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ABSTRACT 

Computations involved in Bayesian approach to practical model selection problems are usually very difficult. Computa- 
tional simplifications are sometimes possible, but are not generally applicable. There is a large literature available on a 
methodology based on information theory called Minimum Description Length (MDL). It is described here how many 
of these techniques are either directly Bayesian in nature, or are very good objective approximations to Bayesian solu- 
tions. First, connections between the Bayesian approach and MDL are theoretically explored; thereafter a few illustra- 
tions are provided to describe how MDL can give useful computational simplifications. 
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1. Introduction 

Bayesian computations can be difficult, in particular 
those in model selection problems. For instance, it may 
be noted that learning the structure of Bayesian networks 
is in general of the computational complexity type NP- 
complete ([1,2]). It is therefore meaningful to consider 
alternative computationally simpler solutions which are 
approximations to Bayesian solutions. Sometimes direct 
computational simplifications are possible, as shown, for 
example, in [3], but often approaches arising out of dif- 
ferent methodologies are needed. We discuss some as- 
pects of Minimum Description Length (MDL) methods 
with this point of view. Another important reason for ex- 
ploring these methods is that there is a substantial lit- 
erature on this topic available in engineering and com- 
puter science with potential applications in statistics. We 
will not, however, explore certain other aspects of MDL 
such as the “Normalized Maximum Likelihood (NML)” 
introduced by [4] which do not seem to be in the spirit of 
the Bayesian approach that we have taken here. 

The discussion below is organized as follows. In Sec- 
tion 2 we briefly describe the MDL principle and then 
indicate in Sections 3 and 4 how it applies to model fit- 
ting and model checking. It is shown that a particular 
version of MDL is equivalent to the Bayes factor crite- 
rion of model selection. Since this is computationally 
difficult most often, some approximations are desirable, 

and it is next shown how a different version of MDL can 
provide such an approximation. Following this discus- 
sion, new applications are presented in Section 5. Spe- 
cifically, MDL approach to step-wise regression in Sec- 
tion 5.1, wavelet thresholding in 5.2 and a change-point 
problem in 5.3 are described. 

2. Minimum Description Length Principle 

The MDL approach to model fitting can be described as 
follows (see [5,6]). Suppose we have some data. Con- 
sider a collection of probability models for this set of 
data. A model provides a better fit if it can provide a 
more compact description for the data. In terms of cod- 
ing, this means that according to MDL, the best model is 
the one which provides the shortest description length for 
the given data. The MDL approach as discussed here is 
also related to the Minimum Message Length (MML) 
approach of [7]. See [8,9] for connections to information 
theory and other related details. 

If data x  is known to arise from a probability density 
, then (see [10] or [11]) the optimal code length (in an 

average sense) is given by . (Here  is 
logaritm to the base 2.) This is the link between descrip- 
tion length and model fitting. 

p
 log p x log

 log p x



The optimal code length of  is valid only 
in the discrete case. To handle the continuous case later, 
discretize x and denote it by   x x


  where   
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denotes the precision. In effect we will then be con- 
sidering 

    
 

 
 

 du u p x

 x  i

of the
id

2

2

2 2
x

x

P x X x p




 




       

instead of p tself as far as coding of x is considered 
when x is one-dimensional. In the r-dimensional case, we 
will replace the density  p x  by the probability  
r -dimensional cube of s e   containing x , name  


ly

   r rp p x x , s code length 
changes to  log logp r

o that e optimal  th
 x . 

3. MDL for Estimation or Model Fitting 

Consider data  1 2, , , n
n x x xΛ x x , and suppose 

  :n   fF x  

is the collection of models of interest. Further, let  π   
be a prior density for  . Given a value of   (or a 
model), the optimal code length for describing  is nx

 log f n  x , but since   is unknown, its description 
requires a further  log π   bits on average. Therefore 
the optimal code length is obtained upon minimizing 

     = log πDL log ,nf  x        (1) 

so that MDL amounts to seeking that model which 
minimizes the sum of 
 the length, in bits, of the description of the model, and 
 the length, in bits, of data when encoded with the help 

of the model. 
Now note that the posterior density of   given the 

data  is nx

     
 

π
,

n

nm
π n

f  x

x

 m y

 x          (2) 

where  is the marginal or predictive density. 
Therefore, minimizing 

     
    

log

π

nflog

log n

DL

f

  

 

x   

  x
 

over   is equivalent to maximizing  n xπ . Thus 
MDL for estimation or model fitting is equivalent to 
finding the highest posterior density (HPD) estimate of 
 . Note, however, that a prior  is needed for these 
calculations. The approach that a Bayesian adopts in 
specifying the prior is not, in general, what is accepted 
by practitioners of the MDL approach. Therefore, the 
equivalence of MDL and HPD approaches is either 
subject to accepting the same prior, or as an asymptotic 
or similar approximation. MDL mostly prefers an 
approximately uniform prior when  for some 
fixed  (same  across all models), leading to the 

maximum likelihood estimate (MLE). The case of  
having model parameters of different dimensions is 
different and is interesting. This can be easily seen in the 
continuous case upon discretization. Now denote  
by 

