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ABSTRACT 

The composite quantile regression should provide estimation efficiency gain over a single quantile regression. In this 
paper, we extend composite quantile regression to nonparametric model with random censored data. The asymptotic 
normality of the proposed estimator is established. The proposed methods are applied to the lung cancer data. Extensive 
simulations are reported, showing that the proposed method works well in practical settings. 
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Nonparametric Model 

1. Introduction 

Consider the following nonparametric regression model 
with random censored data: 

    ,U UT m   

 m 

           (1) 

 where  is an unknown smoothing function,    
is a positive function representing the standard deviation 
and   is the random error with mean 0 and variance 1. 
Let C denote the censoring variable, whose distribution 
may depend on U, where U is vector of observed cov- 
ariates. In this paper, we focus on random right censor- 
ing, we only observe the triples U Y , , , where 

 and  n ,T CmiY   I T C   are the observed re- 
sponse variable and the censoring indicator respectively, 
where  is the survival time. T

Censored quantile regression was first studied by [1] 
for fixed censoring. [2] proposed an estimator for a con- 
ditional quantile assuming that the regression models at 
lower quantiles are all linear. A recursively weighted 
estimation procedure that can be regarded as a generali- 
zation of the Kaplan-Meier estimator to conditional 
quantiles was described in their paper. Afterward, [3] 
presented an alternative approach that is based on the 
Nelson-Aalen estimator of the cumulative hazard func- 
tion but still requires the same global-linearity assump- 
tion as Portnoy’s. Their method provides a more direct 
approach to the asymptotic theory and a simpler compu- 
tation algorithm. More recent studies by [4], proposed to 
overcome the global-linearity assumption by directly 

estimating the conditional censoring distribution non- 
parametrically using the local Kaplan-Meier method. 
Their computational algorithm is more stable and simpler 
to implement than Portnoy’s or Peng and Huang’s. More- 
over, the local nonparametric estimator on which the 
model is based performs best when the covariates can be 
assumed independent. 

Intuitively, the composite quantile regression (CQR) 
should provide estimation efficiency gain over a single 
quantile regression; see [5]. A composite quantile regres- 
sion model assumes that there exist common covariate 
effects in a range of quantiles such that the quantile lev- 
els only differ in terms of the intercept. From a more 
general regression perspective, composite quantile re- 
gression seeks to model a set of parallel regression cur- 
ves, and thus it can be viewed as a compromise between 
a set of quantile regression curves with different inter- 
cepts and slopes and a single summary regression curve. 
[6] proposed the local polynomial CQR estimators 
(LCQR) for estimating the nonparametric regression 
function and its derivative. It is shown that the local CQR 
method can significantly improve the estimation effi- 
ciency of the local least squares estimator for commonly- 
used non-normal error distributions. Furthermore, [7] 
studied semiparametric CQR estimates for semiparamet- 
ric varying-coefficient partially linear model. They com- 
pared CQR with least squares and quantile regression, 
and the results showed that CQR outperformed both least 
squares and quantile regression. [8] considered CQR  
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  estimates for single-index models. Recently, [9] extended 
the CQR method to linear model with randomly censored 
data. This motivates us to extend the CQR method to 
nonparametric model with censored data (LCQRC). 

The paper is organized as follows. In Section 2, local 
composite quantile regression for nonparametric model 
with censored data is introduced, and the main theoretical 
results are also given in this section. Both simulation 
examples and a real data application are given in Section 
3 to illustrate the proposed procedures. Final remarks are 
given in Section 4. The technical proofs are deferred to 
the Appendix. 

2. Methodology 

2.1. Local Composite Quantile Regression with 
Censored Data 

We first consider an ideal situation where  0 iF t U , the 
conditional cumulative distribution function of the sur- 
vival time iT  given iU , is assumed to be known. In 
this case, we define the following weight function: 
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nΛ . In reality,  0 iF t U  is unknown and has to 
be estimated. We propose to estimate  0F U  nonpara- 
metrically using the local Kaplan-Meier estimator 
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, where  

 is a smooth kernel function,  is the 
bandwidth converging to zero as . By plugging 
 F̂ U

 ˆ ,i F

 into (2), we obtain the estimated local weights  

  . Consider estimating the value of  m U

u  0m u

 

 at  

0 . The LCQRC procedure estimates , defined  

by 0
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objective function 
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ns: 

k k , be q check 
loss functions at q quantile positio  1k k q    

Yand   is any value sufficiently large to exceed all 
 m U

 0 ,i F
i

Remark 1. The detail explant of 
.  

   can see 
Remark 1 of [4]. 

