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ABSTRACT 

The Beta Distribution is almost exclusively used for situations, after range normalization, wherein a continuous random 
variable is defined on the closed range [0, 1]. Since the beta distribution is intrinsically a two parameter distribution, 
this creates problems in some applications where specification of more than one parameter is difficult. In this note, two 
new classes of single parameter continuous probability distributions on a closed interval are introduced. These distribu-
tions remove some of the theoretical and practical problems of using the Beta Distribution for applications. The Burr 
Type XI Distribution has desirable characteristics for many applications especially when there is ambiguity in the defi-
nition of the specified parameter. 
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1. Introduction 

The standard two parameter Beta Distribution is the most 
widely used distribution for situations wherein a con-
tinuous random variable is confined to a bounded inter-
val  ,a b


. After appropriate normalization to the inter-

val 0,1 , the Beta Distribution provides a flexible fam-
ily of probability density functions capable of modeling a 
wide variety of natural phenomena. There are situations, 
however, where the Beta Distribution cannot model 
natural phenomena or its use is problematic. In their re-
cent book, Kotz and van Dorp [1] introduce and discuss  
the properties of other continuous families of distribu-
tions with bounded support. This widely extends the 
types of natural phenomena which can be modeled. But 
even this wide array of probability distributions have 
problems when modeling a low risk event. Consider the 
problem of providing a distribution for the situation 
where a subject matter expert subjectively estimates that 
the probability of a risky event as 0.01. Since the Beta 
Distribution is a two parameter model, this single esti-
mate is inadequate for determining an appropriate Beta 
Distribution model. Except for the Triangular Distribu-
tion, all the alternative models in Kotz and van Dorp [1] 
are also at least two parameter models and thus indeter-
minate based on a single estimate of the risk probability. 
A substantial literature exists to aid the statistician in  

eliciting further information from subject matter experts 
to remove this indeterminacy (see O’Hagan et al. [2] for 
a review of the area). These techniques involve specify-
ing a numerical estimate for another characteristic of the 
distribution such as the mean or a percentile. Taking the 
initial estimate as the mode and the estimate of some 
other distribution characteristic, allows a two parameter 
model to be fit (See Donaldson [3], Johnson [4], Lau, A. 
et al. [5], Lau H. et al. [6], Mohan et al. [7] and 
Premachandra [8]. Another example involves the man-
agement of large scale complex projects. A common 
methodology used in this situation is called PERT-CPM 
(Program and Evaluation and Review Technique-Critical 
Path Method). This technique has been used for the de-
velopment of the Polaris Missile System and also for 
planning and managing the hosting activities of the In-
ternational Olympics. In this approach the large project is 
broken down into a myriad of component parallel or se-
quential activities, each of which are uncertain in dura-
tion. Experts are asked to provide estimates of durations 
of these components. But as stated by Fazar [9] “PERT 
quantifies knowledge about the uncertainties involved in 
developmental programs requiring effort at the edge of, 
or beyond, current knowledge of the subject—effort for 
which little or no previous experience exists”. In discus-
sion with individuals involved in either of these two 
situations, I have found that although they are comfort-
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able in providing a subjective “most likely” estimate of 
an event, most would have difficulty specifying any other 
characteristic of the distribution. Indeed many seem to 
hold that their subjective estimate is not only the most 
likely, (corresponding to the mode of the distribution) but 
simultaneously would be willing to give even odds that 
the actual probability is above or below their estimate 
(corresponding to the median). This ambiguity has also 
been reported by Trout [10]. Accordingly, there is a need 
for one parameter probability models to handle the real 
situation of having only one reliable estimate from a 
subject matter expert and for which the mode and median 
are very close. Of course it is possible to create probabil-
ity distributions where the mode and median exactly co-
incide, however, there may be circumstances where other 
criteria may be paramount so that general methods for 
creating one parameter distributions may be of value. 

2. Tilted Distributions 

Exponential tilting is a well known method (See Davison 
[11] Section 5.2 for example) which can be used to induce 
a one parameter family of distributions. Let  f x  de- 
note a probability density function on the closed interval 
 0,1  with the property that  and such that,   0f x 

 
1

0

df x x  1                (1). 