π

k R
k k

F

DL
DL  1 2, , ,k

k
  and   by    Λθ . Then 

 

  
 

   

π

π π

π
π

π

π

log π log

log π log log

log

log π log log log .

f

f

k

k k n k n
f

k n k

f

k n k
f

DL

f

k f

n

k f n

  

  

 





 



                   
                 



    

θ

θ x θ

θ x θ

θ x θ

 

Here f  and π  are the precisions required to dis- 
cretize x  and  , respectively. Note that the term 

n log f  is common across all models, so it can be 
ignored. However, the term πlogk   which involves 
the dimension of   in the model varies and is influen- 
tial. According to [6,12], π 1 n   is optimal (see [13] 
for details), in which case 

    log log π

log constant.
2

k n k kDL f

k
n

   

 

θ x θ θ
      (3) 

Minimizing this will not lead to MLE even when π(θk) 
is assumed to be approximately constant. In fact, [12] 
proceeds further and argues that the correct precision π  
should depend on the Fisher information matrix. This 
amounts to using a prior which is similar in nature to the 
Jeffreys’ prior on  . effreys prior is an objective choice 
and thus this approach to MDL can then be considered a 
default Bayesian approach. 

 J

In spite of these desirable properties, however, MDL 
leads to the HPD estimate of  , which is not the usual 
Bayes estimate. Posterior mean is what is generally pre- 
ferred, so that the error in estimation has an immediate 
simple answer in the posterior standard deviation. In 
summary, therefore, the Bayesian approach doesn’t seem 
to find attractive solutions in the MDL approach as far as 
estimation or model fitting is concerned unless the mod- 
els under consideration are hierarchical having para- 
meters of varying dimension. On the other hand, when 
such hierarchical models are of interest the inference 
problem usually involves model selection in addition to 
model fitting. Thus the possible gains from studying the 
MDL approach are in the context of model selection as 
described below. 

4. Model Selection Using MDL 

Let us recall the Bayesian approach to model selection 
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and express it in the following form. Let  
 1, , n

n X XΛ X X . Suppose  

  ,n n   X x

1 1rsus : ,M

f . Consider testing 

0 0: veM   

i   R 1,    Υ

       (4) 

where , for some 0 1  
and 0 1

d , 0,d i
 Ι   π

 
   

0

1g I



 

 



. Let  be a prior on . Then  
can be expressed as 

π

   
 

0 0

0 1

π π

1 π

g I 

 
      (5) 

where   0 0  and 0π πP g  and 1g  are the condi- 
tional densities (with respect to some dominating  - 
finite measure) of   under 0M  and 1M  respectively. 
Then  

   
 

   
0 0

0

0 0

π

π 1
n

m
P M 

 
x

0 1π

n

n nm m

x

x x
  (6) 

 
 

0 0π
,

n

n

m

m


x

x
               (7) 

where 

     d , 1,2,ig i 
i

n n
im f  



 x x      (8) 

and 

       0 1π .nm x

n

0 0π 1n nm m x x       (9) 

Note that im  is simply the marginal or predictive 
density of X  under iM  and  is the unconditional 
predictive density obtained upon averaging 0  and 1 . 
Consequently, the posterior odds ratio of 

m
m m

0M  relative to 

1M  is, 

 
 

 
   0

01
0 0

π
,

π
n

n n

P M m
BF

P M m
 

 

x x
x

x x

BF

0 00

1 1

π

1 π 1

n n

  (10) 

with 01  denoting the Bayes factor of 0M  relative to 

1M . When we compare two competing models 0M  and 

1M , we usually take 0 , and hence settle upon the 
Bayes factor 01  as the model selection tool. This 
agrees well with the intuitive notion that the model yield- 
ing a better predictive ability must be a better model for 
the given data. 

π 1 2
BF

4.1. Mixture MDL and Stochastic Complexity 

Let us consider the MDL principle now for model 
selection between 0M  and 1M . Once the conditional 
prior densities 0g  and 1g  are agreed upon, MDL will 
select that model iM  which obtains a smaller value for  

t  log n
im x , between the two. This is  

t to using B

 

he code length, 

clearly equivalen ayes factor as the model 
selection tool, and hence this version of MDL is equi- 
valent to the Bayes factor criterion. In the MDL litera- 
ture, this version of MDL is known as “mixture MDL”, 
and is distinguished from the “two-stage MDL” which 
separately codes the model and the prior. The two-stage 
MDL can be derived as an approximation to the mixture 
MDL as discussed later. See [13] for further details and 
other interesting comparisons and discussion. Let us con- 
sider a few examples before examining the need for other 
versions of MDL. 