2.2. Asymptotic Properties 

 UfDenote by   the marginal density function of the  

 dj
j u K u u    and covariate , U

 2 dj
j u K u u   . To prove main results in this paper,  

the following technical conditions are imposed.  
 

0iU u
u K

h

     

 

A1. The functions 0F t U  and  G t U
t

 have first 
derivatives with respect to , denoted as  f t U  and 0

 g t U , which are uniformly bounded away from in- 
finity. In addition,  0F t U  and  G t U  have bounded 
second order partial derivatives with respect to U.  

A2.   is positive definite matrix.  
A3. m U

u
 has a continuous second derivative in the 

neighborhood of . 0

A4.  fU   is differentiable and positive in the neigh- 
borhood of . 0

A5. The conditional variance  is continuous in 
the neighborhood of . 

u
 2 u

u0

A6. Assume that the error has a symmetric distribution 
with a positive density  0 . f 

Remark 2. Assumption A1 is needed for the local 
Kaplan-Meier estimator. It allows us to obtain the local 
expansions of  0F t U  and  G t U  in the neigh- 
borhood of  m U , and to obtain the uniform consis- 
tency and the linear representation of  F̂ t U

 0m̂ u

 , ,U Y

, which 
are needed for deriving the asymptotic normality result. 
Assumption A2 ensures that the expectation of the esti- 
mating function has a unique zero, and it is needed to 
establish the asymptotic distribution. Assumptions A3- 
A6 are the same conditions for establishing the asympto- 
tic normality of local composite quantile regression ([6]).  

We state the asymptotic normality for  in the 
following theorem. 

Theorem 1. Assume that the triples i i i  con- 
stitute and i.i.d. multivariate random sample, and that the 
censoring variable i  is independent of iT  conditional 
on the covariate . Suppose that 0  is an interior of 
the support of 

C

iU u
 Uf  . Under the regularity conditions 

A1-A6, if  and nh , then 0h  

       2
0 0 0 2

1
ˆ 0, ,

2
Lnh m u m u m u h N      
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censoring rates (CR): 20%, 30% and 40%. For each 
censoring rate, the sample sizes are taken to be 100 and 
200. To evaluate the finite sample performance of our 
estimator. Two distance measures are approximated, the 
first one the mean absolute deviation error (MADE) is  
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3. Numerical Studies 

In this section, we conduct simulation studies to assess 
the finite sample performance of the proposed procedures 
and illustrate the proposed methodology on a lung cancer 
data set. Moreover, we compare the performance of the 
newly proposed method with LCQR ([6]) and nonpara- 
metric quantile regression with censored data (NQRC) 
that was proposed by [10].  

In the proposed compute process, we take  
100mY   and 

   221 1I U 

h

, 1, , ,i i i n  Λ

[0,1]

15

16
K U  . The bandwidth h* can be  

obtained by 10-fold cross-validation method (see [4]), 
and we use the short-cut strategy method to select  
(see [6]).  

3.1. Example 1 

The data are generated from the following model  

 10 sin 2πi iT U U 

U

 

where i  is uniformly distributed on  and   is 
i.i.d. standard normal random variables. The censoring 
variable i  and i i iY . The value 
of the constant c in the model determines the censoring 
proportion. In our simulations, we consider three 

 0,C U c min T C

   

 ,

given by 1
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, and the second one the  

mean squared error (MSE) defines as 

   . Furthermore, we define the  

rate of MADE and MSE which are  
 and LCQRRMADE MADE MADE

. LCQRRMSE MSE MSE

For right censored data, quantile functions with   
close to 1 may not be identifiable due to censorship. In 
our similations, we consider  for LCQR and 
LCQRC estimators. The means and standard deviations 
of MADE, MSE, RMADE and RMSE are respectively 
reported in Table 1 and Table 2. From Tables 1 and 2, 
we can make the following observations: the perform- 
ance of proposal method is better than that of LCRQ and 
NQRC. Moreover, LCQRC estimators are much more 
accurate when sample sizes increase. Figure 1 summar- 
ize the Curve estimates for three censoring rates of 20%, 
30% and 40% with different sample sizes. It shows that 
the performance of LCQRC is very close to the true value. 

