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ABSTRACT 

In this paper, a variable metric algorithm is proposed with Broyden rank one modifications for the equality constrained 
optimization. This method is viewed expansion in constrained optimization as the quasi-Newton method to uncon-
strained optimization. The theoretical analysis shows that local convergence can be induced under some suitable condi-
tions. In the end, it is established an equivalent condition of superlinear convergence. 
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1. Introduction & Algorithm 

This In this paper, it is proposed to consider the follow-
ing nonlinear mathematical programming problem: 

     min . . 0, 1, , ,jf x s t g x j I m       (1) 

where  : , :n
j

nf R R g j I R   R  are continuously 
differentiable functions. Denote the feasible set as fol-
lows: 
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Let  ,L x   be Lagrangian function of (1), and  
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If  ,x    is a KKT point pair of Equation (1), then  

* *,, 0x xLx   ,    i.e., 
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where         , , , .g x g x j I g x g x j I        
 ,k kx

 
At the point pair  , the Newton’s iteration of (2) 

is defined as follows: 
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kH  is replaced for 

       (3) 

Later, a positive definite matrix 

 2 ,xx k kL x   by a lot of authors to p some kinds  

of variable metric methods, such as sequen
programming (SQP) methods [1-5], sequential systems 
of linear equations (SSLE) algorithms [6-8]. In general, 
th

sented, in wh

 develo

tial quadratic 

e computational cost of those methods is large. 
In this paper, a new variable metric method is pre-

ich the following fact is based on: a positive 
definite matrix kB is replaced for the matrix 
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In the sequel, we describe the algorithm for the solu-
tion of (1). Denote 
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   min min ,
n mx X z R

f x F
 

It is obvious that z and from

Equation (3), we have 

              (4) 

 

 .k k kB p v z  
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To the system of linear Equations (4), like uncon- 
strained optimization, is dealt with using den 

rank one modifications as follows: 
kB   Broy

  T

1k kB B  
T

.k k k k

k k

q B p p

p p


           (5) 

Now, the algorithm for the sol
ca

rting point 

ution of Equation (1) 
n be stated as follows: 
Algorithm A: 
Step 1: Initialization: Given a sta n m

0z R   
(i.e., n m

0 0,x R R  ), and a initial positive definite 
matrix    

0
n m n mB R    . 0, 0;k    

  . If  Step 2: Compute v zk kv z 

k , and obtain  according 

to

vergence of lgorithm 

If the algorith

, stop; 

Step 3: Compute  1
k k kd B v z  ; 

z Step 4: Let kz 1 k d 1kB 

 (5). Set 1k k  . Go back to step 2. 

2. Con A

m stops at k
k

k
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z


 

  
 

, then kx  is a KKT 

po n the sequel,
n infinite

int of (1). I  we suppose that algorithm 
generates a  sequence  kz . 

Four basic assumptions are given as follows: 
A1 The feasible set X  is nonempty; The functions  

 , jf g j I are two-times continuously differentiable; 

A2 For all nx R , th    ,je vectors g x j I   are 

linearly independent; 
A3  kx  and  k  are b deoun d. There exists a 

KKT point pair  ,x   , such that 2
xx L x ,   is 

po
A4 There
sitive definite; 

 exists a ball  ,N x  of radius 0   

about x , w  here     2 2,f x g I   

satisfy the Lipschitz co

,j jx g x

nditio  ,

j

n on N x 

Lemma 1 [9] L : n m n mR R   be continuously 
differentiable in som  and convex s

. 

et 
e et , and 

F
 open D F   

is Lipschitz continuous in D , then x d D  , it 
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holds 
at 
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where   is the Lipschitz constan er,t. Moreov  , ,u   
x D , it follows that 
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Lemma 2 [9] Let  be continuously 
differentiable in some x set and 

: n m n mF R R 
 open and conve D , F   

is inve ible for some rt x D , then there ex mist so e 
0, 0    , such  that for all , the fact ,u v D

 ,u x v x     implies that 

is Lipschitz continuous i r, mn D . Moreove assu e  F x  
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nLemma 3 [9] For operator : m n mF R R  , which 
satisfies: 

R1 F is continuously diff entiable on D ; 
R2 There exists a point z D  , such that 

er
  0F z  , 

 F z
 

and  is 
R3

reversible; 
F   is Lipschitz continuous at z , i.e., there ex-

ists a constant  , such that 
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then there exist and 0  , when 0 

 0 0, ,z z H F z       

it is true that kz 1  is meaning, and is linearly con-
vergent to 

kz  
z . There
 conve

by, we can conclude that is 
superlinea rgent to , if if 

kz  
rly z and only 
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In the sequel, we prove the convergence Theorem as 
follows: 

Theorem 1 If there exist constants 0   and 0,   
such that  

 0 0, ,z z B v z       

 kz is meaning, and s linearly conkz i vergent to then 

z , thereby kx  and k  are linearly convergent to x  
and   respectively. 

Proof: From Lemma 3, we only pro v  and 
satisfy conditions R1, R2, R3 and t equali  
From assum

ve that 
he in ty 

ption A1, it is obvious that is continuously 
differentiable. From A3, it holds that 

k
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So, it is easy to see that 
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From assumption A4, it holds that is Lipschitz con-
tinuous at . In a word, satisfies the conditions R1, 
R2, R3. 

, we prove that, for and 
ng to (5), (6) is satisfied. 
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i.e., (6) is true, thereby, from Lemma 3, we get 

, . ., , .k k kz z i e x x       

The claim holds. 
Theorem 2 Under above-mentioned assumptions, if 

 ,   in Theorem 1 satisfy that 
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In addition, from (6), (10), using the method of 
mathematical induction, it is not difficult to prove that 
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From Theorem 2, we don’t conclude that  kx  is su- 

perlinearly convergent to x , i.e.,  

 1 .k kx x x x      In the sequel, we discuss one  

condition which assures that kx is superlinearly conver- 
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gent to x . 
Lemma 4 

 
Let be a function defined by : n nR R R  
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So, in order to prove that 
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