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ABSTRACT 

This paper contributes towards modeling for the designing of objects in the areas of Computer Graphics (CG), Com-
puter-Aided Design (CAD), Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE). It pro-
vides a modeling technique for the designing of objects. The model is based on a conic-like curve (rational quadratics) 
method and provides an extra degree of freedom to the user to fine tune the shape of the design to the satisfactory level. 
The 2D curve model has then been extended for the designing of 3D objects to produce fancy objects. The scheme has 
been also extended to automate the degree of freedom when a reverse engineering is required for images of the objects. 
A heuristic technique of genetic algorithm is applied to find optimal values of shape parameters in the description of 
conics. 
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1. Introduction 

Object modeling is an important area of Computer 
Graphics (CG), Computer-Aided Design (CAD), Computer- 
Aided Manufacturing (CAM), and Computer-Aided 
Engineering (CAE). No matter, it is designing of an 
aircraft or an outline of a font, most of the objects are 
being designed through computers. This area of study has 
attracted many scientists to work for different industries 
including engineering works, medical, entertainment, etc. 
Since the advent of computers, numerous authors have 
discovered various methodologies in various disciplines. 

This research is mainly concerned for the designing of 
2D objects composed of curve outlines and then it is ex-
tended for the 3D objects based on rectangular domain. It 
is in continuation of the spline introduced in [27]. Spline 
curves and surfaces [1-27] play significant role in the 
construction and re-construction of objects. The splines 
including Beta-splines [18-24], Nu-splines [5], and 
weighted Nu-splines [5] make a good contribution to CG, 
CAD, CAM, CAE, and Geometric Modeling. A reason-
able amount of literature is available (see [1-27]) on this 
subject. Various other forms of splines are also available 
in the literature. For example, conic presentation can be 
found in [10-11], cubic flavor can be seen in [5,7-8,12], 
and B-splines work can be searched in [14-16]. The use-
fulness of rational splines can also not be denied, much 
of work has been done in this direction. For brevity, the 
reader is referred to [1-2,4,13].  

In [14], rational cubic spline, with derivatives based on 
control points, was discovered. This spline method has 
the feature of local interval shape control. This paper has 
used a different alternative interpolant which is rational 
quadratic in its description, but serves in the same man-
ner as the rational cubic spline [14]. It is computationally 
economical and achieves equivalently fine results. All 
the features of cubic or rational cubic splines can be 
characterized by this quadratic method. Particularly, it 
holds the feature of local interval shape control as in [14]. 
Thus, any type of plane or space curve can be designed 
with having a strong control over the intervals of control 
points. In addition, the scheme has the following proper-
ties which may lead to a more useful approach to curve 
design in CAD, CAM, CAE, Computer Graphics, and 
Geometric Modeling: 

(1) The curve has 1C  continuity.  
(2) This scheme is rational quadratic and hence is 

simpler than the rational cubic scheme in [14]. 
(3) This scheme is an extended work done in [27]. 
(4) The method is local, i.e. the interval tension 

applied by shape control parameters will affect very 
small neighborhood of interval.  

(5) This scheme is as suitable as any cubic or 
rational cubic method for space curves and hence can be 
generalized to surfaces. 

(6) Any part of the rational quadratic spline 
method is a conic and can be made straight line using the 
same interpolant. 
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(7) The rational quadratic curve scheme is 
extendable to its rational bi-quadratic counterpart for the 
designing or re-designing of 3D objects. 

The paper, in addition to curve design method, also 
proposes a surface design scheme. This has been 
achieved by extending the proposed rational quadratic 
curve scheme to its rational bi-quadratic counterpart. The 
presentation of surface model is mainly a tensor product 
surface model. It is simple in its description and useful 
for the designing of 3D objects. 

The outline of the remainder of the paper is as follows. 
The mention of the piecewise rational quadratic interpo-
lant is made in Section 2. This section describes the pa-
rametric rational quadratic spline interpolation scheme. 
Analysis of the design curve, regarding various geomet-
ric features, is made in Section 3. The effect of shape 
control analysis is described in Section 4. The construc-
tion of 3D surfaces has been briefly explained pictorially 
in Section 5. Section 6 concludes the paper. 

