
Journal of Software Engineering and Applications, 2013, 6, 157-167
http://dx.doi.org/10.4236/jsea.2013.64020 Published Online April 2013 (http://www.scirp.org/journal/jsea)

157

IMPEX: An Approach to Analyze Source Code Changes
on Software Run Behavior

David Nemer

School of Informatics and Computing, Indiana University, Bloomington, USA.
Email: dnemer@indiana.edu

Received February 28th, 2013; revised March 31st, 2013; accepted April 8th, 2013

Copyright © 2013 David Nemer. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The development of software nowadays is getting more complex due to the need to use software programs to accom-
plish more elaborated tasks. Developers may have a hard time knowing what could happen to the software when mak-
ing changes. To support the developer in reducing the uncertainty of the impact on the software run behavior due to
changes in the source code, this paper presents a tool called IMPEX which analyzes the differences in the source code
and differences on the run behavior of two subsequent software versions, in the entire repository, demonstrating to the
developer the impact that a change in the source code has had on the software run, over the whole software history. This
impact helps the developers in knowing what is affected during execution due to their changes in the source code. This
study verifies that the software runs that are most impacted by a given change in the source code, have higher chances
in being impacted in the future whenever this part of the code is changed again. The approach taken in this paper was
able to precisely predict what would be impacted on the software execution when a change in the source code was made
in 70% of the cases.

Keywords: Change Impact; Change Prediction; Quality Assurance; Software Development

1. Introduction

As the use of computer software is demanded for realiz-
ing more and more complex tasks, the development of
these software are also getting more complex each and
every day, making the life of the developer a bit harder.
This paper attempts to help the developers by proposing
an approach to support them in knowing, before making
any changes in the software, what can be impacted when
something is modified in that particular part of the code.

Imagine a new developer at a software development
project, she needs to get used to the new environment
and understand the project’s code. Resources at hand,
such as the documentation, can be a good help but it may
be out dated. A personal help, e.g. project manager, could
also aid her, but the person won’t always be with her.
Since she needs to go ahead with the project develop-
ment, she might not be aware of how dangerous it could
be to change a certain line of code. In other words, she
may not know how risky her change might be regarding
to the rest of the program.

Not only to new developers, but experienced develop-
ers in a project must also deal with this sort of situation,

since it is very unlikely for them to know the whole
source code.

To support the developer in reducing the uncertainty
of the effects (or impact) of the changes, this paper at-
tempts to predict what parts of the software system is
impacted during execution, resulting from changes in the
source code. This “impacted” means, making a change in
some part of the code, may also affect other parts while
execution. This knowledge is important for software main-
tenance as the analysis, which can be applied either be-
fore or after changes are made to the software system. It
can also provide a valuable guide to the software engi-
neers. Applying our approach before a change is made,
allows a software engineer to determine what compo-
nents may be affected by the change and gauge the cost
of the change.

These issues presented above basically drive this paper
and shape the approach that is detailed in the following.

2. Background

The main goal of this paper is to measure the impact that
changes in the source code have on the software during

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 158

execution and aggregate this information, so predictions
can be made on what will be impacted when a certain
change is made. For such, the proposed tool, IMPEX,
observes what was changed, between two revisions of the
software, in the source code, and also see the difference
that these changes caused during run-time. To get the
differences in the source code, as well as in the execution,
IMPEX relies on two third party tools. Javalanche [1]
was used in order to aid IMPEX in getting the run be-
havior and comparing two different executions of the
software. When dealing with comparing two versions of
the source code, IMPEX counted with API-level Code
Matching. In the following, this section presents and de-
tails the tools API-level Code Matching and Javalanche,
later, the sections Approach and Evaluation detail how
these tools fit with IMPEX.

2.1. Javalanche

Javalanche is a framework originally developed to sup-
port mutation testing of Java programs [1,2]. Mutation
testing measures the adequacy of a test suite by seeding
artificial defects (mutations) into a program. Javalanche
was primly used to support checking the invariant viola-
tions to detect mutations [1]. It also assesses the impact
on invariants and impact on code coverage [2].

In order to analyze two different version of a software
and identify the difference of execution behavior be-
tween them, IMPEX uses Javalanche. Originally, Java-
lanche produces mutated versions of a software by in-
serting mutations in these versions, and then compare
their run behavior with the original version to assess the
impact of these mutations. Since mutations are consid-
ered to be changes in the software, IMPEX counts with
the support of Javalanche to identify differences in the
run behavior of two software revisions which were not
changed by adding mutations but by actual development
changes. This functionality of Javalanche had to be modi-
fied and adapted in order to assess the impact of real de-
velopment changes in the code. The differences of muta-
tion changes and development changes are later explained
in this section.