Example 1. Suppose Xn is a random sample from 

 , 2N    with known 2 . We want to test 

0 1: 0 rsus : 0.M Mve    

 20,NConsider the   prior on   with known 2  
under 1M . The rginal dist ion of n the ma ribut nX  is   

 2,n nN I0  under 0M  and under 1M  it is  

 22,n nN I 0 mo  a con-  

tinuous prior is con

11 . A continuous del and

sidered here. Since the precision of 
the prior parameter is the same across all models upon 
discretization we will ignore the distinction and proceed 
with densities. Then, both the Bayes factor criterion and 
the MDL principle will select 1M  over 0M  if and only 
if 

   log n nm m  x x1 0log ,  

where 1m  and 0m  are the correspond g densities. 
pari

in
Since we are com ng two logarithms, let us switch to 
natural logarithms. Then 

    2 2
2

1

π log ,
2 2 2 i

i

x
 

   and 

 

0

1
log log 2

n
n n n

m x

 

   

2 2
1

12 2

1
log log 2π log

2 2

.

n
n

n n
n

n
m I

I

 

 


   

  

11

11

x

x x

 

Noting that 

   2 2 2 2 2 21n n
nI n2 2

nI   11        11  

and 

    
  

112 2 2 2 2

2 2 2 2

n n

n

I I

I n

    

   

 



   

  

11 11

11
 

we obtain 

      

 

2 2 2

2
2 2

2 2 2 2
1

1
log 2π log 1

2 2

1
.

2 2

n n

n

i
i

n
n

n
x nx

n

  


   

  

 




x

 

1log m
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Therefore 1M  is p d over 0referre M  either by the 
actor or by the m re MDL if and only if Bayes f ixtu

2 2
2

2 2
lo

n n

n

 
 

 2

2
g 1 .x n




 
  

 
 

. Le iouExample 2 t us consider the prev s example with 
unknown 2  now. Suppose the prior on 2  is the 
default 21   under both m . The rior on odels  p   
under 1M  is now assumed t pe 2o de nd on  , i.e., 

 2 20,N c   ,  where c med to be a 
n

0  is assu
k own constant for now. Then, provided n x 0 , 

  
2

22 2
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and letting  22

1

n

i
i

S x x

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the marg sity oinal den f X  given c  and 2 , 
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Therefore, the Bayes factor criterion or the mixture 
MDL reduces to a criterion which is very similar to that 
given in the previous example, except that 2  is now 
replaced by an estimator. 

Example 3. (Jeffreys’ Test) This is similar to the 

problem discussed above, except that  0,  C , 
with density 

   1

1 1
g   

2 2π 1  

the Cauchy prior. The prior on 

,  

  is the e 
under both m

 same as befor
odels:  2π 1  . This approach sug- 

gested by Jeffreys ([14]) is important. It xplains how 
one should proceed when the hypotheses which describe 
the model selection problem involve only some of the 

ar
ters. Then Je

 e

parameters and the remaining p ameters are considered 
to be nuisance parame ffreys suggestion is to 
employ the same noninformative prior on the nuisance 
parameters under both models, and a proper prior with 
low level of information on the parameters of interest. 
Details on this problem along with this choice of prior 
can be found in Section 2.7 of [15]. 

Note that  0
nm x  is the same as in the previous 

example, namely 

   
2

22 2
0 2 2

0

1 d
2π exp

2

nnn
im x

1

1

π ,
2

i

i
i

n
x

2
2 2

nn
n


 

     


x






 
 
 


whereas 
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No closed form is available for m1(x
n) in this case. To 

calculate this one can proceed as follows as indicated 
Section 2.7 of [15]. The Cauchy density 



  

in 
 1g    can 

be expressed as a Gamma scale mixture of normals, 

  2 21 2 2 2
1

0

e e d
2π 2π

g       


   
   

 
  

where   is the mixing Gamma variable. Now one can 
integrate over   and   in closed form to simplify 
(m1x

n). Finally, one has a one-dimensional integral ver  o
  left, which can be numerically computed whe ever 
needed. 

, 

on
other priors, such as in Example 3, some 

nu

n

Now let us note from the examples discussed above 
that an efficient computation of mi(x

n) relies on having an 
explicit functional form for it. This is generally possible 

ly when a conjugate prior is used as in Examples 1 and 
2. For 

merical approximation will have to be employed. Thus 
we are lead to considering possible approximations to the 
mixture MDL technique, or equivalently to the Bayes 
factor, 01BF . 
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From Sections 4.3.1 and 7.1 of [15], assuming that f  
and ig  are smooth functions, we obtain, for large n , 
the following asymptotic approximation for  n

im x  of 
equation (8). Let ik  be the dimension of i ,  

   loiknh θ g inf x θ  and  i θ  denote the  k  k
h

Hessian of h , i.e., 

   
2

.i ik k
h h

 

 
      

θ θ  

ik k

ˆkθ te either the MLE or the posterior 
 

i
i j

Also, let i  deno
mode. Then

 
   
      

    

ˆ 2 2

1

d

e 2π det

1 ,

i i

1 2

i

ki
i i i

i

n
i

k k kn

k k k
h

k
i

m

f g

n

g O n








 


θ

x

x θ θ θ

θ

θ

so that 

i

i

nh




 

    (11) 

 
   

      

   

  

log

ˆ log 2π log
2 2

1 ˆ ˆlog det log
2

ˆlog log 2π

1 ˆ ˆlog det log
2

i

i

n
i

k i i

h i

kn

h i

m

k k
nh



  

   

1

1

log
2 2

.

i i

i i

k k

i i

k k

n

g O n

k k
f n

g O n





  

   

   

x

θ

θ θ

x θ

θ θ

  (12) 

Ignoring terms that stay ed as n  , [12] 
suggests using the (approximate) criterion which Rissa- 
nen calls stochastic information complexity (or “stocha- 
stic complexity” for short), 



bound

     1 ˆ ,nˆlog log det
2

ikn nSIC f  x x θ   (13) 

where 

 ˆˆ ik
n n   θ               (14) h

for implementing MDL. See [12,16-18] for furthe
tails. 

