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ABSTRACT 

Mesenchymal stem cells (MSC) are considered non-hematopoietic multipotent stem cells with self-renewal properties 
and the ability to differentiate into a variety of mesenchymal tissues. Optimal conditions for the culture of these cells 
have been the subject of investigation for several years. In particular, ideal oxygen tension levels have not been estab-
lished in the literature. In physiological environments, oxygen tension may vary from 12% in peripheral blood to 1% in 
the deep zone of cartilage regions. In any case, oxygen tension is considerably lower in vivo when compared with the 
normal atmosphere of standard cell culture conditions (21%). The objective of this study was to review the literature 
available on MSC characteristics (cell cycle, survival, proliferation, differentiation, morphology, immunophenotype, 
cytogenetics) when cultured under hypoxic conditions. Our focus on optimal culture conditions is justified by the key 
role currently played by these cells in regenerative medicine. 
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1. Introduction 

Mesenchymal stem cells (MSCs), also referred to me- 
senchymal stromal cells [1], are considered non-hema- 
topoietic multipotent stem cells with self-renewal pro- 
perties and the ability to differentiate into mesoderm 
tissues [2]. MSCs were first described by Friedenstein et 
al. in the 1970s, as cells morphologically similar to fibro- 
blasts and with a high ability to adhere to plastic surfaces 
[3]. Several subsequent studies have reported the multi- 
potent nature of these cells, i.e., their ability to differen- 
tiate into embryonic mesoderm-derived cells, namely, os- 
teocytes, chondroblasts, and adipocytes [4-6].  

The first studies designed to assess the effects of 
different oxygen (O2) tension levels in MSC culture date 
back to 1958, when Cooper et al. and Zwartouw & West- 
wood observed that some cells proliferated more rapidly 
under low O2 tension levels when compared with normal 
atmospheric levels [7,8].  

In recent years, studies have evidenced that MSC are 
recruited to areas of tissue damage, such as fractures, 
myocardial infarction, and ischemic brain lesions, where 
they become involved in both the regulation of inflam- 
matory response and tissue repair [9,10], and hypoxia 
appears to be an important regulator of MSC recruitment, 
migration, and differentiation [11,12], In an animal 
model, Rochefort et al. have shown that MSCs, but not 

hematopoietic progenitor cells, were mobilized from the 
bone marrow into peripheral blood through hypoxia [13]. 
Additionally, low O2 tension levels have been implicated 
in the maintenance of stem-cell quiescence and plasticity 
in general [14,15].  

Based on the above, studies on optimal in vitro culture 
conditions have focused on ideal O2 tension levels [16]. 
In particular, it has been hypothesized that the survival 
and proliferation of MSCs can be improved by main- 
taining cells at low O2 tension levels although it remains 
unclear whether different in vitro concentrations of O2 
over long periods of time change typical features of MSC 
[14]. Within this scenario, a relevant fact is that cultures 
under standard conditions (21% O2) are exposed to a sig- 
nificantly higher amount of O2 when compared with phy- 
siological in vivo conditions [17]. In fact, approximately 
1% - 1.5% of the genome appears to be regulated by 
hypoxia [18].  

Recently, with the growing interest in the potential 
application of MSCs in regenerative medicine, the possi- 
bility to obtain a higher rate of proliferation, and the 
availability of more appropriate methods to change O2 
tension levels in culture,has motivated the publication of 
several studies on the effects of low O2 tension levels on 
MSC behavior and function [16,17,19,21]. It is impor- 
tant to emphasize that subtle differences in culture con- 
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ditions, e.g., medium supplementation with different growth 
factors, probably account for the heterogeneity of results 
found in the literature. The present study discusses se- 
veral described effects of hypoxia on MSC. 

2. Bone Marrow Stromal Cells and MSC  
Niches 

Stromal cells, together with extracellular matrix and so- 
luble regulatory factors, once regarded as secondary com- 
ponents [22], are currently believed to be essential to 
maintain hematopoiesis [23]. In addition to MSC, stro- 
mal cells, both in vitro and in vivo, are formed by a 
heterogeneous population of cells including macrophages, 
fibroblasts, adipocytes, osteoblasts, and endothelial cells. 
These cells are considered to be the main components of 
the niche and seem to play a critical role in the regulation 
of the hematopoietic stem cells [24,25]. 

