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ABSTRACT

The Hypoexponential distribution is the distribution of the sum of n > 2 independent Exponential random variables.
This distribution is used in moduling multiple exponential stages in series. This distribution can be used in many do-
mains of application. In this paper we consider the case of n exponential Random Variable having distinct parameters.
Using convolution, some properties of Laplace transform and the moment generating function, we analyse this case and
give new properties and identities. Moreover, we shall study particular cases when ¢; are arithmetic and geometric.
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1. Introduction generating function in finding the k™ derivative of the
pdf of this sum and the moment of this distribution of
order k. In addition, we deduce some new equalities re-
lated to these parameters. Also we shall study the case
when the parameters form an arithmetic and geometric
sequence considered by [10,14,15] and find some new

results.

The Random Variable (RV) plays an important role in
modeling many events [1,2]. In particular the sum of
exponential random has important applications in the
modeling in many domains such as communications and
computer science [3,4], Markov process [5,6], insurance
[7,8] and reliability and performance evaluation [4,5,9,
10]. Nadarajah [11], presented a review of some results

on the sum of random variables.

Many processes in nature can be divided into sequen-
tial phases. If the time the process spends in each phase
is independent and exponentially distributed, then the
overall time is hypoexponentially distributed. The service
times for input-output operations in a computer system
often possess this distribution. The probability density
function (pdf) and cummulative distribution function (cdf)
of the hypoexponential with distinct parameters were
presented by many authors [5,12,13]. Moreover, in the
domain of reliability and performance evaluation of sys-
tems and software many authors used the geometric and
arithmetic parameters such as [10,14,15].

In this paper we study the hypoexponential distribution
in the case of n independent exponential R. V. with dis-
tinct parameters ; # @; for i# J, written as
hypoexp(e,,a,, +-,a,). We use in our work the prop-
erties of convolution, Laplace transform and moment

Copyright © 2013 SciRes.

2. Definitions and Notations

Let X,,X,,--,X, be independent exponential random
variables with different respective parameters ¢, ,
i=12,---,n, written as X; ~Exp(¢;). We define the
random variable

S, ZZin:lXi

to be the Hypoexponential random variable with pa-
rameters ¢;, i=1,2,---,n, written as

S, ~hypoexp(ey,@,, -, )
Some notations used throughout the paper.
Xi: Exp(e).
S,: hypoexp(a,,a,, ).
f, : The pdf of the random variable X.
F, : The cdf of the random variable X.
(

f): The k" derivative of the pdf f, .
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L } Laplace-Stieltjes Transform.
L'{}: Laplace Inverse.

o, t) The moment generating function of X.
E[X J : The moment of order k of the RV X.
a: H. @ product of all parameters.

n Q;
R: Hj],jii(l__J'

a;

Vit Hl}:l j:ti(aj _ai)'

By: { Lol )01 < k;zi":llizk;lsisn},Eozo.

3. Applications on pdf and cdf Using Laplace
Transform

The pdf and cdf of the hypoexponential with distinct pa-
rameters were presented by many authors [2,7,11-13].
We shall state in thoerem 1 and propostion 1 these results
and provide another proof using Laplace transform. Next,
we give some new properties of its pdf, where new iden-
tities are obtained.

Theorem1.Let n>2 and t>0. Then

fsn (t) = Zizl ;3

and
e—aix
Fs, (x)= 1‘2?:1? o) (x).
I
Proof. We have

(24

L{fxi (X)}: :

s+a,

where §>max{-¢} for i=12,--,n. Since X, are
independent then f (t) is the convolutions of f, ,

i=1,2,---,n written as
fo, (1) =(fy, * i, +x i )(1)

and the Laplace transform of convolution of functions is
the product of their Laplace transform, thus

L{f, (1)} :HLL{ f, (0}
_H| 1S+a - Hin:l

where s>max{-¢}. However, by Heaviside Expan-
sion Theorem [16], for distinct poles gives that

L{t, (t)) =ay), 2

S+O!

1 )

s+a,

where

1
A=
Hj:l,j::i(aj_ai)
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Therefore,

O

S+,
= azin:] Ae l00) ().

But aA =—. Thus

o
R

fSn (t) = Zi:l P

On the other hand we have

X)= J.OXZ?:I—in S)dt

no 1 nl—e
:zi:IEini (X):Zizl P

But limF (x)=1, then Z?ﬂ%:l and we con-

clude that
n eiaix
an(x)=1—zi:1T'(o,w)(X)- =

Next we shall discuss the k" derivative of f; (t)
and many equalities are obtained concerning P, form
and some similar forms.