, , ,

r de- 

If 1 2 nX X XΛ  are i.i.d. observations, then we have 

 ikI Oθ ˆ ˆik
h θ  1 ,n  

where  I θ  is the Fisher Information matrix and hence 

     
  

   1log 2π .ik
O n 

ˆ ˆlog

1
log log det

2 2

2

i i

i

k kn n
i

ki

m f

k
n I



 

x x

   (15) 

Now ignoring terms that stay bounded as n  , we 
obtain the Schwarz criterion ([19]), BIC, for iM  given 
by 

   

log log igθ θ

θ̂

 

ˆBIC log log ,
2

ikn n ik
f n x x θ     (16) 

w uivale

n p
failure time data. The two models considered are 

exponential and Weibull: 

hich can be seen to be asymptotically eq nt to 
SIC. 

Example 4. [20] discusses a model selectio roblem 
for 

   : , exp , 0M f x x x   0    

 versus

   1
1 : , exp , 0,M f x x x x        

where 0   and 0  . Model selection criterion of 
Rissanen is SIC as described in Equations (13 nd (14). 
However, in this problem a better approx ation is 

ed for the mixture MDL, the mixture being 
Jeffreys mixture, i.e., the conditional prior d nsities 
under i

) a
im

employ
e

M  for 1,2i  are given by 

    det , ,i i ik k k
i i ig B I θ θ θ  

where i  is a compact subset of the relevant parameter  

space i  and   1 det di ik k
iB I   θ θ . Consequently,  

i

it follows that, 

     

   1 ,O n 
2

det d

ˆ
2π

i i i

i

i

k k kn n
i i

k
kn

i

m B f I

n
B f





 
 
 

x x θ θ θ

x θ

e MLE of ikθ  under i

i
 

where ˆ ikθ  is th M . This yields,  

   

   1 2

ˆlog log log
2 2π

1
log det d .

i

i i

i

kn n i
i

k k

k n
m f

I O
n

   

    
 

x x θ

θ θ
 

par  an ha

volving 

Com e this with (15) d note t t the term in-  

  ˆdet ikI θ  vanishes. 

We would like to note here that many authors [21, 2] 
define the MDL estimate to be the same as the HPD 
estimate with respect to the Jeffreys’ prior restricted to 
so

2

me compact set K  where its integral is finite: 

  
  

de
or ,

t
, f

I

det d
K

K
I u u

which is the stochastic complexity approach advocated 

θ
θ  

Copyright © 2013 SciRes.                                                                                  OJS 



M. DELAMPADY 108 

above. 
It must be emphasized that proper priors are being 

employed to derive the SIC criterion, and ence indeter- 
minacy and inconsistency problems faced  
employing improper priors are not a difficulty in this 

arameter 

h
 by techniques

approach. Moreover, this approach can be viewed as an 
implementable approximation to an objective Bayesian 
solution. 

4.2. Two-Stage MDL 

Now consider the two-stage MDL which codes the prior 
and the likelihood separately and adds the two descrip- 
tion lengths. This approach is therefore similar to esti- 
mating the p   with the HPD estimate when 
there is an informative prior, or with the MLE, but the 

iption length does have inter- resulting minimum descr
esting features. To see when and how this approach 
approximates the above mentioned model selection 
criterion, let us look at some of the specific details in the 
two stages of coding. See [12,13] for further details. 
Again, recall the setup in (4) and (5). 

Stage 1. Let ˆ ikθ  be an estimate of ikθ  such as the 
posterior mean, HPD or MLE under iM . This needs to 
be coded. Consider the prior density  ik

ig θ  condi- 
tional on iM  being true. Usually MDL would choose a 
uniform density. Restrict θ  to a large compact subset of 
the parameter space and discretize it as discussed in 
Se  prection 3 with a cision of π 1 n  hen the code- 
length required for coding ˆ ikθ  is  

   

. T

ˆ ˆlog log .
2

i ik k i
i

k
L g n  θ θ      (17) 

Stage 2. Now the data nx  is coded using the model  

density  ˆ iknf x θ . Discretization may again be needed,  

say with precision f . Th the deus scription length for 
codi n  will be  ng x

 ˆlog n log .ik
ff n       

scription l

x θ    (18) 

Summing these two cod ngths, therefore, we obtain ele
a total de ength of 

 
 

ˆlog logikn

ˆlog log .
2

i

f

k i
i

k

f n

g n

 x θ

 θ
        (19) 

Since the second term above, log fn  , is constant 
over both M0 and 1M , and th

wo term
ding criteri

e two-stage 

e third term stays bounded 
as increases, these t s are dropped from the 
MD o-stage co on. Thus, fo

odels, th MDL simplif
 (for i

n  
L tw

metric m
n

r regular para- 
ies to the same 

criterio M ) as BIC, namely, 

 ˆlog log .
2

ikn ik
f n x θ        (20) 

I more complicated model selection problems, the 
two-stage MDL will involve further steps and may differ 
from BIC. 