2. Design Curve 

In this section, piecewise rational quadratic functions are 
presented to be used for curve designing and fitting. The 
rational quadratic is targeted to provide 1C  continuity. 
It is also required that the quadratic curve presentation is 
extended towards its surface designing counterpart. 

2.1. Rational Quadratic Function 

The objective of this research is to provide design 
curve scheme which 
 is composed of conics like curve (see Figure 1) the 

following: 
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 interpolates the data points 
 possesses ideal geometric properties like convex hull 

and variation diminishing properties 

 

Figure 1. Demonstration of rational quadratic function. 
 
 can handle the inflection points like cubic or rational 

cubic spline curves 
 provides freedom to the designer for further shape 

control 
 is reasonably smooth 

2.2. Rational Quadratic Spline 

Let 
FiRm,i = 0,1,….n,              (2) 

be a given set of data points at the distinct knots ti R, 
with unit interval spacing. Let 

*
1 1( ) / 2,  and .i i i i i it t t h t t              (3) 

Also let 

Ui, Wi, ViRm,i = 0,1,….n-1,         (4) 

be the control points. Then, we define a parametric 
piecewise rational quadratic function P: R Rm, com-
posed with two conic representations (see Figures 2(a) 
and (b)) of the form (1), as follows: 

 

     

Figure 2. Rational quadratic representations: (a) Conic piece in (6), (b) Conic piece in (7), (b) Conic spline curve in (5). 
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It can be seen that the rational quadratic curve (5) is 
0C  as the followings hold: 

   *
,2

*
,1 iiii tPtP  and     itPtP iiii   , .    (8) 

Let ( )P t  be the curve over the given knot partition 
and passing through the given set of points (2). Let us 
denote the first derivatives at the knot position as: 

  iDtP ii  ,)1(                  (9) 

Since 0C  curve is not ideal as far as smoothness is 
concerned, we need higher order of continuity. To obtain 

1C  order of continuity, we need to impose the following 
constraints: 
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These 1C  constraints, after some analysis and simpli-
fications, yield the following: 
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3. Design Curve Analysis 

This section describes the parametric rational quadratic 
spline interpolation scheme. Analysis of the design curve, 
regarding parameterization, derivative estimation, shape 
parameters and various geometric features, is made in 
this section. It also demonstrates design curves with 
various practical examples. 

3.1. Parameterization 

Number of parameterization techniques can be found in 
literature for instance uniform parameterization, linear or 
chord length parameterization, parabolic parameterize- 

tion and cubic parameterization. In this paper, chord 
length parameterization is used to estimate the parametric 
value t associated with each point. It can be observed that 

i  is in normalized form and varies from 0 to 1. Conse- 
quently, in our case, ih  is always equal to 1.  

3.2. Estimation of Tangent Vectors 

A distance based choice of tangent vectorsDi’s at Fi’s is 
defined as: 
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For close curves: 
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4. Shape Analysis 

This section is concerned about the shape design aspects 
to achieve a model curve. The parameters i may be used 
to control the shape of the curve. The parameters i are 
mainly meant to be used freely to control the shape of the 
curve. At the same time, for the convenient of the de-
signer, it is also required that the ideal geometric proper-
ties of the curve are not lost. The geometric properties 
like variation diminishing, convex hull, and positivity are 
the ones which needed to be present in the description of 
the design curve. 

One can see that each conic representation in (5-7) is 
of Bernstein Bezier form, provided the weight functions 
are positive. This is possible if the shape parameters are 
constrained as ii  ,0 . Thus following the Bernstein 

Bezier theory, the pieces of curves  tP i,1  and  tP i,2  

lie in the convex hulls of  iii WUF ,,  and 

 1,, iii FVW  respectively. They also follow the varia-

tion diminishing properties within their convex hulls. 

Similarly, due to 1C  imposition, the equations (8-10) 
lead to the followings: 

  tPi lies in the convex hull of  1,,,, iiiii FVWUF , 

i , see Figure 3. 
  tPi satisfies the variation diminishing property 

[22]. That is any straight line crossing the control 

polygon of  1,,,, iiiii FVWUF  does not cross the 

curve more than its control polygon. 
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Figure 3. Convex Hull property. 
 