Define the moment generation function of  f x  as, 

   
1

0

e t
f t f x   dx             (2) 

then 

   
 

e
,

t

f
f

f x
g x t

t




              (3) 

is also a probability density function on the closed inter-
val  0,1 . If  f x  has no parameters, then  ,fg x t  
defines a one parameter family on  0,1  with parameter 
t, where t can range over the interval  to   . The 
probability density function f  ,g x t  has several desir-
able properties. First, the moment generating function of 

f  ,g x t  is given by    f fs t  t  so that the mean 
and variance of the density function are given by the 
equations 

       2
2

2

d ln d ln
,

d d
f

f f

t
t t

t t

 
   f t

     (4) 

from which explicit formulae for the mean and variance 
can be obtained. The function  is the cumulant 
generating function of the density 

 ln f t
 f x . Secondly, the 

form of (3) implies that  ,fg x t  is in the exponential 
family of distributions. This family of distributions has 
been well studied and has several desirable properties. 

For example, in this case, if one has a random sample 
from  ,fg x t , then one can obtain the maximum like-
lihood estimate of t by simply setting the sample mean 
equal to  f t  and solving for t. The asymptotic vari- 

ance of this estimate if given by . Finally, if    12
fn t


 ln f x  is a concave function, then t can be uniquely 

related to the mode,  , through the relationship, 

 
 

f
t

f





                    (5) 

where  f   is the first derivative of  f x  with re-
spect to x, evaluated at  . This means that one can 
specify a distribution by specifying the mode  , use (5) 
to find t, and then use (4) to determine the basic statisti-
cal properties of the distribution. 

The choice of  f x  is extremely broad, but as 
pointed out by one of the referees, it is best to start with 
 f x  which is symmetric about the point 0.5x   to 

guarantee that any modal value between 0 and 1 can be 
modeled As examples of the above, consider three simple 
choices for  f x  on the closed interval  0,1 . The 
first is the Beta (2, 2) distribution with probability den-
sity function, 

    Beta 2,2 6 1 f x x x             (6) 

The second is the Gilbert distribution (Edwards [12]) 
with probability density function, 

   
Gilbert

π sin π

2

x
f x             (7) 

The third is a translated version of the Raised Cosine 
distribution (Proakis [13], p. 189), and is also a special 
case of the Burr Type XI distribution (Burr [14] and Kotz 
and Johnson [15], p. 335). It has probability density func-
tion, 

  Burr 1 cos 2π f x   x            (8) 

These probability density functions are shown in Fig- 
ure 1. As can be seen, the Beta (2, 2) and Gilbert densi-
ties are quite close to one another. Further, the Burr den-
sity differs distinctly from the other two being much 
more concentrated around the value 0.5, and showing 
much greater tapering as x approaches 0 or 1. (As pointed 
out by the referee, in some applications one might prefer 
to start with symmetric beta distributions but the above 
three choices illustrate the distribution construction ap-
proach adequately.) 

Figure 2 shows the three tilted distributions with a 
mode,  , of 0.01. The values of t corresponding to a 
mode of 0.01 are –98.9898 for the tilted beta, –99.9671 
for the tilted Gilbert, and –199.9342 for the tilted Burr 
distribution.  

As can seen, the tilted Beta and Gilbert densities are   
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Figure 1. Probability density functions. 
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Figure 2. Tilted density functions mode = 0.01. 
 
almost indistinguishable and quite distinct from the tilted 
Burr density. This similarity between the tilted Gilbert 
and tilted Beta distributions seems to be typical for both 
low and high values of the mode  . 

The skewness of the distributions might be viewed as a 
desirable characteristic if one believed that experts tend 
to underestimate the probability of rare events. (In a re-
liability situation with a mode say of 0.99, the tilted den-
sities would be left skewed and model a situation 
wherein experts tend to overestimate the reliability.) 

Figure 3 shows the relationship between   and 
Prob f X   for the three tilted distributions. The 

closer  Prob f X  is to 0.5, the closer the median and 
mode of the distributions are (Berny [16] uses one minus 
this probability as a parameter in his model). 