It may also b seen upon comparin

n 

e g (19) with (15) that 
the performance of SIC based MDL should be superior to 
the simplified two-stage MDL for mode
SIC

sion and Function Estimation 

le

 such areas. 
We will briefly consider these problems to see how MDL 

proxi- 

nd compu- 
tationally attractive approximations to some of the Baye- 

rate n  since 
 uses a better precision for coding the parameter, 

namely, one based on the Fisher information. 

5. Regres

Model selection is an important part of parametric and 
nonparametric regression and smoothing. Variab  selec- 
tion problems in multiple linear regression, order of the 
spline to fit and wavelet thresholding are some

methods can provide computationally attractive ap
mations to the respective Bayesian solutions. 

5.1. Variable Selection in Linear Regression 

Variable selection is an important and well studied prob- 
lem in the context of normal linear models. Literature 
includes [23-32]. We will only touch upon this area with 
the specific intention of examining useful a

sian methods. 
nSuppose we have an observation vector y  on a re- 

sponse variable Y and also measurements 1 2, , ,n n n
Mx x xΛ  

on a set of potential explanatory variables (or regressors). 
Following [13], we associate with each regressor jx , a 
binary variable j . Then the set of available linear mod- 
els is 

: 1

,
j j

n n n
j j

 




 y x ε         (21) 

where  2,n
n nN Iε 0 . Note that  1 2, , , M  γ Λ  

is, then, a Bernoulli sequence associated with the set of 
regression coefficients,  , , ,M

1 2 M  β Λ  also. Let 

β  denote the vector of non-zero regression coefficients 
corresponding to γ X, and   the corresp
matrix, which results in the model 

n n y

del, then, is actual
ma

onding design 

. X β ε  

Selecting the best mo ly an esti- 
tion problem, i.e., find the HPD estimate of γ  start- 

ing with a prior π on 1  γ  and a prior 2π  on  
 2, β  given γ . The two-stage MDL, which is the 
simplest, uses the criterion of minimizing 

   
 1log π .

  



2ˆ ˆlog , , ,n nDL f  y γ y β X γ

γ
  (22) 

MLE for β  and 2  given γ  are e sily available: a
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  1

2

ˆ ,   


 β X X X y

2 ˆˆ .RSS n n      y X β
      (23) 

Consider the unifo  prio  rm r on γ , all 2M  values 
receiving the same weight 1 2M . Using these, we can 
re
(as in ple 2

-write the L criterion as the one which minimizes 
 Exam )  

MD

log
n

RSS log ,
2 2

k
n

   

wh

      (24) 

ere k  is the number of 1j 
We can also derive the mixture MDL or stochastic 

complexity of a given model 

  . 

γ . If  2,g  β γ  is the 
prior density under 2π ,  

 
  2 2, , , , dn

m

f g   
2d .

n

   

y γ

y β X γ β γ β

,

  (25) 

Applying (13), (14) after evaluating the information 
matrix of the parameters  2

 β  an  terms 
that are irrelevant for model selectio (see 
[13]),  

d ignoring
n, one obtains 

 

 1
log log det .

2 2
n

   X X

If 

2
SIC log

2

n k
RSS

k




 
γ

   (26) 

g  is chosen to be the conjugate prior density, then 
the marginal density  nm y γ  can be explicitly derived. 
Details o d further simplifications obtained upon 
using Zellner’s g-prior can be found in [13]. (See also 
[33,34].) 

This method is only useful if one is interested in 
comparing a few of these models, arising out of some 
pr e

n this an

e-sp cified subsets. Comparing all 2M  models is not 
a computationally viable option for even moderate values 
of M , since for each model, γ , one has to compute the 
corresponding ˆ

β  and RSS . 
We are more interested in a different problem, namely, 

whether an extra regressor should be added to an already 
determined model. This is the idea behind the step-wise 
regression, forward selection method. In this set-up, the 
model comparison problem can be stated as comparing  

0 :
k

n n n
j jM  y x ε  

1j

versus 
1

1
1

: .
k

n n n
j j

j

M 




 y x ε  

This is actually a model building method, so we
n n



 
 that 1 x 1 hence 1assume , and   is the intercept 

ves the starti odel. Then we decide whether 

this model needs to be expanded by adding additional 
regressors. Thus, at step k , we have a  existing model 

ressors 1, , k

which gi ng m

n
x xΛ  and we fix 1kxwith reg   to be one of 

aining the rem M k  regressors as the candidate for 
possible selection. Now the two-stage MDL approach is 
straight forward. From (22) and (24), we note that 1kx   
is to be selected if and only if 

    1 1
1 log log 0,

2 2
k

k

RSSn
DL k DL k n

RSS
 

     
 

 (27) 

where  DL j  is the de ription length of the model 
with regressors 

sc

1, , jx xΛ  and jRSS  i s residual sum 
of squares as given i (23). A closer look at (27) reveals 
certain interesting facts. We need the following addi- 
tional notations involving design matrices and the corre- 
sponding projection matrices. 

s it
n 

We assume that the re- 
quired matrix inverses exist. 