We start by noting from the previous proof that
Z.n_ i:1. Here, we shall state another simple proof

i=1 P|
using Laplace transform.

Proposition 1. Let n>2. Then

1

Zin:13i=l.

Proof. We have from Equation (1),

{0} -1 ;2 |

s+a

where s> max{-¢;},i=1,2,--,n.But from Theorem 1,

fsn (t) = Zin_leiT(t)

and
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H[%] -3 Pi‘(";i). Therefore, Y

Lemmal.Let n>2. Then

(k) ok n Q;
L{ fsn (t)} B Hi—l(s_HZi ]
for 0<k<n-1.
Proof. The proof is done by induction. For k=0, we
have from Equation (1)

L{f,, (t)}=Hr_l( % j

s+a

However, by Initial Value Theorem, we have

lim f; (t)= lim sL{f; (1)}

t—0
= lim s]‘[i"_l( % ]:0

S—>+0 5 + al

and for k=1 we have

L{t ()} =sL{f, ()} -1, (0"

Moreover
£t o) =s£{ e ) 1)

Continuing in the same manner till the (n—1)" de-
rivative, we obtain the result. a

In the following propostion we shall prove that the
first (n—Z)th derivative of the pdf of S, are zeros,
which verifies the fact that the coefficient of variation of
the hypoexponential distribution is less than one unlike
the hyperexponential distribution that have the coeffi-
cient of variation greater than 1.

Proposition 2. Let n>2. Then

0, if 0<k<n-2
a, if k=n-1

th

lim £ (t) =

t—>0 N

Proof. Let n>2, we have from Lemma 1,

£ )< TI ;2 |

s+a

for 0<k<n-1 and from Initial Value Theorem, we
have

tim 109 (t) = lim s£{ £ (1)} = lim >~

t—0 S+
1 {O,ifn—k—IZI

:limma: A
) a,if n—-k-1=0
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Corollary 1. Let n>2. Then
5 o [0 if I<k<n-1
YR |(-1)"a, ifk=n

thrOOIT. We have f, (t)=ae ™1, (t) . Then the
r derivative of f, is

fiir) (t)= (—1)r o tle ! lio.0) (t).

However, from Theorem 1,

then
r ) f(r) (t) . ar+le ajt
fs(n)(t):Z|:] XIP :Zi:l(_l) : P I(Ooo)
and
() , N a_r+l
11301 fsn (t):(_l) Zi:l#' @)

By Proposition 2, we obtain that

Zn a0, if0<r<n-2
SR (<) @ if r=n-1

By replacing r+1 with k we obtain the result. O

4. Applications on pdf and cdf Using
Moment Generating Function

In the previous section we saw the use of Laplace prop-
erties in the proofs of the theorems and propositions. In a
similar manner, in this section we use the moment gen-
rating function to obtain more new related results. A new
form of the moment generating function of S, and the
moment of S of order k is given. Moreover, we de-
duce more new related equalities concerning P and
higher order derivatives of pdfof S, .
Proposition 3. Let n>2. Then
Py (1)

U (t) = Zi:l P

Proof. We have
D (t)= E[ets“ J = j:eTX fs (x)dx

and from Theorem 1,

then

n 1 T iy n
O (t)=2 ey, () dx =21,

i:lEi -
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Proposition4.Let n>2 and k>0. Then

E[sr]=>]

i=1 Piaik

Proof. We have from Proposition 3,

Then
d“dg (t)_zn | d“@, (t)
and
d@g ()| n 14O (1)
Tat —ZizlgiT
t=0 t=0

k
which gives E[Sﬁ]th M.But E[Xik}zﬁ.

i=1 P|

Thus we obtain the result. i
Next, we shall use the Proposition 3 and 4 to find other
identities on P and higher orders for f.* ( ). We start
by noting that ®; (0)=1 and by takmg t=0 in
Proposition 3, we again obtain the result in Proposition 1,

that is Z.n_ 1 =1.
i=1 P|
Proposition 5. Let n>2 and k>0. Then

Yo=Y

i=1 |
Par g aolay o

where

c (0.

Note that we may write

1,)/0<I; <

kYL =kl<i<n).