Again, there is almost no difference between the tilted 
Beta and tilted Gilbert distributions over the whole range 
of the mode  . Further the probabilities of being less 
than the mode for the tilted Burr distribution are uni-
formly closer to 0.5 than the other two distributions. 
However, the deviation from 0.5 is large even for the 
tilted Burr distribution. Accordingly, if one agreed with 
Trout [10], none of these distributions would provide 
Adequate models for model ng expert assessment of  i 
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Figure 3. Probability of being less than the mode. 
 
probabilities since the modes and medians do not seem 
close. 

3. MAX Distributions 

Let  F x

 

 be the cumulative probability distribution 
function corresponding to the probability density func-
tion f x  on  0,1 , i.e. 

   
0

d
x

F x f z  z

1K 

             (9) 

Then for ,   K
F x    is also a cumulative 

probability distribution function on the range  0,1 . In-
deed, if K is an integer, n, then   n

F x   is the cumula-
tive distribution function of the maximum value of X 
from a random sample of size n where X has probability 
density function  f x . Define, 

     1,

1

K
fh x K Kf x F x

K





,



      (10) 

then  is a probability density function on  ,fh x K
 0,1 . Further,  is also a probability density 
function, the rotated image of  about the fixed 
point . If 

1 ,fh x K

 ln

   
 

   
 

2

2

1 , if

1 1
1 , i

1

f F

f
K

f F

f

 




 





 

       

0.5

f 0.5

      (11) 

where  f x  is the first derivative of  f x  with re-
spect to x. Accordingly, one can generate a probability 
distribution by specifying the mode  , use (11) to find 
K and if the mode is greater than 0.5 use (10) to find the 
density function. If the mode is less than 0.5, then one 
uses (10) with x replaced by 1 x . Percentiles xp for the 
density  K,fh x  can easily be found by solving the 
equation 

1 1 K
px F p             (12) 

Unfortunately, the form of (10) does not lend itself to 
closed form solutions for moments. 

If one has a random sample of size n from  ,fh x K , 
then the maximum likelihood of K is, 

   
1 1

ˆ max ,
ln ln 1

n n

i i
i i

n n
K

F x F
 

 
 
   
  
 
 


 ,fh x K

0.5x  f x  and ln F x  are both con-
cave, then f  has a unique mode  , Kh x   on  0,1 . 
Under these conditions, it is straightforward to show that 
the relationship between K and   is given the by the 
equations, 

x
    (13) 

with asymptotic variance 2K n . A form of this distribu-
tion was discussed by Topp and Leone [17] and further 
discussed in Kotz and van Dorp [1]. 
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Figure 4 shows the three MAX distributions for the 
case 0.01  . The BetaMAX distribution would have K 
= 1667, the GilbertMAX distribution would have K = 
2026.59, and the BurrMAX distribution would have K = 
101321.5. 

As can be seen, as in the case of the Tilted distribu-
tions, the BetaMAX and GilbertMAX densities are indis-
tinguishable and quite distinct from the BurrMAX dis-
tribution. Both the BetaMAX and GilbertMAX distribu-
tions show right skew (they would be left skewed if 

0.5  ) while the BurrMAX is almost symmetric. In 
contrast to the Tilted distributions shown in Figure 2, the 
Max distributions are much less variable with almost all 
the probability mass confined to the range 0 to 0.03. This 
is a much smaller range than the Tilted Beta and Tilted 
Gilbert which essentially go from 0 to 0.06. Accordingly, 
if one expected greater underestimation of probabilities 
by experts, the Tilted distributions would be preferred. 
However, as mentioned earlier, it may be the case that 
when asked to determine “most likely” values, experts 
are estimating the median rather than the mode. 

Accordingly, in Figure 5, the probability of being less 
than the median is plotted as a function of the mode for 
the three Max densities discussed in this paper. 

Figure 5 is plotted on the same scale as Figure 3. It is 
immediately clear, that all of the Max distributions have 
modes which are much closer to the median. The median 
and mode are remarkably close for the BurrMAX distri-
bution, with Prob x

parameter distribution for applications wherein individu-
als are asked to provide “most likely values”. 