2.1.1. Javalanche and the Impact of Equivalent
Mutants

Javalanche creates mutated versions of a software by
adding mutation in the code, and later checks whether the
test suite is capable to detect theses mutations in the code
of the mutated versions. The idea is to have the test suite
detecting all the mutations, but if a mutation is not de-
tected by a test suite, this usually means the test suite is
not adequate [1]. With the capability of a test suite find-
ing mutants, test managers can improve their test suites
such that they detect these mutants. In order to produce
mutations, Javalanche uses a small set of operators, it

relies on replacing numerical constant, negating jump
conditions, replacing arithmetic operator and omit method
calls. The Table 1, which was extracted from David
Schuler et al. [1], represents the mutations just men-
tioned.

An example of a mutated code is given in Figure 1. It
might be the case that even though a mutant is seeded,
the program’s semantics remains unchanged, hence, it
can’t be noticed by any test. These sorts of mutants are
called equivalent mutants, and they need to be removed
manually, which is a tedious task, and they have less
impact on execution. Grün et al. [2] propose an approach
based on their experiments, focusing mainly on muta-
tions that alter the dynamic control flow, they tend to be
less likely to be equivalent. The higher is the impact, the
lower is the chance of equivalence.

The impact of a mutation can be assessed by checking
the program state at the end of a computation, as tests do.
However, it can also be assessed while the computation
is not complete. In particular, changes in program be-
havior between the mutant and the original version can
be measured. One aspect that is particularly easy to
measure is control flow [1]: If a mutation alters the con-
trol flow of the execution, different statements would be
executed in a different order—an impact that is easy to
detect using standard coverage measurement techniques.

Grün et al. [2] tested the relationship between cover-
age and non-equivalence by developing a program that
computed the code coverage of a program, and integrate
it into the Javalanche framework.

Table 1. Javalanche mutation operators.

Replace a numerical constant. Replace a numerical constant X by X
+ 1, X − 1, or 0.
Negate jump condition. Replace a conditional jump by its
counterpart. This is equivalent to negating a conditional statement in
the source code.
Replace arithmetic operator. Replace an arithmetic operator by
another arithmetic operator, e.g. + by −.
Omit method calls. If the method has a return value, a default value
is used instead, e.g. X = Math. random () is replaced by x = 0.0.

Figure 1. An example of a mutation.

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 159

To measure the impact of a mutation, each program’s
mutation and every test case is computed, as well as, the
statement coverage (number of times a statement is exe-
cuted) of the original program. The coverage of the
original execution is compared with the coverage of the
mutated execution which results to a coverage difference.
As an impact measure, Grün et al. chose the number of
classes that have different code coverage. This measure
is motivated by the hypothesis that a mutation that has
non-local impact on the coverage is more likely to change
the observable behavior of the program. Furthermore, it
is assumed that mutations that are undetected despite
having impact across several classes, to be particularly
valuable for improving the test suite. As the test suite
indicates inadequate testing of multiple classes at once, it
also shows that the higher the impact of a mutation,
higher the chance of it being non-equivalent.

2.1.2. Javalanche and Impact of Changes
Even though Javalanche originally evaluates the impact
of mutations, it also can evaluate the impact of code
changes. This paper was successful in adapting Java-
lanche to produce and compare the run traces of two ver-
sions of a source code. In section Approach, it is ex-
plained in more details how the adaptation of Javalanche
was done and how it supported IMPEX in order to fulfill
this paper’s goal.

Every mutation can be considered a change in the code,
but not every change in the code is a mutation [1]. Java-
lanche uses a small set of operators to produce mutations,
it relies on replacing numerical constant, negating jump
conditions, replacing arithmetic operator and omit method
calls, as represented in Table 1.

As noticed, Javalanche, simply replaces a code with a
mutation. It doesn’t add new lines in the code, it doesn’t
implement new functionalities for example, these changes
are actual code changes, and heavily exceed the modifi-
cations proposed by Schuler et al. [1]. Even though de-
velopment changes differ from mutations, Javalanche is
still able to compute the differences between two ver-
sion’s runs, in other words, it is able to tell us what part
of the code had a different behavior compared to the pre-
vious execution. When adding a mutation in the software,
Javalanche keeps track of this mutation and it is able to
tell where the mutation was placed, when it comes to
actual development changes, Javalanche is not aware of
the changes made because it was not done by it, therefore,
the differences in the source code of the two versions are
needed, to see what was changed there, so they can be
assumed to be the cause of the different behavior.