     
        

1

1 2 , .jn n n
jj j j j jP


  X x x x X X X XΛ  

Then we note the following result which may be found, 
for example, in [35].  

        

  
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v v

v v
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 
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  (28) 

uu u

u

w

   
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k n kv I P
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It then follows that 
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1 1 1 1
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and hence 
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1

2
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k k

k
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1k k
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1
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where  1, 1,2, ,ky x kr
  Λ  is simply the partial correlation co-  

y  and 1kxefficient between   conditional on 1, , kx xΛ . 
Sub ting in (27), we see stitu these that 

   

  1

2
, 1,2, ,1 log .

ky x kr n
  Λ

1

1

1

1
log log

2 2

1
log 1 log

2 2

1
log

2 2

k

k

k k

k

DL k DL k

RSSn
n

RSS

RSS RSSn
n

RSS

n





 

 
  

 
 

   
 



    (29) 

Therefore, 

   1DL k DL k  if and only if 

  1

2
, 1,2,log 1

ky x k

n
  Λ,

1
log

2 2
r n    if and only if 

 1, 1,ky x   Λ
2 1

2, , 1 .n
kr n   (30) 

This method does have some appeal, in tha
step, it tries to select that variable which has the largest 
partial correlation with the response (conditional on the 
variables which are already in the model), just like the 
step-wise regression method. However, unlike the step- 
w n method it does not require any stopping 
rule to decide whet te should be added. It 
relies on the magnitude of the partial correlation instead. 

One can also apply the stocha criterion 
given in (26) above. Then we obtain, 

t at each 

ise regressio
her the candida

stic complexity 
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(31) 
which is related to the step-wise regression approach, but 
uses more information than just the partial correlation. 

A full-fledged Bayesian approach using the g-prior can 
also be implemented as shown below. Note that 

      2 2 2
0 0

0

, , , d d ,
k

n n k k k
km f g  
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  y y β X β β
R

 

and 
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, , , d d
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f g  



  
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y
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R

(32) 

where 0g  and 1g , respectively, are the prior densities 
under 0M  and 1M . Taking these priors to be g-priors, 
namely, 

   12 2, , , , 1,j
j j jc N c j k k 


  β X X0  

along with the density 21  for 2  , a (proper prior) 
density  π c  for the hyperparameter c , we obtain, 

   

   

0
0

01

π d

,

nm c c c

BF




 y

        

w

1
0

π dnm c c c y

(33) 

here 
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nm cy
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2
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1
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n
k

n k k k k k
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n

n
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a c RSS
c

c a c
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c




 



    

      

 

     

β X X β

y

β X X β

 
m

 (34)

with  π 2a n  and      
2n

n
     

1ˆ 

j j j j
 β X X X y .  

The on mensio l integrals in (33), however, cannot 
be obtain

e-di na
ed in closed form. One could also approximate  

01BF  with    0 1 1ˆ ˆn n
k km c m c y y , where ĉ  are the  

ML-II (cf. [36]) estimates of c . See [13] for details. 
ate t L

ressi  ld- 
data (see [37,38]). We have not included “year” as a 
regressor (which is a proxy for technological advance) 
and instead have considered only the w
regressors. 

In this data set the variables are: X1 = Year, 1 de- 
930, X2 = Pre-season precipitation, X3 = May 

ture, X4 = June rain, X5 = June temperature, X6 = 
July rain, X7 = July temperature, X8 = August rain, X9 = 
August temperature, and Y = X10 = Corn Yield. 

As mentioned earlier, we always keep the intercept 
and check whether this regression should be enlarged by 

Example 5. We illustr he MD  approach to step- 
wise reg on by applying it to the Iowa-corn-yie

eather-related 

noting 1
tempera
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   adding more regressors. We first apply the Two-stage 
MDL criterion. From (30), at step k , we consider only 
those regressors (which are not already in the model and)  

wh  

s ,j jx x           (36) 

where  are the wavelet functions and  j
 1 2, , β Λ  is the corresponding vector of wavelet 

coefficients. We assume that the normally infinite sum in 
(36) can be taken to be a finite sum (or at least a very 

sform
d wavelet coefficients, 

n Wx v . Consider now the e ival  model: 
n

ich satisfy 2 1
, , > 1 n

kr nΛ  (=0.1005 in  

example). From this set we pick the one with the largest  

 
2
, 1, ,y j kr  Λ of  

2
, 1, ,y j kr  Λ  for the relevant steps  

are listed below. 
 