5q 

3.2. Example 2 

It is necessary to investigate the effect of heteroscedastic 
errors. The observations  , , , 1, ,i i iU T C i n Λ , are gene- 
rated from following model 

   22exp 16 sin π 0.2 , 1, , ,i i i i iT U U U i n     Λ

,  ,U

 

where i i  and iC  are generated following the 
same way as in Example 1. The means and standard 
deviations of MADE, MSE, RMADE and RMSE are 
respectively reported in Table 3 and Table 4. The  

 
 ˆTable 1. Simulation results of m  with n = 100 for Example 1. 

CR Method RMADE MADE RMSE MSE 

20% LCQR5 - 0.7169 (0.5047) - 0.7804 (0.9798) 

 LCQRC5 0.7946 (0.1195) 0.5643 (0.4679) 0.7297 (0.2452) 0.5481 (0.8718) 

 NQRC0.5 0.9655 (0.1837) 0.5919 (0.4155) 0.9338 (0.3355) 0.5476 (0.6646) 

30% LCQR5 - 0.8284 (0.6031) - 1.0578 (1.2602) 

 LCQRC5 0.6607 (0.1187) 0.5431 (0.4468) 0.4903 (0.1639) 0.5060 (0.7765) 

 NQRC0.5 0.8378 (0.3501) 0.6960 (0.4994) 0.7920 (0.6298) 0.8650 (1.0371) 

40% LCQR5 - 1.0102 (0.7520) - 1.6054 (1.8037) 

 LCQRC5 0.5501 (0.1348) 0.5507 (0.5448) 0.4332 (0.3251) 0.6810 (1.9258) 

 NQRC0.5 0.7222 (0.1882) 0.7169 (0.5424) 0.5548 (0.2795) 0.8530 (1.1186) 
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 ˆTable 2. Simulation results of m  with n = 200 for Example 1.  

CR Method RMADE MADE RMSE MSE 

20% LCQR5 - 0.5374 (0.3750) - 0.4386 (0.5481) 

 LCQRC5 0.7327 (0.1089) 0.3893 (0.3443) 0.6612 (0.2327) 0.2737 (0.5262) 

 NQRC0.5 0.8356 (0.2114) 0.5443 (0.3769) 0.8254 (0.2910) 0.4732 (0.5346) 

30% LCQR5 - 0.7342 (0.5154) - 0.8121 (0.9382) 

 LCQRC5 0.5768 (0.1191) 0.4191 (0.3379) 0.3815 (0.1658) 0.2988 (0.4677) 

 NQRC0.5 0.7539 (0.1344) 0.5484 (0.4015) 0.5985 (0.1898) 0.4729 (0.5870) 

40% LCQR5 - 0.9755 (0.7164) - 1.4825 (1.5772) 

 LCQRC5 0.4231 (0.0771) 0.4084 (0.3504) 0.2084 (0.0839) 0.2957 (0.5196) 

 NQRC0.5 0.7689 (0.2634) 0.7355 (0.4962) 0.6059 (0.4493) 0.8477 (0.9701) 

 

 ˆTable 3. Simulation results of m  with n = 100 for Example 2. 

CR Method RMADE MADE RMSE MSE 

20% LCQR5 - 0.0639 (0.0538) - 0.0074 (0.0175) 

 LCQRC5 0.9620 (0.1600) 0.0603 (0.0451) 0.9230 (0.4398) 0.0059 (0.0123) 

 NQRC0.5 1.2231 (0.3356) 0.0750 (0.0500) 1.5544 (1.0808) 0.0085 (0.0110) 

30% LCQR5 - 0.0936 (0.0856) - 0.0191 (0.0337) 

 LCQRC5 0.8380 (0.2094) 0.0791 (0.1318) 0.6470 (0.4510) 0.0065 (0.0028) 

 NQRC0.5 0.8502 (0.3245) 0.0714 (0.0556) 0.7788 (0.6206) 0.0089 (0.0137) 

40% LCQR5 - 0.1564 (0.1549) - 0.0560 (0.0957) 

 LCQRC5 0.5269 (0.1720) 0.0676 (0.0763) 0.3816 (0.5250) 0.0167 (0.0962) 

 NQRC0.5 0.5836 (0.3207) 0.0796 (0.0613) 0.3874 (0.5181) 0.0117 (0.0181) 

 

 ˆTable 4. Simulation results of m  with n = 200 for Example 2. 