2.2. API-Level Code Matching

To get actual changes made in the source code, two ver-
sions of the source code have to be compared so differ-

ences between them can be identified. For this task, IM-
PEX is supported by the API-level Code Matching, which
is a tool developed by Kim et al. [3]. The changes identi-
fied by API-level Code Matching will be later related to
the changes obtained by Javalanche during execution of
the software. With that, we can identify what was changed
in the source code and what was changed during execu-
tion.

The API-level Code Matching maps code elements in
one version of a program to the corresponding code ele-
ments in another version, it outstands itself among the
others similar tools, because it overcomes two main limi-
tations: first, existing tools cannot easily disambiguate
among many potential matches or refactoring candidates,
and second, it is hard to use the results of these tools for
software engineering tasks due to an unstructured repre-
sentation of the results [3]. The API-level Code Matching
represents structural changes as a set of high level change
rules, automatically infers likely change rules and deter-
mines method level matches based on these rules.

Matching code elements between two versions of a
software is the underlying basis for various software en-
gineering tools, such as IMPEX. For instance, version
merging tools identify possible conflicts among parallel
updates by analyzing matched code elements, regression
testing tools prioritize or select test cases that need to be
rerun by analyzing matched code elements, and tools
which compare source code of different versions of a
program, use code matching to deal only with actual
changes in the code, not identifying refactoring and re-
structuring as changes that affects the logic of the pro-
gram, this is the example which IMPEX fits.

The API-level Code Matching approach automatically
infers likely changes at or above the level of method
headers, and uses this information to determine method
level matches, also it represents the inferred changes
concisely as first-order relational logic rules, each of
which combines a set of similar low-level transforma-
tions and describes exceptions that capture anomalies to
a general change pattern [3].

The API-level Code Matching tool showed to be an
efficient way to aid our approach in optimizing the proc-
ess of comparing the source code of two versions of a
program. It is quite simple to get differences between
two codes, but it is important to take into account refac-
toring and restructuring, which are changes, but they are
not changes that affect the logic and the behavior of the
software. This is what the tool presented by Kim et al.
works at, matching code so these changes are not taken
for granted.

3. Approach and the Tool IMPEX

The main goal of this study is to measure impact of code
changes on the executional behavior of the program.

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 160

Once being able to measure this runtime impact, IMPEX
checks whether source code changes having large run-
time impact are more risky to be impacted or not in the
future. To accomplish the first step of impact measuring,
the changes done in the source code are mapped to what
was affected during execution. These data are identified
by comparing two subsequent revisions of a software,
getting the differences in the source code between these
two revision, as well as what was changed during execu-
tion. In order to see what each change in the source code
really impacts, IMPEX goes over the whole repository
and map each of them to what was affected during exe-
cution. IMPEX consists in five main steps, and they are
all automated. IMPEX is illustrated in Figure 2 and the
steps are: 1) obtaining the revisions (checking out); 2)
comparing the source code between the two revisions; 3)
building the revisions; 4) comparing the run traces be-
tween these two revisions and 5) mapping the source
code differences with the run traces differences.

The first step of IMPEX is to check out two consecu-
tive revisions, for example revisionN and revisionN + 1. In
the second step and fourth step, the tool compares both
revision’s source code and execution traces, and map
their differences. The comparison process is done with
the support of the external tools presented before:
 API-level Code Matching, that handles differences in

the source code.
 Javalanche, which is in charge of producing the run

traces and the differences between them.
API-level Code Matching directly compares the ver-

sions of the source code which are checked out from the
repository, and, since Javalanche works on Java byte
code, step three is needed, which is having the revisions
compiled (built). In order to have an automated compil-
ing process, IMPEX currently supports Ant and/or Maven,
which are automated building tools.

The fifth step consists in mapping changes done in the
source code to what was affected during execution. Each
change in the source code is mapped to the change of
behavior on the run, so it can be assumed that the changes
made in the source code were responsible by impacting
the different behavior. For example, when comparing the
source code of revisionN and revisionN + 1 IMPEX would
get differences in the source code of Class1 and Class2,
while Class3 and Class4 would be the classes that had a
different behavior during execution. It is presumed that
the changes in the source code of Class1 and Class2
caused a different run behavior in Class3 and Class4. In
other words, the changes in Class1 and Class2 impacted
the run of Class3 and Class4.