4. The BurrMAX or Burr Type XI  
Distribution 

When  f x  is the Burr distribution, (11) can be written as 

 
 
  

 

2

2

sin 2π 2π sin 2π
1 ,

1 cos 2π

2π 1 sin 2π sin 2π
1 ,

1 cos 2π

K

  




  





 


 

    

if 0.5

if 0.5

 (14) 

With the appropriate value of K, the cumulative dis-
tribution function of the Burr Type XI distribution is 
given by 

 Burr

sin 2π
, if 0

2π
,

sin 2π
1 1 , if 0.5

2π

K

K

x
x

H x K
x

x





   
  
        

.5

  (15) 

The first equation in (15) was first given by Burr [14], 
and given the designation Type XI by Kotz and Johnson 
[15] Vol. 1, p. 335, in their discussion of the Burr Family 
of distributions. The probability density functions of the 
BurrMAX distributions are 

 
  

 
    

 

Burr

1

1

1

1

,

1 cos 2π 2π sin 2π
, if 0.

2π

1 cos 2π 2π 1 sin 2π
, if 0.5

2π

K

K

K

K

h x K

x x x
K

x x x
K













  


 
  




  differing from 0.5 by a max- 
imum value of 0.0281 at approximately λ = 0.28 and 0.72. 
Accordingly, the Max distributions seem better suited for 
handling the ambiguity of expert estimation of the “most 
likely value”. Specifically, the BurrMax distribution, for 
which the mode and median are extremely close over 
whole range of possible values, seems an useful one 

5
(16) 
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Figure 4. Max density functions mode = 0.01. 
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Figure 5. Probability of being less than the mode. 
 

Since (14) are mixed trigonometric equations, there is 
no closed form equation to find the mode,  , given K . 

The median, 0.5x , or indeed any percentile xp, for 
0.5  , can be obtained by solving the equation 

  12π sin 2π 2π K
p px x p           (17) 

which, since it is a mixed trigonometric equation, has no 
closed form solution. Equation (17), however, can be 
solved using numerical procedures. If 0.5  , then to 
find xp, replace p with  in (54), solve, and subtract 
the solution from 1. 

1 p

No closed form solution or general numerical solutions 
can be found for the mean and standard deviation of the 
Burr Type XI distribution. Accordingly, direct numerical 
integration of the integrals defining the first and second 
central moments was performed to obtain the resulting 
means and standard deviations as given in Table 1. 

5. Extreme Value Distribution  
Approximation 

In risk situations where one estimates very small prob-
abilities, or in a reliability context when one estimates 
probabilities very close to 1, use of a Max distribution 
becomes problematic as the values of K become very 
large. One can capitalize, however, on the fact that for K 
= n, an integer, all of the Max distributions can be 
thought of as representing the distributions of the maxi-
mum (if 0.5  ) or the minimum (if 0.5  ) of n 

random samples taken from the appropriate distribution. 
Accordingly, one can use the theory of extreme values 
and extend the results from integer values, n, to a con-
tinuous value 1K 

0.5

. 
Following the discussion in Johnson et al. [18] Chap-

ter 22, the distribution of the maximum of a sample of 
size n, for large enough n, for the distributions discussed 
in this paper, converge in law to a Weibull distribution 
which for    has the cumulative distribution func-
tion is given by the equation 

 

1
1 exp

, ,
1 1

1 exp

x

W x






 

        
   

 

 
     

       (18) 

   
    

If the value of   can be determined, then the above 
distribution becomes a function of   alone and is a one 
parameter distribution. In Johnson et al. [18] Chapter 22, 
a method is given for finding   based on the cumula-
tive distribution function  F x  of the initial generating 
distribution. The result is that 

 
 0

1 1

1 1

F cx
c

F x
lim
x





 


 
          (19) 

For the Burr distribution, (19) yields the value 3   
so that for 0.3070   or 0.6930   the theory of 
Extreme Value Distributions ndicates that the Burr Type  i 
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Table 1. Characteristics of the Burr Type XI Distribution. 

