 
portation cost from the source to the destination and the 
penalty due to late delivery at the destination. For the use 
case, to minimize the objective function given the con- 
straints as described in the mathematical model, we adopt 
a meta-heuristic approach called Tabu Search [16]. 

The solution obtained by minimizing the objective 
function is a schedule specifying the routes for each ve- 
hicle and the sequence of the destinations to be served. 
Tabu search is a memory based meta-heuristic method 
that uses a memory structure called tabu list to store the 
recent moves or solutions. During the search process, 
attempts that produce the moves or solutions in the tabu 
list are denied. The moves or solutions in the tabu list can 
be overrided sometimes, when an aspiration criteria is 
satisfied which produces a globally best solution. To ob- 
tain an initial solution we adopt the Push Forward Inser- 
tion Heuristic (PFIH) described by Solomon [17]. The 
algorithm for generating initial solution based on Push 
Forward Insertion Heuristic (PFIH) is shown in Table 2. 

The Tabu Search process proceeds by a sequence of 
intensifications and diversifications. Intensification is a 
strategy that aims at a detailed exploration of the neigh- 
borhood of the solutions that are historically found to be 
good. Whereas, diversification is a strategy that aims at 
driving the search into new regions. After obtaining an 
initial solution, it is intensified using a λ-interchange lo- 
cal search method introduced by Thangiah et al. [18]. 
The algorithm for vehicle routing based on Tabu Search 
[16] is described in Table 3. 

The algorithm for dynamic vehicle routing which is 
used in the use case, is described in Table 4. A vehicle 
routing algorithm such as tabu search is used to obtain an 
initial static schedule. Whenever a new alert occurs, a 
new schedule is generated based on the current locations 
and the existing filled capacities of the vehicles. If a fea- 
sible solution is found, the new schedule is pushed to all 
the vehicles by the Controller module. If no feasible so- 
lution is found, a local fix is obtained for the vehicle that 
generated the alert. For example, a local fix can be re-  

Table 2. Algorithm for generating initial solution based on 
PFIH [17]. 

1. Begin with an empty route starting from a depot and set R = 1. 
2. If all delivery points have been routed goto step-10. 
3. Else for all delivery points which haven’t been routed compute of
the cost of inserting them as the first node and sort them in 
ascending order.  
4. Select first delivery point d1 from the sorted list which has the 
least cost and is feasible in terms of time and capacity constraints. 
5. Append d1 to the current route R and update the total cost of the 
route. 
6. For all delivery points which haven’t been routed, for all edges 
{m, n} in the current route, compute the cost of inserting each of 
the unrouted delivery points between m and n. 
7. Select the delivery point d and edge {m, n} that has the least cost.
8. If the insertion of delivery point d between m and n is feasible in 
terms of time and capacity constraints, insert the d between m and n
and update the cost of the current route. Goto step-6. 
8. Else goto step 9. 
9. Begin a new route from a depot and set R = R + 1. Goto step-2. 
10. Stop. 

 
Table 3. Algorithm for vehicle routing based on Tabu 
Search [16]. 

1. Obtain an initial solution using Push Forward Insertion Heuristic 
(PFIH) and set the global best solution equal to the current solution, 
i.e. Sb = S. 
2. Initialize the tabu list and candidate list and add the current 
solution to the tabu list. 
3. Do intensification, i.e. exploration of the neighborhood of the 
current solution S using 2-interchange local search and update the 
candidate list (with the best solution at the top of the list). 
4. Set S0 equal to the first solution in the candidate list. 
5. If S0 is in the tabu list select the next best solution from the 
candidate list and set it as S0. 
6. If Cost(S0) < Cost(Sb) set the best solution Sb = S0 and update the 
tabu list. 
7. Do diversification and update the candidate list with the random 
solutions produced by the random hops 
8. If the total number of iterations is less than maximum allowed 
iterations, go to step-3. 
9. Else terminate the search. 

 
Table 4. Algorithm for dynamic vehicle routing. 

1. Obtain an initial static schedule using a vehicle routing algorithm 
(such as tabu search). 
2. If an alert occurs, obtain the current locations and filled 
capacities of the vehicles. 
3. Generate a new solution using the vehicle routing algorithm with 
the current locations and filled capacities of the vehicles as input. 
4. If a feasible solution is found send the new schedule to all the 
vehicles. 
5. If no feasible solution is found, mark the alert for a local fix and 
obtain a local solution for the vehicle that raised the alert. 

 
routing the vehicle to the nearest delivery point such as a 
retail store or warehouse which is not on the planned 
route of other vehicles. 