All of the five steps are done automatically in the
whole repository. The outcome of IMPEX is a matrix
which will help the developer see the impact that the
source code changes have on the execution, thus showing

to the developer which parts of the source code can im-
pact during execution. This matrix produced is defined
on this paper as the prediction model. IMPEX produces
the prediction model in three levels: method, class and
package level. In Table 2 there is an example of the pre-
diction model produced:

Table 2 shows an example of the prediction model in
the class level. It can be explained as following, in the
whole repository, the source code in Class1 was changed
10 times, there were 5 times (five differences of revisions)
that the source code in Class1 was changed and also the
run traces in Class4 had a difference. The prediction
model produced is explained in more details in Section
Data Gathering. As explained before, every step is auto-
mated, but the user still needs to manually specify details
such as:
 The repository’s address.
 Type of repository (http, file or svn).
 Whether the version checked out is built by Ant or

Maven, and indicates the location (path) of the build
file, which is build.xml for Ant, pom.xml for Maven2
and project.xml for Maven1.

 Javalanche attributes, such as class path and test suite
location.

 API-level Code Matching attributes, such as location
of the source code.

Figure 2. Diagram of the steps of IMPEX.

Table 2. Example of prediction model produced by IMPEX.

Changes on run traces detected Changes on
source code

detected Class3 Class4

Number total
changes on
source code

Class1 8 5 10

Class2 6 9 11

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 161

Since Javalanche is also automated and plays a key
role in IMPEX, the tool ends up depending a lot on the
consistency of the revisions obtained, in other words, the
revisions needs to be buildable, also, Javalanche pro-
duces the difference of run traces based on the execution
of the test cases of each revision, therefore, the test cases
also need to be executed flawlessly. Sometimes errors
during the building and testing processes, due to internal
revision issues, can happen, thus precluding the produc-
tion of run traces. If this is the case, IMPEX simply skips
problematic revisions to the next computable (buildable
and testable) revisions. Another main issue that IMPEX
deals is having two consecutive revisions with different
set of test cases. It has to map differences in the run
traces caused by changes in the source code, and not
changes caused due to modification in the test cases,
therefore, IMPEX limits Javalanche to compare the run
traces produced by the same test cases contained in both
revisions. What IMPEX does is to check which test case
was modified, added or deleted, between two revisions,
and then, delete the traces produced by them, thus com-
paring the traces produced by unmodified test cases.

Another issue IMPEX deals with is nondeterministic
behavior. When producing traces from execution, some
software revisions might have nondeterministic behavior,
which leads to producing different run traces in different
executions. To overcome this issue, IMPEX executes sev-
eral runs of a single revision of the software, and com-
pares the traces produced by every execution. The traces
produced by Javalanche are on the method level. If there
are different methods between two set of traces from the
same revision, IMPEX simply excludes the traces of such
methods, since they had a different behavior due to non-
deterministic behavior, and not due to actual changes in
the source code.

The pseudo code of IMPEX illustrates in a program-
matically way the steps mentioned above, it is in the fol-
lowing Figure 3.

3.1. Adapting Javalanche

Javalanche is the responsible for producing the run traces
from the built revisions. Originally, Javalanche produces

Figure 3. Our tool’s algorithm pseudo code.

mutations of a revision, and calculates the impact of the
mutations on the code coverage by comparing an unmu-
tated run of the test suite with the mutated run of the test
suite. Javalanche had to be adapted in order to compare
the run traces of two actual revisions, instead of the
traces of mutations. When comparing traces of a mutated
version and the original version of the software, Java-
lanche identifies where the run traces from both versions
are, but when comparing two revisions of the same soft-
ware IMPEX passes to Javalanche where the traces are
stored.

To manage the nondeterministic behavior of the same
revision, Javalanche was adapted in a way that it pro-
duces traces of different executions of such revision. In-
stead of having it comparing the runs of traces from two
different revisions, IMEPX indicates to Javalanche where
the two set of traces of the same revision are stored, and
have Javalanche comparing them, as if it was comparing
two different revisions. IMPEX does that to every set of
execution traces, if the Javalanche’s comparison is not
able to find any method that behaved differently, that
means the execution of the revision doesn’t show nonde-
terministic behavior, otherwise, if Javalanche finds meth-
ods in the comparison, they are considered to be nonde-
terministic, therefore, IMPEX excludes them. These meth-
ods had a difference due to nondeterministic behavior
and not because of actual changes in the source code.

