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ABSTRACT 

We propose a method for construction of exactly solvable ring-shaped potentials where the linear homogeneous second- 
order differential equation satisfied by special function is subjected to the extended transformation comprising a coor- 
dinate transformation and a functional transformation to retrieve the standard Schrödinger polar angle equation form in 
non-relativistic quantum mechanics. By invoking plausible ansatze, exactly solvable ring-shaped potentials and corre- 
sponding angular wave functions are constructed. The method is illustrated using Jacobi and hypergeometric polynomi- 
als and the wave functions for the constructed ring-shaped potentials are normalized. 
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1. Introduction formation and a functional transformation on second- 
order differential equation for a particular special function 
to mould the differential equation to the standard Schröd- 
inger polar angle equation form. The coordinate transfor- 
mation is the basic transformation required to change the 
characteristics of the differential equation, while the func- 
tional transformation is essential to retrieve the Schröd- 
inger polar angle equation form. By invoking suitable 
ansatze, exactly solvable ring-shaped potentials and their 
angular wave functions are constructed. The special func- 
tions are found to be the multiplicative factors in the an- 
gular wave functions and the wave functions are normal- 
ized. In standard literature, the Schrödinger equation for a 
specific exactly solvable ring-shaped potential is solved 
by transforming it to a differential equation satisfied by a 
particular special function [1,2,9], but the ethics of the 
present work is not to solve Schrödinger equation to ob- 
tain wave functions for a particular ring-shaped potential, 
but to construct exactly solvable ring-shaped potentials as 
well as their angular wave functions starting from second- 
order differential equations satisfied by special functions. 
The fundamental nature of the adopted method for trans- 
forming a solvable differential equation to a particular type 
bearing some physical significance would have a wide 
range of applicability not only in quantum mechanics but 
in other branches of science also.  

Generation/construction of exactly solvable quantum me- 
chanical potentials is an important topic of fundamental 
research; as such type of research always incorporates 
new ideas and/or mathematical techniques to quantum 
mechanics. Again, exactly solvable potentials are essen- 
tial for the successful implementation of approximate 
methods in the study of practical quantum systems. The 
study of quantum systems with non-central potentials is 
an upcoming field of research for the theoreticians. The 
quantum systems with non-central potentials have been 
studied extensively in quantum chemistry and nuclear 
physics in the context of organic molecules and deformed 
nuclei respectively in non-relativistic regime. Different 
methods applied by various authors to obtain exact solu- 
tions of Schrödinger equation for bound states with non- 
central potentials, are the factorization method [1], the 
standard approach [2], the path integral representation [3], 
the Nikiforov-Uvarov method [4-6], the supersymmetric 
approach [7], etc. Here, we apply a method for construc- 
tion of exactly solvable ring-shaped potentials starting from 
the linear homogeneous second-order differential equa- 
tions satisfied by the special functions. We perform the ex- 
tended transformation [8] consisting of a coordinate trans-  

The plan of the paper is as follows: in Section 2, for- *Corresponding author. 
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malism of the method is discussed, construction of exactly 
solved ring-shaped potentials using the method is dem- 
onstrated in Section 3 and concluding remarks are includ- 
ed in Section 4.  

2. Formalism 

In the method, we start with a linear homogeneous sec- 
ond-order differential equation satisfied by a particular 
special function, on which we perform the extended trans- 
formation to generate the Schrödinger polar angle equa- 
tion form and by invoking a suitable ansatz, the Schrödin- 
ger polar angle equation for a ring-shaped potential is re- 
trieved from the generated equation. We now consider the 
following linear homogeneous second-order differential 
equation satisfied by a special function  F z

    0,Q z F z 

  Q z
 

  

     F z P z F z           (1) 

where  and  are well defined for the special 
function 

P z
F z

 z g

. We perform the extended transformation 
[8] consisting of a coordinate transformation and a func- 
tional transformation as follows 



   1
f F g

                      (2) 

and 

    
                (3) 

on the above differential Equation (1) yielding  

 
 

 

 
  0.

g

g g

 

 



 




 g

2 exp dd
ln

d

exp dd d
ln ln

d d

f P g

g

f P
f

g

 


 

 
     

     




  (4) 

The transformation function  is a smooth differ- 
entiable function of at least class  and 2C   1

f  
 is the 

modulating function required to mold the above equation 
to the standard Schrödinger polar angle equation form. 
We make the coefficient of the first-order derivative equal 
to cot , fixing the functional form of  f   as 

     1
d

2
sin expNf C g   P g g    ,    (5) 

which changes Equation (4) to 

       

       2

1 1
cot , 1 cs

2 4

1 1

2 4

g

g Q g P g P

    



   


       
 

2

2

c

0g



 



 

 
 

  

 
(6) 

Where the Schwartzian derivative  
   3 2

, 2g g g g     g  and NC  in Equation (5) 
will act as normalization constant. 