Mode λ K  E x  Median  Sd x   P x  Mode λ K  E x  Median  Sd x   P x  

0.01 101321.5105 0.0102 0.0101 0.0037 0.4865 0.50 1.0000 0.5000 0.5000 0.1808 0.5000 

0.02 12665.4686 0.0204 0.0203 0.0074 0.4863 0.51 1.0514 0.5081 0.5086 0.1785 0.5028 

0.03 3752.9512 0.0307 0.0304 0.0111 0.4860 0.52 1.1071 0.5163 0.5174 0.1762 0.5054 

0.04 1583.4525 0.0409 0.0405 0.0149 0.4856 0.53 1.1677 0.5247 0.5262 0.1737 0.5079 

0.05 810.8730 0.0511 0.0507 0.0186 0.4852 0.54 1.2337 0.5332 0.5352 0.1712 0.5102 

0.06 469.3777 0.0613 0.0608 0.0223 0.4846 0.55 1.3056 0.5419 0.5443 0.1685 0.5124 

0.07 295.6901 0.0716 0.0709 0.0260 0.4840 0.56 1.3842 0.5507 0.5535 0.1657 0.5143 

0.08 198.1811 0.0818 0.0810 0.0297 0.4833 0.57 1.4702 0.5597 0.5629 0.1629 0.5162 

0.09 139.2700 0.0920 0.0912 0.0334 0.4826 0.58 1.5646 0.5688 0.5723 0.1599 0.5179 

0.10 101.6001 0.1022 0.1013 0.0372 0.4819 0.59 1.6684 0.5781 0.5818 0.1569 0.5194 