When adding a mutation in the software, Javalanche
keeps track of this mutation and it is able to tell where
the mutation was placed. When it comes to actual devel-
opment changes, Javalanche is not aware of the changes
made because it was not done by it, therefore, IMPEX
computes the differences in the source code of the two
versions, to see what was changed there, so it can be as-
sumed that these changes caused the different behavior.
To support IMPEX in finding the changes in the source
code, it counts on the API-level Code Matching tool [3]
explained in the following.

3.2. Adapting API-Level Code Matching

The API-level Code Matching is the tool that helps this
approach in getting the differences between two source
codes. API-level Code Matching doesn’t directly com-
pare two source code in order to get the differences be-
tween them. What it does, is matching code elements or
identifying structural changes between two versions of a
program.

The API-level Code Matching provides an automated
way to parse and break the code into several small parts,
allowing IMPEX to check if there are any code differences
between these small parts from the two revisions. The
functionality used from the API-level to support IMPEX,
parses the entire code into a list of Method objects.

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 162

The Method objects have all the details of the methods.
It has an attribute called body which stores the content of
the method, and it disregards any unnecessary text such
as comments and empty lines, so what is in the body at-
tribute is pure code. Having the code broke down in
Method objects helps IMPEX to deal with code refactor-
ing issue, because no matter where the method is placed,
it will always be compared (if it exists in both revisions)
with the matching other. The API-level Code Matching
doesn’t use only the signature of a method to identify the
other match, it is able to represent structural changes as a
set of high-level change rules, inferring likely change
rules to determine the method matches based on the rules
[3]. So if just a method name is changed, the tool is still
able to find a match with a different name. Also, these
rules are applied in the body attribute of the matched
methods, to identify structural changes, which are not
actual code changes.

The API-level Code Matching doesn’t take into ac-
count what is outside the methods, such as static vari-
ables. So IMPEX wraps what was left outside the meth-
ods, and add into the list of Method objects as a special
type of method, internally identified as such, so when the
comparison takes place, IMPEX is able to identify it as a
Method object containing class body parts.

3.3. Data Gathering

The final step of IMPEX is to map the source differences
with the run differences. After mapping all revisions in
the repository, it produces several matrixes, which is
defined as the prediction models. These prediction mod-
els are aimed to predict what will be impacted in the fu-
ture, based on the impact that changes in source code had
on execution over the whole repository history. Since
Javalanche and API-level Code Matching present their
results on the method level, IMPEX is able to use their
results to gather information on package and class levels
as well, but not deeper in the code. This paper deter-
mined a set of metrics that defines such impact. The met-
rics chosen are:
 Number of times a method has a different execution

behavior caused by a change in the source code of a
method.

 Number of times a class has a different execution
behavior caused by a change in the source code of a
class.

 Number of times a package has a different execution
behavior caused by a change in the source code of a
package.

Impact is defined as such, let the repository to consist
of revisions 1 . For revisions , , kR R NR and 1NR  , let

1 be parts of the software which differ in 1N, , nc c R 
from N in the source code. Further, let 1 be
all parts of the software which is executed in

R , , mc c
1NR


 and

N . Then for revisions and 1N , we define the
function which takes
R NR

 0,
m

R 

, 1 :N N Nf R  1
 , , x  x1c xi i im such that if 0ij  jc doesn’t dif-

fer in 1NR  from N ; and if R 1ijx  jc differs from

N , for R 1,2, ,i n  and . Then the pre-
diction model can be defined as having the sum in each

1,2,j  ,m

row:  
1

, 1
1

k

N N i
N

f c




 for each . An example 1,2, ,i   n

of prediction model (on class level) is showed in Table 2.
The prediction models define the metrics to measure

the impact that changes in the source code have on the
software runs. Also, they are the basis to predict future
impacts based on changes in the source code, this is fur-
ther explained in section 0.4. For the evaluation and ex-
periments conducted, the package and class levels were
considered. The method level was disregarded because,
during the experiments, while mapping the entire reposi-
tory, the prediction model on the method level didn’t
show enough impacts to compute any metrics or make
any predictions. The method level is too fine grained, for
both projects, JodaTime [4] and Jaxen [5], the methods in
the source code could only be mapped, at most, twice to
a method in the run. A real example from Jaxen is shown
below in Table 3.