To retrieve Schrödinger polar angle equation, the fol- 
lowing identity must be prescribed 

   

       

2

2

2

1 4
1 4

sin
1 1 1

, ,
2 2 4

m
V

g g Q g P g P g

 





  

  (7) 
       

 1l lwhere  

0,1,2, ,n
0, 1, 2, , l

 and l and m are the orbital and mag- 
netic quantum numbers. In presence of a central potential, 
the admissible values for l are  and for m are 
  

 P g

 where n is the principal quantum number. 
But l needs to be redefined [9] for a quantum system with 
central potential plus a polar angle dependent ring-shaped 
potential. 

By putting first the expressions for  and Q g
 

 
defining a special function F g  in the above equation 
(7) and then by invoking an ansatz that there should be at 
least one constant term in right side of the above Equation 
(7), the functional form of the transformation function 
 g  g  is specified. Putting   in the Equation (7) 

again, one can in principle construct exactly solvable 
ring-shaped potential  V  . The chosen term, of course, 
should be integrable to obtain  g   which again to 
be invert- ible to obtain the functional form of the trans-
formation function  g  . Using the expressions for 
 P g ,  Q g  and  g   in Equations (3) and (5), the 

angular wave function for the constructed ring-shaped 
potential is obtained as 

   

   

1 2
sin

1
exp d .

2

NC g

P g g F g

   



   
      

     (8) 

The normalization constant NC
 

 is evaluated by using 
the following normalization condition for  

   

 as 
π

2

0

0,π sin d FiniteI     

     ,
n

.      (9) 

3. Application 

We choose Jacobi polynomials and hypergeometric func- 
tion to construct exactly solvable ring-shaped potentials 
using the method. Gegenbauer, Chebyshev and Legendre 
polynomials can be obtained as special cases from Jacobi 
polynomials. Again Jacobi polynomials can be obtained 
from hypergeometric function as special cases and the 
same holds for the generalized Laguerre, Hermite poly- 
nomials and the confluent hypergeometric function [10]. 

3.1. Using Jacobi Polynomials 

The differential equation [10] satisfied by Jacobi Polyno- 
mial z P z   is  F

       
   

21 2

1 0,

z F z z F z

n n F z

   

 

        
    

  (10) 
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  for which    22 1z zP g        
     

  and 
21 1Q g n n z      , the Equation (7) be- 

comes 

   

     

 
 

   
 

 
 

2

2

2
2 2

22

2
2

22

2 2
2

22

1 4
1 4

sin

1 1
, 1

2 2

1

2 1

1
2

4 1

1
2 .

4 1

m
V

g n n
2

2
2

1

g

g

gg

g

g

g

g g

g

 


  

 

   

 


  

 
     


 



        


  



    

(11) 

Introducing the ansatz, we choose the second term in 
R.H.S. of the above equation as a constant independent of 
θ. We suppose that 

 a constant

 g

2
2

21

g
C

g





,            (12) 

which specifies the functional form of   as 

   sin Cg     .              (13) 

Selecting π 2   and C 1  to satisfy the local pro- 
perty of the transformation function  π 2 0g 



, the above 
Equation (11) gives us the exactly solvable Makarov ring- 
shaped potential [7,9] as 

  1 1 2

cos

sin
BV V

 


              (14) 

and    21
1 1  

1

2 4
l n n         , where 

2
1m B   and 2

1m B  

 1V

. 

Using Equations (13) and expressions of P and Q for 
Equation (10) in (8), the angular wave functions corre- 
sponding to   are 

     , cosnP  sin cos
2 2NC

    



     
  

,   (15) 

while normalization constant NC

 

 is evaluated by using 
Equation (9) and orthogonality relation [10] for Jacobi 
polynomials 

     

 
 

 
 

1
,

1

1

1 1

2 1

2 1

nx x P

n n

   

 

 





 

 

  


   


2

d

1
,

! 1

x x

n n

n

 
 

  
  

 

where 1    and 1 

   
   

 and the constant is found to 

be 

12 2 1 ! 1
.

1 1N

n n n
C

n n

     
 

        


     

 

 (16) 

Again, if the fourth term in R.H.S. of the Equation (11) 
is taken as a constant such that 



2
2

221

g
C

g


 



 g

,                (17) 

the transformation function   becomes 

   i cotg C     .             (18) 

To satisfy the local property  π 2 0g 
1C

, we choose 
  and  0  and the exactly solvable ring-shaped 

potential [11] is found to be  

   2 2

cos

sin
V V B

 




    

         (19) 

with  

1 2 4 4 1 4m n n                   

and  2

21 2 il B   

 V

. 

