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ABSTRACT 

Beginning with a Lagrangian, we derived an approximate relativistic orbit equation which describes relativistic correc- 
tions to Keplerian orbits. The critical angular moment to guarantee the existence of periodic orbits is determined. An 
approximate relativistic Kepler’s elliptic orbit is illustrated by numerical simulation via a second-order perturbation 
method of averaging. 
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1. Introduction 

Kepler problem is one of the fundamental problems of 
orbital mechanics [1,2], which has been studied widely 
[3-5]. It is regarded as a special case of two-body prob- 
lems [6], where one body is assumed to be fixed at the 
origin-say, for example, it is so massive, like the Sun, 
that to the first approximation it does not move. The Ke- 
pler’s elliptic orbit is a conic section of the Kepler’s 
equation in polar coordinates with the form 

, 0 1
1 cos

crr
e f

 


e  ,           (1) 

where  is the eccentricity and the angle e f  is often 
called the true anomaly. Such elliptic orbits are of im- 
portance on describing dynamics of orbital mechanics in 
celestial mechanics and astrophysics. 

When dealing with particles moving at speed close to 
that of light it may be important to take into account the 
relativistic effects [7-12]. There have been several at- 
tempts to obtain the orbit solution for a classical relativ- 
istic two-body system interacting electromagnetically, 
and the concentric circular motion of two classical rela- 
tivistic point charges interacting electromagnetically had 
been described [13-16]. In this paper, using a perturba- 
tion techniques of averaging we will give the approxi- 
mate Kepler’s ellipse orbits for the Kepler problem with 
the special relativistic effects. In our results, we will 
show that once the relativistic contribution to Kepler 
problem is considered, the Kepler’s ellipse orbit may be 
destroyed. However, they perhaps maintain the original 
characteristics for a long time. 

The paper is organized as follows. Firstly, the Lagran- 

gian equations of motion of the relativistic Kepler prob- 
lem are deduced, and the elliptic periodic orbits and un- 
bounded orbits of equations are determined. Secondly, by 
the near-identity transformation, a good approximation of 
the Kepler’s elliptic orbits is obtained via averaging of 
the angle. An example is given to illustrate the applica- 
tion of the result. Finally, we conclude our results. 

2. Periodic and Unbounded Orbits of the 
Relativistic Kepler Problem 

Under relativistic effects, a particle of mass  orbiting 
a central mass 

m
M  is commonly described by the 

Lagrangian in the polar coordinates [17-21] 

2 2 2 2 GMm
L mc c r r

r
              (2) 

where  is Newton’s universal gravitational constant 
and  is the speed of light in vacuum. Then the La- 
grangian equations of motion are given by 
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  (4) 

At this moment it is convenient to introduce the 
relativistic linear momentum  [22]  p
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             (5) 

and Equation (4) implies the conservation of the rela- 
tivistic angle momentum  , an arbitrary constant of 
integration, 

 
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2 2 2 2
.
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             (6) 

By a simply algebraic computation, we have 
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Substituting (7) into (3) and together with (5), it yields  
that 

2 2 2 2 2

2

22 2 2 2 2 2

,

.

crp
r

c r p r

c G
p

rr c r p r







 
 


    



 M
       (8) 

Note that Equation (8) have periodic orbits if and on- 
ly if the relativistic angle momentum   is large enou- 
gh, precisely, :c GM c   . In fact, the derivation of 
the relativistic linear momentum  always be nega- 
tive when the opposite direction of inequality holds, 
since 

p
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For example, the mass of Sun, the Newton’s universal 
gravitational constant and the speed of the light are taken 
to be  
and , respectively, then the periodic 
orbits exist only for  

30 11 3 1 21.989 10 kg, 6.670 10 m kg sM G       
8 12.998 10 m s  

11 14.425 10 s .  
c

Since the change of the polar coordinates preserve the 
symplectic form, Equation (8) retains the Hamilton 
structure with the Hamiltonian 

  2 2 2 2 2, .
c

H r p c r p r
r

   
GM

r
     (9) 

The curve of level set with the Hamiltonian  

  2 2 2 2 2, , 1 ,H r p h h c G M c    
 

defines the “energy” of the Kepler system (8). When 

2 2 2 21h c G M c 2  , 

the curve of level set reduces to an elliptic equilibrium 
point 
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of Equations (8), which is corresponding to the circle of 
Keplerian orbits of the form (1) with . At the same 
time, every curve of level set with 

0e 

2 2 2 2 2 21 ,h c G M c c 
 

is corresponding to a periodic orbit of Equation (8). In 
case of 2 ,h c 

r
, the orbits become unbounded and 

insect the -axis only one time. The orbits in the phase 
plane  ,r p  for Equation (8) are depicted in Figure 1 
using the parameters mentioned above. 

3. Approximate Kepler’s Elliptic Orbits 

In previous section, we find that the large relativistic an- 
gle momentum   is necessary and sufficient to guaran- 
tee the existence of the periodic orbits. At the same time, 
  also as a constant of integration can be taken arbitrar- 
ily large. Consequently, in this section we will assume 
that   is so large that 

2 2

2 2
1.

G M

c



   

In the following, with this assumption by the method of 
averaging, we will show that for a long time the orbit on 
the  ,r   plane is an approximate Kepler elliptic orbits. 
The averaged method has been used widely [23-26]. 

Together with (7) and (8), by successive applications of 
the chain rule, we get 

2d d d
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So it follows that  
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where 2
cr G M . 

Let  

 1, ,cr r      , 

then we obtain that 
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Figure 1. Periodic and unbounded orbits in the plane for the relativistic Kepler problem. 
 

Let 

   sin , cos .J J                                             (14) 

The perturbed Equation (13) becomes 
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the system (15) transforms into By the near-identity transformation 
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   0 , 0 π 2J e     Similarly, for the equation, averaged to second-order, 
we obtain is easily solved by 
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The Equation (18) with the initial value 
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Combining with the transformation (14) and (16), we have 
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As an example, we illustrate our results for Mercury of 

our solar system which is described by the near-circular 
orbit. Mercury has the eccentricity  by the 
classical Newton mechanics. The other parameters are 
taken as follows: 

 0.2056e 

Newton’s universal gravitational constant G = 6.670 × 
10−11 m3·kg−1·s−2; the mass of the Sun M = 1.989 × 1030 
kg; the speed of light G = 2.998 × 108 m·s−1; the relativis- 
tic angular moment μ = 10μc = 10 GM/c. 

An approximate Kepler elliptic orbit due to special 
relativity is illustrated in Figure 2. 

4. Conclusion 

The relativistic angle momentum   determines the  

existence of periodic orbits. When   is smaller than the 
critical angle momentum c , the Kepler system (8) has  
no periodic orbits. For c  , if the energy defined by  

(9) lies in a proper interval  2 2 2 2 2 21 ,h c G M c c  , 

then every orbit is closed and periodic; otherwise, it leads 
to the unbounded orbits. The approximate relativistic 
Kepler elliptic orbit is illustrated by numerical simulation 
via a second-order perturbation method of averaging, and 
it is valid only for timescale of the order of 21  . 
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Figure 2. Relativistic orbit in a Keplerian limit (blue solid line), as described by Equation (13), compared to a corresponding 
Keplerian orbit (red dashed line) with  0 . The approximate Kepler elliptic orbit due to special relativity is illustrated here 
for . 0 100   
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