4. Evaluation

In order to predict what will be impacted during execu-
tion when a change in the source code is done, IMPEX
produces a matrix, called the prediction model, with the
impacts, which are numbers of times a change in the
source code impacted a given part of the run. This impact
indicates that, the higher is the number of times a source
code change impacted some part of the run, the greater is
the probability of this change impacting the same part of
the run again in the future. The idea is to provide a model
to the developer so she can see what a certain change will
impact, and based on the impact numbers, she can see
what parts have a higher probability to be impacted, so
she knows beforehand what her changes can affect and
where she should take actions.

To validate such idea, the prediction model is checked
whether it is able to predict what will be affected based
on the impact numbers, in other words, if the impacted
parts of a run, are actually the parts that have a higher
probability to be impacted. Random code modifications

Table 3. Part of Jaxen’s prediction model on method level.

Source code Changes on run traces detected

 registerFunction getInstance

Number total
changes on
source code

registerFunction 2 0 2

getInstance 0 1 1

registerFunction belongs to org. jaxen. Simple Function Context and getIn-
stance belongs to org. jaxen. XPath Function Context.

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 163

can’t be done to produce different versions to be tested
on the prediction model, because they won’t represent
real changes that the development team of the project is
used to do. Therefore, the following scheme is proposed
in order to evaluate the predictions: IMPEX is used to
produce the prediction model based on two thirds of the
revisions in the repository, and the last one third of the
repository is used as “future” revisions. Then, the predic-
tion model can be tested whether it is able to predict what
will be impacted in these “future” revisions, based on the
changes done in the source code. Figure 4 illustrates the
evaluation scheme.

Javalanche and API-level Code Matching present their
results on the method level, but IMPEX is able to use
their results to gather information also on package and
class levels as well. So the prediction model is produced
to make predictions in three levels: method, class and
package. In the JodaTime [4] and Jaxen [5] projects, the
methods in the source code were impacting, at most,
twice a method in the run over the whole repository his-
tory, and they were still very seldom. Therefore in this
evaluation, the method level is not taken into account
since it is too fine grained and doesn’t provide enough
impacts to make any predictions.

It could be the case that code differences don’t impact
the parts of the run which had a higher probability, but
this papers still sees how far off is the actual comparison
to the prediction model, and still makes a prediction that
is not entirely precise, but would still give the developer
an idea of what could possibly be impacted. The impact
probability is defined as such:

For a given revision R, to calculate the impact prob-
abilities, let 1, , nA A

i

 be parts of the software that had
changes in the source code. Further, let 1 be
parts of the software that had changes during runtime.
Then for each

, , mB B

A , we have a function

i where represents the natural
numbers, taking i i im

  0
m

:f R   
 , , 1A x x  such that ijx repre-

sents the number of times iA impacted , for
 and .

jB
1,2, ,i n  1, 2,,j m

So for a given iA and , the probability that jB iA

impacts jB is ij

i

x


 where i is the total amount of times

Figure 4. Evaluation scheme.

the source code of iA was changed over the entire re-
pository history.

The parts with changes in the source code, ideally,
should impact the parts of the software execution which
have a higher probability. If this always happens, it can
be assured that the prediction model produced from the
two thirds of the repository was able to predict precisely,
every impacted part of the software run from the last one
third of the repository. But this is not how it always goes,
there may be cases that parts with changes in the source
code impact parts of runs that have a low probability in
the prediction, thus the need to check how well the pre-
diction model is able to predict these impacted parts.

Each comparison of two consecutive revisions returns,
if there is a difference, a set of changes in the source
code and a set of differences in run behavior. The predic-
tion is defined as such:     c c    , where  c
is a set of source code changes and is a set of
differences in the execution behavior.

c 

We need to verify if the differences in execution be-
havior in  c  impacted by are the ones that
the prediction model predicted to impact, if not,
to check how far off the prediction from the prediction
model is. In the prediction model, every change in the
source code is mapped to a difference of execution be-
havior with an impact value: such
that ij

 c
 c

 1, ,i i imc x x 
x is the impact value of ic on 1 . To

compare the prediction with the prediction model, the
impact values of i on are added and sub-
tracted from the sum of the impact values which have the
highest probability to be impacted. The comparison can
be defined as such, for each in

, , mc c

c c

ic



 c ,

   
1

z

ik ij
k j

X x 
 

    such that z is the number of

differences of run behavior in  c  , X is the impact
value of the difference in the software behavior which
has the highest probability to be impacted by i , c  is
the set of indices of i c  c 

c

, and IP is the result of
this subtraction, which will be defined as impact pun-
ishment. The smaller is IP, closer is the prediction to be
according to the prediction model. When IP is equal to 0,
which is the smallest number it can be, it means that the
prediction model was 100% precise in predicting what
would be impacted in the prediction, in other words, the
source code changes i impacted the  c  , which are
the set of differences in execution behavior with the
highest probability to be impacted.