  6   8X 9X

, 1y j  this 

. The values 

step  5X2X 3X 4X X 7X

1 0.037 0.010 0.021 0.022 0.338 0.336 0.044 0.118

2 0.066 0.034 0.001 0.015 -- 0.162 0.060 0.018

3 0.011 0.022 0.000 -- 0.016 -- 0.050 0.004

 
According to our procedure we select 6X  first, 

followed by 7X  and the selection ends there. 
We consider the SIC criterion next. From (31), at step 

k , we pick the regressor jX  with the largest value for  

   

  
  

 

2,v j , 1, ,

1 2
1

1,

y j k

n k
k

n

k
j n j

I P

n I P



  
     

   

y y

x x

Λ

 

pr

k r

 

ovided it is positive. The values of  ,v j k  for the 
relevant steps are given below. 
 

step 2X  3X  4X  5X 6X 7X  8X 9X

1 −0.002 −0.020 0.043 −0.001 0.371 0.319 0.071 0.106

2 0.013 −0.011 0.012 −0.022 -- 0.141 0.073 −0.002

3 − 0.0420.040 −0.040 0.032 − -- -- 0.058 −0.022

4 −0.050 −0.042 0.027 −0.039 -- -- -- −0.023

5 −0.043 −0.027 -- −0.028 -- -- -- −0.025

 
c  o  

, , ,
Ac ording to SIC our order of selecti n is

6 7 8 4X X X X . 

5. W d

onsider the nonparametric regression problem where 
w

v

where 

2. avelet Threshol ing 

C
e have the following model for the noisy observations 
 , , ,v vv Λ : 1 2 n

  , 1 , ,and ,i i i iv s x i n x   T      (35) ,Λ

i  are i.i.d

good approximation) as indicated in [39]. 
Upon applying the discrete wavelet tran  (DWT) 
 v , we get the estimateto
 qu ent

, β εx  

wh e er   nI . 2,n 0N nε

The ere inv  
mi ng t n et coeffici s

0o zero j

 model selection problem h olves deter-
ni he number of no -zero wavel ent : 

0 : number f non-M is k  

ersus v

1 1: number of non-zero jM is k  

where , 0,1ik n i  are the number of wavelet coef- 

non-zero 

 
ficients of interest. 

The prior distribution on the  is assumed j
to be i.i.d.  20, ,1 iN j k    under , 0,1iM i  . 

Since we have not identified the locations (indices) of 
the non-zero wavelet coefficients, j , we proceed as 
follows to describe the prior structure. With each j  we 
associate a binary variable j  as in [41] f

ion 13] for v
or wavelet 

regress  or as in [ ariable selection in re- 
gression. Then  1 2, , , n γ

g
 Λ  is a Bernoulli se- 

quence associated with the set of re ression coefficients, 
 1 2, , , n  β Λ . Let 

n

1

: .i j i
j

k


 
   

 
γ  

lly, wFina e let ,1jz j n   be i.i.d.  20,N   ( g  
be the corresponding joint density), and define the fol- 
lowing structure under iM . 

 
1

π 1 , for all : ;
n

j i
ji

k
k




  
 

γ γ      (37) 
n 

.  20,N   errors with unknown 
r variaerro nce 2 , and s  is a function (or signal) de- 

o al 1T R . Assuming s is a 
th  satisfying certain regularities (see 
9, e wavelet decomposition of 

fined 
smoo
[15,3

n some in
 function
40]), we ha

terv

ve th s : 

, : ,1 .i j j jk z j n   β γ          (38) 

 
 

   2 222π exp .

i

nn

j j j

n
n x z 

  
   

2

2

2
1

,

, , ,

2

n

n

j

f

f k





  

x β

x z γ   (39) 

uisance parameter 2



The n   which is common under 
both models is given the prior density 21  . Then it 
follows that 
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Note that only those 

  
    

 (40)

 

jz  for which 1j   appear in 
the in ve. 

The Tw age MDL  is clearly the easiest to 
take in this problem. As described earlier, it appro- 
ximates  n

im x  by coding the prior and the likelihood 
(both evaluated at an estimate) separately and sums the 

engths to obtain the description length. In this case, 
scretizing 

tegral abo
o-st  approach

codel
di j  and 2  to a precision of 1 n  and 

ri rms that stay bou n  increases, this 
ount  

igno
am

ng te
s to 

nded as 

 
   
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2 2

ˆˆ ˆlog π log π ,
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f
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
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x β
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s er
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n n

n




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 

   
 

where the first term is obtained from Stirling’s appro- 
ximation, the econd t m 2logik n  is for c g the 

ik  non-zero 
odin

j ’s and 2̂  is an estimate such as the 
MLE. On the other hand, computing SIC or  n

im x  is 
 an im ther.  integrate out the not possible task ei In fact, to

jz  in im ion (4 ue as follows.  n  of Equatx 0) we arg

   2 20,0, ,j jX N n   :  and 

   2 2 20, .1,j jX N n    

 test, we take 2 2c

  :

 , 

and integrate out 2  also. This leaves us with the 
following expression where we have a sum over γ . 