An efficient algorithm, for generating an interpolating 
curve outline, which modifies its shape interactively ac-
cording to the proposals described in above sections, has 
been implemented. The details of the algorithm are  

omitted due to fear of length of the paper. However, for 
an outline in Figure 6(a), the pictorial demonstration is 
made in Figure 6(b) to achieve a desired design of a 
character “G”. A better designed conic spline (for the 
case of different values i's in different intervals) has 
been fitted to a data (gray bullets) of character “G”. 

5. 3D Modelling 

The 2D curve outline model, in Sections 2, 3, and 4, has 
been generalized and extended to build a 3D model 
which can have the provision of designing 3D objects. 
The details of the strategy in the construction of this 
model, due to fear of the length of the manuscript, have 
been left and will be presented somewhere else.  

A demonstration of the default surface model is shown 
in Figure 7. Figure 7(a) shows that the first half of the 
surface and other half of the surface is shown in Figure 
7(b). The default bi-quadratic surface (the composition 
of the two surfaces i.e. Figures 7(a) and (b)) is shown in 
Figure 7(c). 

 

   

Figure 4. Rational quadratic spline (default curve case): (a) Rational Quadratic (6), (b) Rational Quadratic (7), (c) Rational 
Quadratic (5). 
 

(a) (b) (c) 

   
(d) (e) 

  

Figure 5. Rational quadratic spline: (a) Rational quadratic spline for 1iγ , (b) Rational quadratic spline for 2iγ , (c) 

Rational quadratic spline for 3iγ , (d) Rational quadratic spline, with global shape control, for 5,10,  50iγ and , (e) 

Rational quadratic spline, with local shape control, for 1, 2,3,5, 50iγ and . 
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Some more pictorial demonstrations are made as fol-

lows. A wire frame model, with u-lines is constructed, as 
the first step in the Figure 8(a) of a bottle. Secondly, 
uv-lines are drawn to provide a complete wire frame 
model (see Figure 8(b)). Thirdly, visibility detection 
method is used to provide a realistic view of the picture 
(see Figure 8(c)). Another feature built in the 3D model 
is the local shape control like in the 2D models demon-
strated in Section 3.3. This feature can be seen in Fig-
ures 8(a-c) at the neck of the bottle showing interval 
tension. 

Another pictorial example of a vase is shown in Fig-
ure 9. The wire frame model is shown in Figure 9(a) 
and its shaded model is demonstrated in Figure 9(b). A 
variety of shape control has been applied at different 
places to achieve the shown model. 
 

(a) (b) 

 

 

Figure 6. Rational quadratic spline: (a) Rational quadratic 
spline for 2iγ , (b) Rational quadratic spline for varying 

values of iγ  in different intervals. 

 
(a) (b) (c) 

Figure 7. Rational bi-quadratic spline interpolant: (a) Ra-
tional bi-quadratic 1.(b) Rational bi-quadratic 2, (c) Ra-
tional bi-quadratic. 
 

(a) (b) (c) 

Figure 8. Rational bi-quadratic spline for the design of a 
bottle: (a) A wire frame model, with u-lines, (b) A wire 
frame model with uv-lines, (c) A wire frame model with 
uv-lines and hidden surface removal. 

(a) (b) 

 

Figure 5. A bi-conic Spline model for a Vase: left one is a 
wire-frame model, right one is the shaded model. 

6. Conclusion and Future Work 

A shape controlling piecewise rational quadratic interpo- 
lation scheme, to design 2D and 3D objects, has been 
proposed. The scheme offers a possible and feasible way 
in which the shape of the objects may be altered by the 
user. Such a scheme can make a useful addition to an 
interactive design package in a CG/CAD/CAM/CAE 
environment. It provides the users complete control over 
the curve segments and surface patches to modify the 
shape to achieve a model object. The changes will be 
local and that the shape will change in a stable manner. 
The scheme is quite simple, easy to implement and 
computationally economical as compared to its cubic and 
bi-cubic counter parts. The authors are thinking to extend 
the scheme for various applications including font de-
signing, image outline capture, modeling animation paths, 
and others. 
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