IP are not always equal to 0, in other words, the pre-
diction is not always perfect. There may be times that
these differences won’t be 0, therefore this papers ex-
periments this evaluation to check if the differences are
punished way too far from 0, which means that the pre-
diction model cannot be validated, thus predicting any-
thing, or if the differences of impacts are really close to 0,

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior

Copyright © 2013 SciRes. JSEA

164

Evaluating the prediction model against the “future”
revisions obtained, on the package level, 72.41% of the
predictions without any impact punishment, in other
words, our approach perfectly predicted what would be
impacted in 72.41% of the predictions. Going up to the
predictions that had up to 10 impact punishment, which
can still be considered a good prediction; our approach
predicted 80.17% of the predictions. The results on
package level are detailed in Table 4 and Figure 5.

which can be considered as a good prediction model.

5. Experiments and Results

In this section we present the results obtained by apply-
ing our approach in two software projects JodaTime [4]
and Jaxen [5].

5.1. JodaTime

JodaTime is an open source project, which provides a
quality replacement for the Java date and time classes.
The design allows for multiple calendar systems, while
still providing a simple API. The “default” calendar is
the ISO8601 standard which is used by XML. The Gre-
gorian, Julian, Buddhist, Coptic, Ethiopic and Islamic
systems are also included, and we welcome further addi-
tions. Supporting classes include time zone, duration,
format and parsing.

On the class level, our approach was able to predict
25.84% of the prediction without any impact punishment.
The predictions that had up to 10 impact punishment, our
approach was capable of predicting 56.18% of the pre-
dictions, since the class level is a more fine grained level
than the package, going up to 20 impact punishment still
would give us a good prediction, and our approach was
able to predict 79.78%. The results on class level are
detailed in Table 5 and Figure 6.

 When applied approach presented in this paper to Jo-
daTime, the project had 1.480 revisions in its repository,
which the first 320 revisions were not supported by an
automated building tool. Therefore, the prediction model
(first two thirds of the repository) was based on the data
obtained from revision 321 to revision 1100, and the
“future” revisions (last one third of the repository) that
were used to validate the prediction model were the revi-
sions from 1101 to 1480.

Table 4. Results from JodaTime on package level.

Impact Punishment Predictions

0 84

1 - 10 9

11 - 20 11

21 - 40 8

41 - 100 3

>101 1

Figure 5. Results from JodaTime on package level.

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 165

It is interesting to mention that the predictions, on the

package level, which had 0 impact punishment, had its
packages from the source code impacting an average of
2.27 packages during execution, and on class level, it had
classes from the source code impacting an average of
6.93 classes during execution. This shows that the pack-
age, and class, changes didn’t only impact itself during
run time, but also other packages, and classes, and our
approach was still able to predict the impact of them in
other packages, and classes. As the total average, on
package level, 2.50 packages were impacted, while on
class level, 14.01 classes were impacted during execution.
The larger is the average of classes and packages im-
pacted, the higher is the probability to get impact differ-
ences (impact punishment), this is why going up to 20
impact punishment on class level can’t be considered a
bad prediction.

Since the results on JodaTime are a bit spread out, we

Table 5. Results from JodaTime on class level.

Impact Punishment Predictions

0 46

1 - 10 54

11 - 20 42

21 - 40 24

41 - 100 12

grouped the number of predictions based on the most
significant Impact Punishments. In Figures 5 and 6, we
have on the x-axis the Impact Punishments grouped, and
on the y-axis the amount of predictions that had that cer-
tain impact punishment.

5.2. Jaxen

Jaxen is an open source XPath library written in Java. It
is adaptable to many different object models, including
DOM, XOM, dom4j, and JDOM. Is it also possible to
write adapters that treat non-XML trees such as compiled
Java byte code or Java beans as XML, thus enabling you
to query these trees with XPath too.

When the experiments took place, Jaxen had 1.350 re-
visions in its repository, which the first 380 revisions
were not supported by an automated building tool. There-
fore, our model (first two thirds of the repository) was
based on the data obtained from revision 381 to revision
1027, and the “future” revisions (last one third of the
repository) that were used to validate the prediction
model were the revisions from 1028 to 1350.