 

Now, as we argued in Jeffreys 
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 (42) 

The term    
2

2 2

1 1

1
1 1

1

n
n n

j j j j
j j

x x
nc

 


 

 
   

 
   is  

interesting. Most of the contribution to this sum is  

expected from   2

1

ˆ1
n

j j
j

x


  with ˆ 1j   correspond-  

ing to the largest ik  of the x j , which yields 
of 2

the MLE 
  upon normalization. The Bayes estimate, on the 

other hand, will arise from a weighted average of all the 
sums, with weights depending on the posterior prob- 
abilities of the corresponding γ . As is clear, weighted 
average over the space i  is computationally very 
intensive when n  and ik  are large. An appropriate 

us
wav ol  sho  

approximation is indeed necessary, and MDL is im- 
portant in that sense. 

Even though we have j tified the two-stage MDL for 
elet thresh ding by wing that it is an appro- 
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ximation to a mixture MDL corresponding t ain 
prior, a few questions related to this prior remain. First of 

, the sumption that 

o a cert

all prior as jz  are i.i.d.  20,N   is 
unreasonable; wavelet coe  corresponding to 
wavelets at different levels of resolution m modeled 
with different variances. Specifically they should de- 
crease as the resolution level increases to indicate their 
de ly, wave

 to
 pri

de- 
pendence structure must be employed. These modifi- 
cations can be easily implemented in the Bayesian ap- 
proach, except that the resulting computational require- 
ments may be substantial. 

5.3. Change Point Problem 

We shall now consider MDL methods for a pro
which attempts to decide whether there is a change-point 
in a given time series data. We use the data on British 
road casualties available in [45], which examines the 
effects on casualty rates of the seat belt law introduced 
on 31 January 1983 in Great Britain. 

We follow the appro 1 2, , , nY Y YΛ  be 
independent Po

fficients
ust be 

creasing importance (see [40,42,43]). Second - 
let coefficients tend  cluster according to resolution 
levels (see [44]), so instead of independent normal ors, 
a multivariate normal prior with an appropriate 

blem 

ach of [46]. Let 
ts with isson coun  issoni iPoY  . i  

are a priori consid  multivariate 
no istribut  is assum
Sp

ered relat
ion o
log

ed, and a 
n their logari

 i i

joint
thmrmal prior d ed. 

ecifically, let    be the i th element of ν  
and suppose 

 nNν μ  

ble

2, , μ

We model the change-point as the model selection 
pro m: 
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where 1n  is the possible change-point. We further let 

0 1,   be i.i.d.  20,N  .   and 2Note that 2 ,   are 

elihood function assum- 
hyperparameters. 

First, we approximate the lik
ing 0iy   as follows. 
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where logi i
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iy    anding (43) about 0 , i  
maximum, in Tay and igno ing higher orde
terms in 

. Exp ts
lor series r r 

i
 , we obtain 
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What is appealing and useful about (4 ) is that it is 
proportional to the multivariate normal likelihood func- 

r ν ) with mean vector x and covariance matrix 
W  where  

1
i i

i
 
 

     (44) 

4

tion (fo

   1 1, , log , , logn nx ,x y y x Λ Λ  and 

   1 1diag , , diag 1 , ,1 .n nW w w y y Λ Λ  

Thus hierarchical Bayesian analysis of multivariate 
normal linear models is applicable (see [15,36,47]). We 
note that the hyper-parameters   and 2  do not have 
substantial influence and hence treat them as fixed con- 

to
in th  discussi ntly in
stants (  be chosen based on some sensitivity analysis) 

e following on. Conseque , denot g by 

0g  and 1g  the Mrespective prior densities under 0  
and 1M , 
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Now iate normal theory, observe that  
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Expression (47) is not available, in general, in closed 

form. Approaching it from the MDL technique, we look 
for a subsequent approximation employing an ML-II type 
estimator [36]) for 2
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(a) 

 

Figure 1. Plots of log(m0) and log(m1) for the British road 
casualties data. (a) LGV data; (b) HGV data. 

As before, the MDL technique invloves deriving the  

ML-II estimator of 2

(b) 

 2 2
1 , ,nm from    y , for  

fixed . Obtaining 2
1̂  and 2  (for fixed    and  

2  2 2
1 , ,nm) which maximizes    y  is very similar  

to that for 2
0̂ . 

We have applied this technique to analyze the British 
Road Casualties data. Figures 1(a) and (b) show  

 2 2
0log , ,m     and  2 2

1log , ,m     as a function  

of 2  for 0.1    and 2 5  , for the LGV and HGV 
data, respectively. As mentioned previously,   and 2  
do not seem to play any influential role; any reasonably 
small value of   seems to yield similar results, and any 

2  which is not too close to 0 behaves similarly. 
There seems to be strong evidence for a change-point 

in the intensity rate of casualties (induced by the ‘seat- 
belt law’) in the case of the LGV data, whereas this is 
absent in the case of the HGV data. This is evident from 
the very high value of 1log m  near the ML-II estimate of 

2  for the LGV data. 
There is a vast literature related to MDL, mostly in 

engineering and computer science. See [48] and the re
ferences listed there for the latest developments. See
[49]. [50] provides a review of MDL and SIC, and claim 
that SIC is the solution to “optimal universal coding 
problems”. MDL techniques have not become very popu- 
lar in statistics, but they seem to be quite useful in many 
applications. 
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