0.11 76.3986 0.1124 0.1114 0.0409 0.4811 0.60 1.7827 0.5875 0.5914 0.1537 0.5208 

0.12 58.9053 0.1227 0.1216 0.0446 0.4803 0.61 1.9090 0.5970 0.6011 0.1505 0.5221 

0.13 46.3842 0.1329 0.1317 0.0483 0.4796 0.62 2.0488 0.6066 0.6109 0.1472 0.5232 

0.14 37.1870 0.1431 0.1418 0.0520 0.4788 0.63 2.2041 0.6163 0.6207 0.1438 0.5242 

0.15 30.2797 0.1533 0.1520 0.0557 0.4780 0.64 2.3771 0.6262 0.6306 0.1403 0.5251 

0.16 24.9916 0.1658 0.1637 0.0616 0.4773 0.65 2.5702 0.6361 0.6406 0.1367 0.5259 

0.17 20.8745 0.1763 0.1740 0.0656 0.4765 0.66 2.7866 0.6461 0.6506 0.1331 0.5265 

0.18 17.6214 0.1869 0.1844 0.0696 0.4758 0.67 3.0299 0.6562 0.6607 0.1294 0.5270 

0.19 15.0169 0.1975 0.1948 0.0737 0.4752 0.68 3.3045 0.6664 0.6709 0.1256 0.5275 

0.20 12.9069 0.2080 0.2052 0.0778 0.4746 0.69 3.6154 0.6766 0.6811 0.1218 0.5278 

0.21 11.1794 0.2186 0.2156 0.0818 0.4740 0.70 3.9690 0.6869 0.6913 0.1180 0.5280 

0.22 9.7514 0.2292 0.2260 0.0859 0.4735 0.71 4.3729 0.6973 0.7016 0.1140 0.5281 

0.23 8.5606 0.2398 0.2363 0.0900 0.4730 0.72 4.8363 0.7077 0.7119 0.1101 0.5281 

0.24 7.5598 0.2503 0.2467 0.0940 0.4726 0.73 5.3706 0.7181 0.7222 0.1061 0.5281 

0.25 6.7124 0.2609 0.2571 0.0981 0.4723 0.74 5.9901 0.7286 0.7325 0.1021 0.5279 

0.26 5.9901 0.2714 0.2675 0.1021 0.4721 0.75 6.7124 0.7391 0.7429 0.0981 0.5277 

0.27 5.3706 0.2819 0.2778 0.1061 0.4719 0.76 7.5598 0.7497 0.7533 0.0940 0.5274 

0.28 4.8363 0.2923 0.2881 0.1101 0.4719 0.77 8.5606 0.7602 0.7637 0.0900 0.5270 

0.29 4.3729 0.3027 0.2984 0.1140 0.4719 0.78 9.7514 0.7708 0.7740 0.0859 0.5265 

0.30 3.9690 0.3131 0.3087 0.1180 0.4720 0.79 11.1794 0.7814 0.7844 0.0818 0.5260 

0.31 3.6154 0.3234 0.3189 0.1218 0.4722 0.80 12.9069 0.7920 0.7948 0.0778 0.5254 

0.32 3.3045 0.3336 0.3291 0.1256 0.4725 0.81 15.0169 0.8025 0.8052 0.0737 0.5248 

0.33 3.0299 0.3438 0.3393 0.1294 0.4730 0.82 17.6214 0.8131 0.8156 0.0696 0.5242 

0.34 2.7866 0.3539 0.3494 0.1331 0.4735 0.83 20.8745 0.8237 0.8260 0.0656 0.5235 

0.35 2.5702 0.3639 0.3594 0.1367 0.4741 0.84 24.9916 0.8342 0.8363 0.0616 0.5227 

0.36 2.3771 0.3738 0.3694 0.1403 0.4749 0.85 30.2797 0.8467 0.8480 0.0557 0.5220 

0.37 2.2041 0.3837 0.3793 0.1438 0.4758 0.86 37.1870 0.8569 0.8582 0.0520 0.5212 

0.38 2.0488 0.3934 0.3891 0.1472 0.4768 0.87 46.3842 0.8671 0.8683 0.0483 0.5204 

0.39 1.9090 0.4030 0.3989 0.1505 0.4779 0.88 58.9053 0.8773 0.8784 0.0446 0.5197 

0.40 1.7827 0.4125 0.4086 0.1537 0.4792 0.89 76.3986 0.8876 0.8886 0.0409 0.5189 

0.41 1.6684 0.4219 0.4182 0.1569 0.4806 0.90 101.6001 0.8978 0.8987 0.0372 0.5181 

0.42 1.5646 0.4312 0.4277 0.1599 0.4821 0.91 139.2700 0.9080 0.9088 0.0334 0.5174 

0.43 1.4702 0.4403 0.4371 0.1629 0.4838 0.92 198.1811 0.9182 0.9190 0.0297 0.5167 

0.44 1.3842 0.4493 0.4465 0.1657 0.4857 0.93 295.6901 0.9284 0.9291 0.0260 0.5160 

0.45 1.3056 0.4581 0.4557 0.1685 0.4876 0.94 469.3777 0.9387 0.9392 0.0223 0.5154 

0.46 1.2337 0.4668 0.4648 0.1712 0.4898 0.95 810.8730 0.9489 0.9493 0.0186 0.5148 

0.47 1.1677 0.4753 0.4738 0.1737 0.4921 0.96 1583.4525 0.9591 0.9595 0.0149 0.5144 

0.48 1.1071 0.4837 0.4826 0.1762 0.4946 0.97 3752.9512 0.9693 0.9696 0.0111 0.5140 

0.49 1.0514 0.4919 0.4914 0.1785 0.4972 0.98 12665.4686 0.9796 0.9797 0.0074 0.5137 

0.50 1.0000 0.5000 0.5000 0.1808 0.5000 0.99 101321.5105 0.9898 0.9899 0.0037 0.5135   
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XI distribution can be closely approximated to nine 
decimal places by a Weibull extreme value distribution 
on the range 0 1x  . Specifically, the cumulative dis-
tribution function is given by 
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with corresponding probability density functions, 

 
 
 

32

3

2 3

3

2 2
exp , 0.307

3
,

2 1 2 1
exp , 0.693

3 11

x x

w x
x x









      
     
            



 (21) 

If 0.307  , we have from the properties of the 
Weibull distribution [Johnson et al. [19] Chapter 21], 
that 
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For 0.693  , the corresponding results are, 
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For the BetaMAX and GilbetMAX distributions, (19) 
indicates that 2 

0

 so that for λ ≤ 0.1473 or λ ≥ 0.8527 
both distributions can be closely approximated to nine 
decimal places by a Weibull extreme value distribution 
on the range 1x   which coincides with a form of 
the Rayleigh distribution Johnson et al. (1995), Chapter 
18, Section [10]. 