Evaluating Jaxen, we got good results, comparing the
prediction model against the “future” revisions we ob-
tained, on the package level, 83.70% of the predictions
without any impact punishment, in other words, our ap-
proach perfectly predicted what would be impacted in
83.71% of the predictions. Going up to the predictions

Figure 6. Results from JodaTime on class level.

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 166

that had up to 10 impact punishment, which can still be
considered a pretty good prediction; our approach pre-
dicted 100% of the predictions. The results on package
level are detailed in Table 6 and Figure 7.

On the class level, the results still look good as well;
our approach was able to predict 77.71% of the predic-
tion without any impact punishment. The predictions that
had up to 5 impact punishment, our approach was capa-
ble of predicting 98.73% of the predictions, and going up
to 15 impact punishment give us a prediction of 100%.
The results on class level are detailed in Table 7 and
Figure 8.

Table 6. Results from Jaxen on package level.

Impact Punishment Predictions

0 77

4 7

6 4

8 2

10 2

Table 7. Results from Jaxen on class level.

Impact Punishment Predictions

0 122

1 14

2 8

3 3

4 3

5 5

15 2

Differently than JodaTime, the predictions with Jaxen,
on the package level, which had 0 impact punishment,
had its packages from the source code impacting an av-
erage of 1.04 packages during execution, these results
shows that the changes made in the source code of a
package, practically only impacted itself during the exe-
cution. On class level, it had classes from the source code
impacting an average of 3.02 classes during execution.
On the class level, we can’t deduce the same thing as on
the package level, since classes also impacted other
classes and not only themselves. As the total average, on
package level, 1.53 packages were impacted, while on
class level, 3.38 classes were impacted during execution.

6. Conclusions

This paper had as its main motivation to help the devel-
oper in knowing beforehand, what would be impacted if
she changed something on the code, as well as inform her
how sure that impact could take place. To do so, we de-
veloped a tool, IMPEX, and proposed an approach that
learns from the history of a software repository and pre-
dicts what is most likely to be impacted in the future. Not
only the prediction, but our approach proposed a set of
metrics that would allow us to identify the probability of
that impact to happen.

Our empirical results show that our approach is able to
make predictions, even if when it is not 100% precise, it
still can make predictions with remarks. Conducting the
experiments, we were also able to have an idea about the
architecture of the software projects: Jaxen results showed

Figure 7. Results from Jaxen on package level.

Copyright © 2013 SciRes. JSEA

IMPEX: An Approach to Analyze Source Code Changes on Software Run Behavior 167

Figure 8. Results from Jaxen on class level.

us that practically there isn’t interaction between pack-
ages, which characterizes the project as self-contained,
and even on class level, the interaction inter classes is
low when compared to JodaTime. These findings suggest
that our approach is a promising technique for both pro-
gram understanding and predicting impacts.

As for future work, an improvement for IMPEX would
be to automate the process of validating the prediction
model based on the two thirds of a repository with the
“future” revisions (last one third of the repository). Right
now, IMPEX produces automatically the prediction model
and predictions (differences in the source code and exe-
cution behavior between two revisions from the last one
third of the repository), but the calculation of the impact
punishments is done manually. Also, integrating the val-
ues from the prediction model into a development IDE,
such as Eclipse, would be ideal; so while the developer is
changing a certain part of her code, she would be able to
see it in the development environment, where would her
change impact.

As for the approach presented in this paper, it would
be interesting to investigate whether there is a relation
between the source code changes and the generation of

bugs in the software projects.

REFERENCES
[1] D. Schuler, V. Dallmeier and A. Zeller, “Efficient Muta-

tion Testing by Checking Invariant Violations,” In: Pro-
ceedings of the 18th International Symposium on Soft-
ware Testing and Analysis, ACM, 2009, pp. 69-80.
doi:10.1145/1572272.1572282

[2] B. J. Grun, D. Schuler and A. Zeller, “The Impact of
Equivalent Mutants,” International Conference on Soft-
ware Testing, Verification and Validation Workshops,
Denver, 1-4 April 2009, pp. 192-199.

[3] M. Kim, D. Notkin and D. Grossman, “Automatic Infer-
ence of Structural Changes for Matching across Program
Versions,” International Conference on Software Engi-
neering: Proceedings of the 29th International Confer-
ence on Software Engineering, Vol. 20, No. 26, 2007, pp.
333-343.

[4] JodaTime—Java Date and Time api. 2012.
http://jodatime.sourceforge.net/.

[5] Jaxen: Universal Java Xpath Engine. 2012.
http://jaxen.codehaus.org/

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1145/1572272.1572282