The term niche was introduced in 1980 to describe the 
spatial structure that lodges stem cells [26]. The hema- 
topoietic stem cell niche is located in the bone marrow, 
and currently there are models that advocate two superi- 
mposed populations: the endosteal niche-close to the 
bone surface, where quiescent hematopoietic stem cells 
are located and maintained; and the perivascular niche- 
associated with sinusoidal endothelial cells, where hema- 
topoietic stem cells primarily divide and self-renew. 
MSCs are present in these two niches, and they partici- 
pate in hematopoiesis and ontogeny [23]. 

3. MSC Survival in a Hypoxic Environment 

In vivo O2 tension levels have been described to range 
between 4% and 7% in the bone marrow, sometimes 
reaching as low as 1% - 2% [27-30]. Therefore, MSCs 
and all other stroma cells have to be able to live in a 
hypoxic microenvironment [31].  

MSCs, as all cells, have the ability to effectively 
change metabolic pathways from aerobic to anaerobic, an 
essential aspect for the survival of these cells under 
hypoxic conditions [16]. An experimental study perform- 
ed with rats on the changes in MSCs under serum-de- 
privation and hypoxia conditions, concluded that serum 
deprivation was the main reason leading to ischemia- 
induced apoptosis of MSCs. However, it also showed 
that prolonged exposure to hypoxia leaded to mitochon- 
drial dysfunction and Caspase-3 activation, a key factor 
in apoptosis [32]. Although it has been shown that MSCs 
are able to withstand hypoxia (e.g., O2 < 1%) for at least 
48 hours (37), the accumulation of lactate resulting from 
glycolysis could become an inhibitory factor in the long 
term [16-33]. 

When bone marrow-derived MSCs are cultured under 
hypoxic conditions, intracellular signaling pathways as- 
sociated with cell survival are stimulated such as hy- 

poxia-inducible factor-1 alpha (HIF-1α) that when stab- 
ilized migrates into the cell nucleus and combines with 
hypoxia-inducible factor-1 beta (HIF-1β). Subsequently, 
these dimeric structures bind to the promoter region    
of hypoxia-responsive genes, including glucose-6-phos- 
phate transporter (G6PT), which controls gluconeoge- 
nesis. The increased level of glucose resulting from 
gluconeogenesis appears to contribute to MSC survival 
under hypoxic or serum-deprivation conditions (37-39). 
Additionally, an increased survival rate under hypoxia, 
when compared to normoxia, can be attributed not only 
to the overexpression of HIF-1, but also to an increase in 
erythropoietin receptors, and anti-apoptotic factors Bcl-2 
and Bcl-XL, followed by decreased Caspase-3 levels 
(70,71). Moreover, interleukin IL-6 and vascular endo- 
thelial growth factor (VEGF)-two proangiogenic factors 
are also stimulated during hypoxia, further contributing 
to cell survival (70). These beneficial effects are regulat- 
ed by a complex array of signaling pathways, including 
Akt and ERK pathways (26,72,73).  

Hypoxia and the HIF-1α stabilization cause phos- 
phorylation of the Akt signaling pathway which is de- 
graded under normoxia. When Akt is activated, the ex- 
pression of pro-apoptotic factor Bax reduces, and the 
expression of anti-apoptotic factor Bcl-2 increases. Such 
overexpression may interact with the Bax accumulated in 
the mitochondrion, triggering apoptosis or further stabi- 
lization of HIF-1α causing, as mentioned above, its 
translocation into the cell nucleus and the activation of 
hypoxia-responsive genes such as G6PT and angioge- 
nesis-related factors such as VEGF and IL-6 (18). 

In addition to O2 tension levels, the optimal culture 
time of MSCs under hypoxic conditions also remains to 
be determined. Wang et al. used short time hypoxic pre- 
conditioning in MSCs and observed favorable effects on 
cell viability and angiogenic properties after 10 minutes 
of culture; stronger effects were observed after longer 
culture times [34]. 