The angular wave functions for 2   are obtained by 
using Equation (18) and P and Q of Equation (10) in (8) as 

      
   

1 2

,

csc exp i 2

i cot

N

n

C

P

 

 

     







     

 

 

  (20) 

and the normalization constant is calculated by using nor- 
malization condition as Equation (9) and orthogonality 
relation [11] 

   

   

   
     

1 22 1

2
,

1

1 exp i tan

i d

1 1
,

2 2 1 ! 1

n

x x

P x x

n n

n n n

 

 

 

 

 

   







    





   

    



       
         



     
   

 

and is found to be 

1
2 2 1 ! 1

1 1
N

n n n
C

n n

 
   

 

   



      


     

 

(21) 

Though 
2

221

gg

g


 in the third term is integrable to  



 ghave   , but it is not invertible and hence it cannot 
be used to construct ring-shaped potential. Taking the last  
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term as a constant with the choice 
 

2 2

1

g


 eq

and 2C , the transformation f tions respectively come  

22g

g
ual to 2C   

unc

out a   s  1 exp i2 Cg          and  

   1 exp 2g C      , yieldi haped po- 

tentials not for physical interes

etric function 

  ng ring-s

t. 

3.2. Using Hypergeometric Function 

The differential equation [10] for hypergeom
   2 1 , ; ;F F z     

      
  0

z z F z

F z

 



  

 

  1 1 z F z  
    (22) 

for which     1 1P z z z z     and      
   1Q z   comes z z  and the equation (7) be

   

   
 

     

2

2

2
2

2

2 2
2

2

1 4
sin

1 1
, 2

2 4 1

1 1
2 2 ,

2 1 4

m

g
g

g

1 4
V

g g

g g g

 


  

   

 


  



 
   



  (23) 

 1     . 
g the ansatz, e select the third term as a 

 




where  
ducinIntro  w

constant such that  
2

24
1

g
C

g g





,                 (24) 

which yields the transform nction  gation fu   as 

   2cosg C    .             (25) 

oosing 0Ch     and 1C   so that  π 2 0g  , the 
constructed ri aped potential become

   

ng-sh s 

3B
V V 3 2cos 

            (26) 

and the angular wave functions corresponding to  V3   
are obtained by using expressions for P and Q and -
tion (25) in (8) as 

 

Equa

  
 

1

2

2

cos

;cos ,

 

 2 1

sin

, ;

NC

F

   

 

  

       (27) 




where  33 2 1 4B l    2m n    ,  

 32 1 4 2B l m     and 1 

31 1   4B m     . 

The normalization constant is determined by using 

Equation (9) and orthogonality relation [9] 

   
1

21
2 1

0

1 , ; ; d

  
     

2
! 1

2

x x F n n x x
      

n n

n n n

  
  
    


    

 

and it is found to be 

  
 

1

1 !

n n

n

  
 NC


   
  

.         (28) 

Again, choosing 0




 and   1 2C   in
so that 

 Equation (25), 
 π 0g  , the constructed ring potential is found 

to v rin ed pote be again Makaro g-shap ntial given by the 
Equation (14) for which the angular wave functions be- 
come 

 
1

sin cosC

2
2 1

2 2

, ; ;cos
2

N

F

     
  

   

  

   
   
   
 

        (29) 

where 1 2l n      , 2l    ,  

 11 2B     and 2 4 2
12 m m B      and  

tion constant 



normaliza

  
 

1

1 !

n n

n

  
 NC


   
  

          (30) 

Picking the second and third terms sep
stants, we cannot construct any ring-shaped potentials that 
w

We present a method for construction of exactly solvable 
ith consideration of special func- 




arately as con-

ill be functions of some trigonometric functions. 

4. Conclusion 

ring-shaped potentials w
tions in the framework of non-relativistic quantum me- 
chanics. The method is realizable only for the implication 
of the extended transformation which is a coordinate trans- 
formation supplemented by a functional transformation. 
The extended transformation is performed on the linear 
homogeneous second-order differential equation satisfied 
by a particular special function to retrieve the Schröd- 
inger polar equation form and by invoking plausible an- 
satze, exactly solvable ring-shaped potentials are con- 
structed. For implementation of the method, we choose 
Jacobi polynomial and hypergeometric function as spe- 
cial functions to construct new (in Equation (26)) as well 
as already known exactly solvable ring-shaped potentials. 
The angular wave functions corresponding to the con- 
structed potentials are normalized and also analytically 
verified. Though orbital quantum number takes the val- 
ues 0,1,2,3,  in presence of central potential, the same 
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quantum number will depend on both magnetic quantum 
number and characteristic constants in presence of ring- 
shap als. Again, some unphysical potential are 
also come up in the calculations and new technique is re- 
quired to make them physical. Laguerre, Hermite, Roma- 
novski polynomials, etc. can also be utilized in the me- 
thod to construct ring-shaped potentials. The proposed 
method has also the capability for construction of central 
potentials in non-relativistic regime and the essence of 
the method of converting a soluble differential equation 
to another differential equation of practical interest can 
be extrapolated to other branches of physics. 
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