4.6. CloudTrack Dashboard 

Figure 8 shows a screenshot of the CloudTrack Dash- 
board that is used to visualize the tracking and monitor- 
ing data for a particular vehicle. The dashboard has wid-  
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Figure 8. Screenshot of CloudTrack dashboard. 
 
gets for displaying the following information: 1) vehicle 
information, such as vehicle number, vehicle type, etc.; 2) 
trip information such as departure and arrival locations, 
trip distance, distance and time traveled, time to destina- 
tion, current and average speeds, etc.; 3) container in- 
formation such as total container capacity, existing filled 
capacity, container temperature and humidity, etc. The 
dashboard also allows creation of custom filters for 
alerts. 

Track’s multi-tier deployment configuration we use the 
naming convention-(#L (size)/#A (size)/#H (size)), where 
#L is the number of instances running load balancers and 
web servers, #A is the number of instances running 
application servers, #H is the number of instances run- 
ning the Hadoop cluster and (size) is the size of an in- 
stance. Figure 9 shows comparisons of alerts creation 
times for varying number of records on varying hardware 
configurations (Amazon EC2 compute units). Each com- 
pute unit provides an equivalent CPU capacity of 1.0 - 
1.2 GHz 2007 Opteron processor or 2007 Xeon processor. 
We observe that even with a large number of vehicles 
and records, the alerts can be created in a time-scale of 
few seconds to minutes. 

5. Evaluation 

To model the data collection architecture of CloudTrack, 
we developed a prototype system that used an Arduino 
Uno development board, Sensirion SHT21 temperature 
and humidity sensor, and an Android OS based mobile 
device. On the Android device an application was written 
to read in the sensor readings. A service within the ap- 
plication captures the sensor data from the Arduino board 
and pushes the sensor data along with the GPS data 
obtained from the Android device to CloudTrack. Using 
the empirical data collected from the prototype system a 
model for a food truck was developed. This model was 
then used to generate a large number of virtual trucks 
using a data generator from which synthetic data was 
generated. A large data set (for upto 1000 delivery points 
and 100 vehicles) was generated synthetically, which 
allowed us to validate the scalability, flexibility and 
control mechanism of CloudTrack. 

With Hadoop it is possible to analyze such massive 
scale data efficiently. We also observed that when the 
amount of data to be analyzed is small, the Hadoop’s 
non-significant startup costs dominate the execution 
time. 

However as the amount of data to be processed 
increases the startup costs are dwarfed by the execution 
time. For analysis of 1,000,000 records with CloudTrack, 
experimental measurements show a speed up of upto 4 
times using a computing cluster (with 33.5 EC2 compute 
units) as compared to a single node (with 1EC2 compute 
unit). From the results in Figure 9 it is observed that 
CloudTrack is well suited for massive scale vehicle loca- 
tion and sensor data processing. For example, if the loca- 
tion and sensor readings are collected from 100 vehicles 
every 5 seconds then 1 million records correspond to 
approximately 14 hours of data. Figure 10 shows the 
comparisons of vehicle route generation times for vary- 
ing number of delivery points and vehicles on varying  

In order to evaluate the scalability of the proposed 
CloudTrack framework, we performed a series of ex- 
periments with varying number of delivery points and 
vehicles, using the Amazon Elastic Compute Cloud (EC2) 
infrastructure [19]. For simplicity in describing Cloud  
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Figure 9. Comparisons of alerts creation times for varying 
number of records on varying hardware configurations. 
 

 

Figure 10. Comparisons of vehicle route generation times 
for varying number of delivery points and vehicles on 
varying hardware configurations. 
 
hardware configurations. From the results in Figure 10 
we observe that CloudTrack can generate vehicle routes 
on timescale of few seconds to minutes. Furthermore, 
from the results in Figures 9 and 10, it is observed that 
the CloudTrack framework can be scaled up by adding 
additional computing resources. Figure 11 shows the 
relative costs of the vehicle routing solutions generated 
by the CloudTrack’s vehicle routing module at different 
iterations. The costs shown in the plot have been nor- 
malized with the cost of the final solution. These costs 
are calculated using Equation (1). For simplicity, we 
choose Di in Equation (1) to be the distance from source 
to destination-i. Normalization of costs is done by divid- 
ing the cost of a solution with the cost of the final solu- 
tion. From the results in Figure 11 it is observed that the 
relative costs of the solutions decrease in each successive 
iteration as the vehicle routing algorithm progresses. 