4. MSC Proliferation and Cell Cycle under  
Hypoxic Conditions 

Despite the fact that physiological levels of O2 tension, 
even in healthy tissues, are significantly below 21%, 
cells are most frequently cultured at this O2 tension level. 
Culture under normal physiological O2 tension levels 
might affect the proliferation rates of several types of 
cells [16]. Lenon et al. showed that the culture of MSCs 
derived from the bone marrow of mice at 5% O2 resulted 
in approximately 40% more cells at first passage when 
compared with cells cultivated at 21% O2 [28]. Similar 
findings were reported for human MSCs by Grayson et 
al., that showed an increased cell proliferation rate under 
low O2 conditions (2%) for 7 passages, resulting in a 30 
times higher number of cells when compared with cul- 
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tures under normoxia [35]. Hung et al. [20] also observed 
a higher proliferation capacity of MSCs after 7 days of 
culture under hypoxia (1% O2). In the same study, an in 
vitro migration assay was performed and showed that 
hypoxia enhanced the migration capacity of MSCs [36]. 
In spite of a short exposure time (24 hours) at 1.5% O2, 
Matin-Rendon et al. also observed increased MSC proli- 
feration [37]. Accordingly, D’Ippolito et al., showed that 
a low O2 tension level decreased the time necessary for 
the cell population to double when cultured at 3% O2 
[14], and Ren et al. showed an increase in the number of 
cells in the G2/S/M phase during hypoxia [38]. 

Conversely, a study by Holzwarth et al. analyzing 
MSCs proliferation at 21%, 5%, 3%, and 1% O2 ob- 
served reduced rates of proliferation after 7 days of cul- 
ture under hypoxia. In their study, cultures at 21% O2, 
considered to be hyperoxic in comparison with the phy- 
siological environment in which MSCs reside, showed 
robust proliferation rates. Assessing MSC cell cycle after 
7 days of culture only 1.37% of the cells entered the 
G2/M phase in hypoxic cell cultures (1% O2) compared 
with 2.50% at an O2 concentration of 21%. The authors 
concluded that the reduced number of cells in the G2/M 
phase confirms the inhibitory effect on cell proliferation 
under reduced O2 concentrations [17]. An inhibitory 
effect on MSC proliferation rate cultured under hypoxia 
(1% O2) in a medium containing 17% of fetal bovine 
serum (FBS) has also been reported [39]. 

5. MSC Plasticity under Hypoxic Conditions 

The multilineage potential of MSCs is one of the reasons 
underlying their use in regenerative medicine [40]. Ac- 
cording to several studies, MSC differentiation into other 
lineages can either increase or decrease under hypoxia 
[17,20,41]. Some in vitro studies have shown that cul- 
tures with low O2 concentrations stimulated differentia- 
tion processes, inducing cells to differentiate into adi- 
pogenic, osteogenic, or chondrogenic cells [28,38,42]. 
Conversely, some others have reported suppressive ef- 
fects of low O2 tension levels on the plasticity of MSCs 
[43,44]. 

5.1. Osteogenic Differentiation 

HIF-1α and VEGF are MSCs key elements in bone 
development and regeneration. VEGF is a transcriptional 
target of HIF-1α and has an important role in angio- 
genesis to which osteogenesis-bone development and re- 
generation, is strongly associated [45]. 

A study conducted by Huang et al. investigated the 
effects of hypoxia (5% O2) in relation to the biological 
capacity of MSCs obtained from rabbits. That study 
found that hypoxia significantly increased the prolife- 
ration of MSCs, and the expression of messenger RNA 

(mRNA) for core binding factor alpha-1 (Cbfα-1) in- 
creased 1 hour after hypoxia. These results indicate that 
hypoxia increases differentiation rates in osteogenic lin- 
eages and suggest that Cbfα-1 may be positivity influ- 
enced by HIF1-α [41]. Some studies point to an im- 
proved osteogenic differentiation capacity of MSCs, how- 
ever with conflicting results. Lennon et al. cultivated 
cells for several passages under hypoxia (5% O2) and 
also at 21% O2. Subsequently, the osteogenic differen- 
tiation capacity of these cells was assessed, suggesting 
that 5% O2 was associated with a better differentiation 
response [28]. Valorani et al. also observed that, under 
hypoxic conditions (2% O2), MSCs obtained from human 
adipose tissue showed an increase in their potential to 
differentiate into osteocytes [46]. Another study showed 
that different rates of O2 (in hypoxia) were associated 
with different results: cells cultured at 1% O2 showed a 
negative effect on osteogenic differentiation, whereas an 
increase in O2 tension to 3% caused recovery of osteo- 
genic differentiation [17]. In contrast, D’Ippolito et al. 
[14], Hung et al. [39], Muller et al. [47], Salim et al. [48], 
and Martin-Rendon et al. [37] observed either a reduced 
capacity or no effect on the differentiation capacity of 
MSCs into osteoblasts under hypoxic conditions or after 
exposure to hypoxia. 