1 1

2 .=Z , 3)

I b n
E, O Oy -y e G & Gy GGy

where

e={Gi.-

However E, and |, are equivalent representing a

i )/1<i <iy << <)

o . . . n+k-1
set of combination with repetition having K
possibilities and E; =1, =0, thus the above summation
(3) shall be 1.
Proof. Let k>0 and n>2.We have
E[s4]= E[(x1 + X, et xn)k}

and using multinomial expansion formula, we obtain
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Elsi]=E % !|k!.!..| ;(XJ'X;“‘X#)]

Ee fi-h2

Knowing that expectation is linear and X,
i=12,---,n are independent with

then

e[t ]-Y——~ @

b I’
B & Oy O

Since from Proposition 4,
n k!
E[SK|=" —.
[ ﬂ:' Z|:1Piaik

Therefore,

no 1 1
Z-: =Z W h o

i=1 k
Po B O &y Oy

The following corollary is direct consequence of
Proposition 5 and Equation (4), taking k=0,1 and 2
respectively.

CoroIIary 2.Let n>2.Then

I
_Zilli and E[Sn] z ai
> and E[Sn] Z

) Z| 1 Pa
I<i<jsn G 1<i<j<n &
t

3) Yo a=
=1 Piaiz a;

In Proposition 2, we found the first (n—1) " deriva-
tive of f; at 0, However to find higher order derivaties
we recall Equatlon (2), that shows a dlrect relation between

andzl

next propostion we shall use Propostlon 5, to find an
k

the k" derivative fg . Hence, in the

equation for Zin:l% by finding a relation between
i
1 1 1
hypoexp(al,ap...,an) and hypoexp| —,—,-,— |.
o a, a,

Proposition 6. Let n>2 and k>n. Then
k
n ai n-1
2iap =)

Proof. Let n>2, 4 =L,i =1,2,-,
o

Wl |
a) a'ay--ar.
Eyn

n and

C, ~ hypoexp(f3,. .,
pdfof C, is

B,). Then by Theorem 1, the
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where Y, ~Exp(f) and B, :H?-l,jﬂ[l_%}
i

Next, we shall find P, interms of B;. We have

n Q; n ﬂj
R= Hj_l,jii(l _“_jj = Hj_l,jﬂ[l_FiJ

_ (_l)n_] HJ l];tl(ﬁl ﬂ')
B 1

multiplying in the numerator and denominator by

Hr;:l‘jii(ﬂj), we obtain F’iz(—l)n_I%Bi where

p= HLI (,BJ— ) . Hence, we may write

n aik _(_1)n71 n 1
Zi:l?i_ F; Zizl ﬂikinBi :

But, for k>n Proposition 5 gives that

P =2

ﬂlk nB Eknﬂlll 2... nn .
Therefore,

2

n oz_ik_(—l)m1 1
S Ty Yy ey

=(-1)"a afal--ar

Exn

Proposition 7. Let n>2 and k>n-1.Then

. k+n—
lim 19 (t) = (-1 "' ¥ ated

Ex-nsi

Proof. We have from Equation (2),

‘ N aik+1
11_?01]‘,, ():(_1) Zi:l P :
and from Proposition 6,
" o =-)"a ¥ oak
i=1 P 1

Ex—nn

for k>n-1. Then,

lim £ (1) = (1) &

t—0

"t}
> atay ). o

Ex—ns1

Many authors used the identity

1
3] [ E—
- H?:l,j:&i(aj _ai)

and proved it in many long and complicated methods.
Here we shall submit a more simple prove. In addition,
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we shall find more related identities using the above
results.
Proposition 8. Let n>2. Then

n 1
| |-
1 Hj:1,j¢i(aj_ai)

Proof. Let n>2. By Corollary 1, taking i=1 we
have i<n-1, then

Sia=0.
"R
However,

v oo alliale)
Zi:l R zi_ll_[rjll,jgti<0(j _ai)

1
S R
I 1H?:1,j¢i(aj _ai)

Therefore,

1
D) [ S— o
1 Hr;:l,jﬂ(aj_ai)

Next we shall find a more general equality using our
previous results.
Proposition 9. Let n>2. Then

Zi:l H?:l,jﬂ (aj —& )

0, ifo<k<n—2
1) Y ek al, itk>n-1

Ex_n+1

Proof. Let n>2. Then,

_ k1_[;1 11¢1(ai)
ZI B P "I 1HJ 1,—,4(05,-—0%)

o
= 0_/21 - o
I IHr;:l,jﬂ(ai _ai)

Suppose that 1<k <n. We have from Corollary 1,

®)

0 ak 0, if1<k<n-1
Zi:IF = ( l)n—l . _
d - a, if k=n
and Equation (5) gives that
k-1
Zh| ||
- Hrj]:l,jii(aj _ai)

Replace k—1 with k, we obtain the first case and

0, ifl<sksn-1
(1), ifk=n
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ah =1.