Figure 12 shows the average throughput for the 
CloudTrack dashboard for three different deployment 
configurations. We observe that throughput continuously 

With increase in number of vehicles CloudTrack services 
higher number of requests per second, therefore an in- 
crease in throughput is observed. Beyond 1600 vehicles, 
we observe a decrease in throughput, which is due to the 
high utilization of the resources (CPU, Disk I/O, etc.) for 
the web or application tiers of the CloudTrack deploy- 
ment. Figure 12 also demonstrates the vertical and hori- 
zontal scaling options of CloudTrack. Comparing  
(1L(small)/2A(small)/2H(large)) and  
(1L(small)/2A(large)/2H(large)) deploy
that by vertical scaling (increasing the compute capacity 
of application servers from small to large) a higher 
throughput is achieved. Similarly comparing deploy- 
ments (1L(small)/2A(small)/2H(large)) and  
(1L(small)/3A(small)/2H(large)), we observ
horizontal scaling (increasing the number of application 
servers), a higher throughput is achieved. Additional 
computing resources can be provisioned for larger num- 
ber of vehicles, depending on the scale of the problem. 
Figure 13 shows the average response time for the 
CloudTrack dashboard for three different configurations. 
With increase in number of vehicles the mean request ar- 
rival rate increases since CloudTrack services higher 
number of requests per second, therefore an increase in 
response time is observed. Figure 13 also demonstrates 
the vertical and horizontal scaling options of CloudTrack. 
Comparing the three different deployment configurations 
of CloudTrack we observe that lower response times are 
achieved by vertical and horizontal scaling. 

To sum up, the experiments done using 

increases as the number of tracked vehicles increase. 

ments, we observe 

e that by 

1) the proto- 
ty

6. Conclusion 

 propose a cloud-based framework, 

pe system for sensor and location data collection; 2) 
virtual vehicle model developed using empirical data 
collected from the prototype system; 3) synthetic data 
generated using the virtual vehicle model and a data 
generator, were able to test the complete CloudTrack 
architecture including data collection, data analysis for 
alerts creation and dynamic route generation. 

In this paper, we
CloudTrack, and provide a case study of how the IT in- 
frastructure may be efficiently integrated into the supply 
chain and operational systems. We demonstrated the fea- 
sibility of CloudTrack as a scalable platform for data 
driven intelligent transportation systems, based on new 
cloud-based programming models and data structures, 
Hadoop and MapReduce. The fresh food supply vehicles 
are equipped with Sensor Nodes, a Master Node and an 
Android Device to collect and transmit real-time location 
and sensor data. A distributed batch processing infra- 
structure, Hadoop, is used for running data analysis jobs 
on clusters of machines. Data analysis jobs are formu- 
lated using Hadoop MapReduce programming model, 
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Figure 11. Relative total cost of generated routes. Tabu search algorithm was used for experimen  evaluation. 
 

tal

 

Figure 12. Average throughput for CloudTrack dash ob ard 
for different deployment configurations. 
 

 

Figure 13. Average response time for CloudTrack das
board for different deployment configurations. 

which allows jobs to be run in parallel. Experimental 

[1] J. Zhang, F. Wang, K. Wang, W. Lin, X. Xu and C. Chen, 
“Data-Driven In ystems: A Sur-
vey,” IEEE T ent Transportation 

h- 

measurements showed that the MapReduce implementa- 
tion can create alerts on a timescale of few seconds to 
minutes on the cloud. Moreover, upon the creation of 
alerts, new vehicle routes can be generated in a timescale 
of few seconds to minutes. With the proposed approach 
the spoilage of fresh food during transit can be reduced 
due to better re-routing of vehicles based on the real-time 
information. 

REFERENCES 

telligent Transportation S
ransactions on Intellig

Systems, Vol. 12, No. 4, 2011, pp. 1624-1639.  
doi:10.1109/TITS.2011.2158001 

[2] R. Claes, T. Holvoet and D. Weyns, “A Decentralized 
Approach for Anticipatory Vehicle Routing Using Dele- 
gate Multiagent Systems,” IEEE Transactions on Intelli- 
gent Transportation Systems, Vol. 12 No. 2, 2011, pp. 
364-373. doi:10.1109/TITS.2011.2105867 

[3] D. A. Steil, J. R. Pate, N. A. Kraft, R. K. Smith, B. Dixon, 
L. Ding and A. Parrish, “Patrol Routing Expression, Exe- 
cution, Evaluation, and Engagement,” IEEE Transactions 
on Intelligent Transportation Systems, Vol. 12 No. 1, 
2011, pp. 58-72. 

[4] E. Schmitt and H. Jula, “Vehicle Route Guidance Sys- 
tems: Classification and Comparison,” Proceedings of 
IEEE ITSC, Toronto, 2006, p. 242247. 

[5] M. T. Nkosi, “Cloud Computing for Enhanced Mobile 
Health Applications,” IEEE Second International Confer- 
ence on Cloud Computing Technology and Science (Cloud- 
Com), Indianapolis, 30 November-3 December 2010. 