Figure 6 shows the Extreme value distributions for 
0.01  . As expected it’s appearance is similar to that of 

Figure 4. The distribution for 3   (limiting value of 
the Burr Type XI distribution) has expected value of 
0.0102, a median of 0.0101, and a standard deviation of 

0.0037. When 2   (limiting form of the GilbertMax 
and BetaMax distributions) the corresponding values are 
0.0125, 0.0118, and 0.0066. 

6. Applications 

It is clear from the previous discussion that the Gilbert 
distribution and Beta (2, 2) distributions yield Tilted, 
MAX and Extreme Value distributions which are essen-
tially numerically indistinguishable. Accordingly, I see 
no applications for any form of the Gilbert distribution. 
In risk or reliability studies, where   would be expect- 
ed to be close to 0 or close to 1 respectively, the Extreme 
value distributions would seem to be most useful. They 
have a relatively simple form and one can obtain good 
approximations to their moments using (20) and (21). 
Further one can obtain percentiles of the extreme value 
distributions using the formulas, 
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     (24) 

By replacing p or 1 − p in (24) with a uniformly dis-
tributed random variable U, one can easily simulate sam-
ples of any size from these distributions. The choice of 
whether to use 3 or 2    hinges on whether one 
believes that experts are truly estimating the mode and 
not the median. If they are, then choosing 2   would 
seem to be preferred since it allows for expert under es-
timation of probabilities in the case of risk applications, 
or over estimation of probabilities in reliability applica-
tions. On the other hand, if there is ambiguity as to 
whether experts are estimating the mode or median when 
asked for the “most likely value”, then using the Extreme 
Value distribution with 3   would seem most appro-
priate since for this distribution the median and mode are 
almost identical. 

In PERT or stochastic CPM applications where   
would not be expected to be either very small or very 
large, the Extreme Value distributions would not be ap-
propriate. Typically either the Triangle distribution with 
mode   or the Beta distribution with mean  1 4 6  
and standard deviation of 1 6  have been used in this 
situation. The standard deviations of these two distribu-
tions as well as the BetaMax and Burr Type XI distribu-
tions are shown in Figure 7. Unlike the usual Beta ap-
proximation or Triangular distribution cases, the two 
Max distributions show the variability declining as the 
mode approaches 0 or 1. 

It seems clear that the BetaMax and Burr Type XI dis-
tributions are better than both the usual Beta approxima-
tion model and Triangular d stribution since for these  i  
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Figure 6. Weibull extreme value distributions mode = 0.01. 
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Figure 7. Standard deviations. 
 
two distributions the variability is substantially lower as 
one moves away from the middle of the modal range. If 
one was worried about the ambiguity of the term “most 
likely value”, then one would use the Burr Type XI dis-

tribution instead of the Usual PERT model based on Fig-
ure 5 which shows the closeness of the median and mode 
of the Burr Type XI distribution. If this was not a con-
cern then the choice would depend on one’s conception 
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of variability. However, if one wanted to keep variability 
at a reasonable level, again one is led to the Burr Type XI 
distribution with a standard deviation which is between 
0.36 and 0.39 the value of the mode (when the mode is 
below 0.5). 

Perhaps the most useful application of these one pa-
rameter distributions is to allow experts with limited 
backgrounds in probability to more accurately specify 
their uncertainties about the situations they are working 
with. For example consider the problem of estimating the 
chances of a failure in a power system. The expert needs 
only to come up with one estimate, say 0.001, and the 
distributions discussed in this paper would automatically 
generate a plausible distribution for the uncertainty in 
this figure. Given that many risk assessment studies and 
complicated projects consist of hundreds to thousands of 
uncertain steps, the reduction in difficulty by using one 
parameter families should greatly ease the problem of 
assigning reasonable uncertainty to the myriad steps. 
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