the case when k =n-1,where Y o'y o,

Eo
Now, suppose K >n . By Proposition 6,

k
ZL% = (—1)rH ay, alal .ah

Ek-n
and the Equation (5) gives that

e
Zinzl n I :( )n ] Z al 0‘2 a, .
Hj:l,jﬂ(aj _ai) Ben

Also, replace k—1 by k we obtain the last case
when n>k-1. i

5. The Main Results

We summarize Proposition 2 and 7 in the following
theorem.
Theorem 2. Let n>2. Then
s £ (K)
EI(} fs (t)

n

0, if 0<k<n-2
- ( )k+n l Z 0!1 a2 -Aar']",ifKZn—l
Ex-n+1
Also Corollary 1 and Proposition 5 and 6 can be

summarized in the following theorem.
Theorem3.Let n>2 and k>0. Then

0, if0<k<n-1
1) ZI -l P (—l)n_]az al"a;---ak,iszn
Ex-n
and
1

)lepk

We recall Propostion 9 in the following corollary of
Theorem 3.
Corollary 3. Let n>2. Then

k

Zi:l H?:l,jﬂ (aj —G )

0, ifo<k<n-2
1) Y ek ahifk>n-1

Ex_nsi

:Z I

h b h
B O &y Oy

6. Case of Arithmetic and Geometric
Parameters

The study of reliability and performance evaluation of
systems and softwares use in general sum of independent
exponential R.V. with distinct parameters. The model of
Jelinski and Moranda [14], considered that the parame-
ters changes in an arithmetic sequence ¢, =¢;  +d .
Moreover, Moranda [15], considered the model when
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a; changes in an geometric sequence ¢; = ¢;_I'. In this
section, we study the hypoexponential in these two cases
when the parameters are arithmetic and geometric, and
we present their pdf.

6.1. Case of Arithmetic Parameters

We first consider the case when ¢;,i=1,2,---,n form an
arithmetic sequence of common difference d .
Lemma 2. Forall 1<i<n.

7 (l)”((nT})jd“.

Proof. Suppose that ¢; form an arithmetic sequence
of common difference d . Then a =(j-i)d. We
have

=TTl —a).
Hence,
vi=(a—a)(a-a) (e —a) (e, ~a) (o -a)
~(~(i-1)a)~(-24)() (20)-{(n 1))
=(=1)" (i-1))(n-i)d""

However,

Then

Lemma 3. Forall 1<i<n.

Vi = (_l)ni1 Vn(i-1y -

Proof. We have from Lemma 2,
ifl(n_l)! n-1
- =(-1) —*&d
n=01"
i—1
forall 1<i<n. Replace i by n—(i

Torin =(-1)" ((T—?!]d“
n—(i-1)

: —1)!
n—i n 1)'dn,1:(_1)n717/i.

-
"5

—1), we obtain
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Thus we obtain the result. i
Proposition 10. Let n>2. Then

n eiait
fs, (t)= azi:17 0.0) (t).
where

yi=(-1)" ) D" 7oy

n-1
i—1
forall 1<i<n.

Proof. We have from Theorem 1

—ait
ae ™

L O)=2L—F—

Hj—l,j:ti(l_
aie_altH?:l,jﬂ (aj )
H?:l,j::i(aj _ai)

::2:L1 'mgg(t)

that can be written as
n €
fSn (t) = aZi:I

where y, = H?:l i (aj —ai) and by the Lemmas 2 and

3 we obtain the result. O

6.2. Case of Arithmetic Parameters

Next, we consider the case when ¢;,i=1,2,--,n forma
geometric sequence of common ratio .
Proposition 11. Let n>2. Then

fi, (=20 =
)

Proof. We have from Theorem 1,

—-ait

l0.0) (t).

aie—a,t

(=3 — A
H[l

Suppose now the parameter ¢; form geometric se-
quence of common ratio r.Then ¢; =a;r'’ and

P =Hr;l,jii(l_z_ijj:Hrj]_l,jﬂ(l_ri_j)' =

We may also note that the equalities obtained for P,
represent here a special case and worth mentioning such

as

Zi:l H?:l,jﬂ(l_ ri—j) =1.
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7. Conclusion

The pdf and cdf and some related properties of the
hypoexponential distribution with distinct parameters
were established. The proofs have been done by using
Laplace transform and moment generating function tech-
nique. Also with the help of some known computational
theorems as Heaviside expansion theorem and multino-
mial expansion formula the k™ order derivative of fs,
and the moment of this distribution of order k were es-
tablished, in addition for some new related equalities.
Eventually, the pdf for models when the parameters ¢,
are arithmetic and geometric were presented. However
the other two cases for hypoexponential distribution
when the parameters are equal or not all equal can be
studied and observed for future studies. It may be
checked if they have the same properties as in this paper.
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