[6] M. A. H. Masud, “Cloud Computing for Higher Educa- 
tion: A Roadmap,” IEEE 16th International Conference 

http://dx.doi.org/10.1109/TITS.2011.2158001
http://dx.doi.org/10.1109/TITS.2011.2158001
http://dx.doi.org/10.1109/TITS.2011.2158001
http://dx.doi.org/10.1109/TITS.2011.2158001
http://dx.doi.org/10.1109/TITS.2011.2105867
http://dx.doi.org/10.1109/TITS.2011.2105867
http://dx.doi.org/10.1109/TITS.2011.2105867
http://dx.doi.org/10.1109/TITS.2011.2105867


A. BAHGA, V. K. MADISETTI 141

on Computer Supported Cooperative Work in Design

k, Vol. 26, No. 4

 
(CSCWD), Wuhan, 23-25 May 2012. 

[7] X. Fang, S. Misra, G. L. Xue and D. J. Yang, “Managing 
Smart Grid Information in the Cloud: Opportunities, Mo- 
del, and Applications,” IEEE Networ , 
2012, pp. 32-38. doi:10.1109/MNET.2012.6246750 

[8] Z. J. Li, “Cloud Computing for Agent-Based Urban Tran- 
sportation Systems,” IEEE Intelligent Systems, Vol. 26, 
No. 1, 2011, pp. 73-79. 

[9] P. Jaworski, “Cloud Computing Concept for Intelligent 
Transportation Systems,” 14th International IEEE Con- 
ference on Intelligent Transportation Systems (ITSC), 

ted Systems, Vol. 23, 

Washington DC, 5-7 October 2011. 

[10] A. Bahga and V. K. Madisetti, “Analyzing Massive Ma- 
chine Maintenance Data in a Computing Cloud,” IEEE 
Transactions on Parallel & Distribu
No. 10, 2012, pp. 1831-1843.  
doi:10.1109/TPDS.2011.306 

[11] Department of Scientific & Industrial Research, “Fruits & 
Vegetables Sector: An Overvie
tific & Industrial Research Re

w,” Department of Scien-
port, India, 2011. 

 Applica-

 

[12] Z. B. Pang, J. Chen, Z. Zhang, Q. Chen and L. R. Zheng, 
“Global Fresh Food Tracking Service Enabled by Wide 
Area Wireless Sensor Network,” IEEE Sensors
tions Symposium (SAS), Limerick, 23-25 February 2010. 

doi:10.1109/SAS.2010.5439425 

[13] Y. Xi, W. Yang, N. Yamauchi, Y. Miyazaki, N. Baba and
H. Ikeda, “Real-Time Data Acqu

 
isition and Processing in 

nce Supply Chain Management in Automobile In- 

a Miniature Wireless Monitoring System for Strawberry 
during Transportation,” TENCON, Hong Kong, 2006, pp. 
1-4. 

[14] Y. L. Bu and L. Wang, “Leveraging Cloud Computing to 
Enha
dustry,” International Conference on Business Computing 
and Global Informatization, Shanghai, 29-31 July 2011. 
doi:10.1109/BCGIn.2011.45 

[15] Apache Hadoop. http://hadoop.apache.org 

[16] F. Glover, “Tabu Search Part I,” ORSA Jo
puting, 1989. 

urnal on Com- 

oblems with Time Window Constraints,” 

 

[17] M. M. Solomon, “Algorithms for the Vehicle Routing and 
Scheduling Pr
Operations Research, Vol. 35, No. 2, 1987, pp. 254-265. 

[18] S. R. Thangiah, I. H. Osman, R. Vinayagamoorthy and T. 
Sun, “Algorithms for the Vehicle Routing Problems with
Time Deadlines,” American Journal of Mathematical and 
Management Sciences, Vol. 13, No. 3-4, 1993, pp. 323- 
355. 

[19] http://aws.amazon.com/ec2/instance-types 

 

 

Copyright © 2013 SciRes.                                                                                 JTTs 

http://dx.doi.org/10.1109/MNET.2012.6246750
http://dx.doi.org/10.1109/MNET.2012.6246750
http://dx.doi.org/10.1109/MNET.2012.6246750
http://dx.doi.org/10.1109/MNET.2012.6246750
http://dx.doi.org/10.1109/TPDS.2011.306
http://dx.doi.org/10.1109/TPDS.2011.306
http://dx.doi.org/10.1109/TPDS.2011.306
http://dx.doi.org/10.1109/TPDS.2011.306
http://dx.doi.org/10.1109/SAS.2010.5439425
http://dx.doi.org/10.1109/SAS.2010.5439425
http://dx.doi.org/10.1109/SAS.2010.5439425
http://dx.doi.org/10.1109/SAS.2010.5439425
http://dx.doi.org/10.1109/BCGIn.2011.45
http://dx.doi.org/10.1109/BCGIn.2011.45