CR Method RMADE MADE RMSE MSE 

20% LCQR5 - 0.0540 (0.0439) - 0.0051 (0.0103) 

 LCQRC5 0.9244 (0.2066) 0.0488 (0.0339) 0.8220 (0.3890) 0.0036 (0.0068) 

 NQRC0.5 1.1134 (0.2889) 0.0599 (0.0433) 1.2714 (0.7178) 0.0059 (0.0082) 

30% LCQR5 - 0.0811 (0.0812) - 0.0134 (0.0248) 

 LCQRC5 0.6377 (0.1167) 0.0506 (0.0378) 0.3222 (0.1032) 0.0040 (0.0074) 

 NQRC0.5 0.8157 (0.2516) 0.0638 (0.0493) 0.5476 (0.2898) 0.0067 (0.0095) 

40% LCQR5 - 0.1492 (0.1297) - 0.0432 (0.0678) 

 LCQRC5 0.4230 (0.1894) 0.0554 (0.0451) 0.1769 (0.1246) 0.0054 (0.0163) 

 NQRC0.5 0.5235 (0.1757) 0.0714 (0.0474) 0.2591 (0.1744) 0.0077 (0.0104) 

Copyright © 2013 SciRes.                                                                                  OJS 



R. JIANG, W. M. QIAN 

OJS 

69

lung

log

 
performance of LCQRC is presented in Figure 2. The 
results of Example 1 and Example 2 show very similar 
messages. 

the first one the mean absolute deviation error  
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3.3. Example 3 

As an illustration, we now apply the proposed LCQRC to 
the lung cancer data. The data contain 228 observations 
on ten variables. The censoring percentage is 27%, so the 
estimators are expected to perform well. More details 
about the study can be found in [11], and the dataset is 
included in the R package . We are interested in es- 
timating the conditional of survival time (in days) given 
age (in years). Here, we use model (1) to fit the lung 
cancer data, where  is the 10 (survival time) and U 
is the age/100. To evaluate the performance of our 
estimator. Two distance measures were approximated,  

Y

 MADE y  given by 1

1

ˆ
n

i i
i

y



n y , and the second one  

 MSE y  defined as the mean squared error 

 21

1

ˆ
n

i i
i

n y y



 228n, where  . Furthermore, we de-  

fine the rate of y  and  which are  MADE MSE y

LCQR5
RMADE MADE MADEy y y  and 

LCQR5
RMSE MSE MSEy y y . Next, we report and com- 

pare results with LCQR and NQRC for estimating the 
survival time. The simulation results for the LCQR, 
LCQRC and NQRC are given in Table 5. It shows that 
LCQRC is better than that of LCRQ and NQRC. Figure 
3 summarize the simulation results for LCQRC5. It  

 

    
(a)                                                            (b) 

 ˆFigure 1. Curve estimates of m  for Example 1. (a) n = 100; (b) n = 200. 

 

    
(a)                                                            (b) 

 ˆFigure 2. Curve estimates of m  for Example 2. (a) n = 100; (b) n = 200. 
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Table 5. Simulation results of  for lung cancer data. ŷ

RMADE y  y  y  MADE RMSE MSEMethod y  

LCQR5 - 0.6877 (0.7074) - 0.9711 (2.2640) 

LCQRC5 0.9941 0.6836 (0.6788) 0.9536 0.9261 (2.0939) 

NQRC0.5 1.1172 0.7683 (0.5738) 0.9454 0.9181 (1.3586) 

 

 

Figure 3. Curve estimates for lung cancer data. 
 
shows that the proposal is valid. 

4. Conclusion 

In this work, we have focused on the LCQR for non- 
parametric model with censored data and its nice theore- 
tical properties have been proven. The proposed appro- 
aches are demonstrated by simulation examples and real 
data applications. In addition, we believe the method can 
be extended to varying coefficient model (see [7]). 
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Lemma 1. Assume assumption A1 hold. Then  
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This completes the proof. 
 