5.2. Chondrogenic Differentiation 

Although Scherer et al. have shown that 5% O2 promoted 
chondrogenic differentiation in the presence of a chon- 
drogenic medium [49] and chondrocytes are known to 
develop in an extremely hypoxic environment [16] there 
are few articles assessing hypoxia effects on MSCs 
chondrogenic differentiation. There are, however, some 
indirect evidences that hypoxia might play a key role in 
in vivo MSCs chondrogenic differentiation since Sox9, 
an important transcription factor involved in chondro- 
genesis, was observed to be upregulated and to involve 
HIF-1α and p38MAPK/Akt pathways under hypoxic 
conditions, similarly to the MSC survival mechanisms in 
a hypoxic environment mentioned above [50,51]. 

5.3. Adipogenic Differentiation 

Although several studies have suggested that hypoxia can 
increase the MSCs differentiation in adipocytes [38,42, 
46,52,53] there are some that suggested hypoxia has no 
effect [35-54] or even suppress adipogenic MSCs dif- 
ferentiation [39]. Again, several different O2 tension and 
culture conditions have been utilized in these studies. 

6. MSC Morphology under Hypoxic  
Conditions 

Some studies have described the morphology of MSCs 

Copyright © 2013 SciRes.                                                                               CellBio 



B. AMORIN  ET  AL. 14 

and correlated it with the “quality” of these cells, repor- 
ting that smaller cells have higher self-renewal capacity 
and an enhanced differentiation potential. Grayson et al. 
observed some differences in cells cultured under hy- 
poxia in terms of their cellular and nuclear morphology, 
as well as in the formation of reinforced extracellular 
matrix when compared with MSCs in normoxia [35]. 
Holzwarth et al. microscopically analyzed the morpho- 
logy of MSCs cultured under both hypoxic and in nor- 
moxic conditions after 1 and 3 weeks of culture. The au- 
thors observed that cell morphology under hypoxia was 
donor-dependent-some samples did not show differences 
between the two O2 tension conditions, and others died 
after exposure to hypoxia [17]. 

7. Immunophenotypic Characteristics of  
MSCs under Hypoxic Conditions 

MSC immunophenotype is characterized by the expres- 
sion of CD73, CD90, CD105, CD106, CD146, and MHC 
class I molecules, and the absence of markers such as 
CD45 and CD34 or MHC class II molecules [1,55]. 
According to one study by Holzwarth et al., there were 
no significant differences in the expression of cell sur- 
face markers after 14 days of culture at 1% when com- 
pared to 20% of O2 [17]. 

8. Cytogenetic Characteristics of MSCs  
under Hypoxic Conditions 

Senescence is a typical phenomenon of the in vitro cells 
cultures thought to interrupt cell proliferation, and 
attributed to everal factors, including progressive telo- 
mere shortening secondary to loss of telomerase activity 
[56]. In normal O2 tension, time in culture has been 
linked to an increase number of mutations and to ma- 
lignant transformation in murine mesenchymal cells [57] 
and in human MSC cultures, after more than 50 in vitro 
passages [58,59]. Holzwarth et al. did not see cytoge- 
netic alterations in cultures of MSCs either under hy- 
poxic or normoxic conditions during six weeks of culture 
[17]. 

9. Gene Expression in MSCs Cultured  
under Hypoxia 

As mentioned above, several studies have described 
genes that may be under-or over-expressed in MSCs 
during hypoxia. These genes are involved in different 
functions, such as DNA repair, cell cycle, chromosome 
segregation, apoptosis, glycolysis, angiogenesis, proli- 
feration, and adhesion [33,35,60,64]. A study conducted 
by Onishi et al. reported over-expression of several genes 
in rat MSCs cultivated under hypoxia vs. normoxia. That 
study also revealed that most genes analyzed were up- 
regulated after 24 hours even in cells cultured at 10% O2 

(moderate hypoxia) [64].  
The Table 1 describes some of the genes identified in 

different studies involving human MSCs in relation to 
their expression during hypoxia. 

10. Immunomodulatory Effects and Homing  
under Hypoxia 

In addition to the easy isolation and culture of MSCs, 
their differentiation potential and the associated produc- 
tion of growth factors and cytokines, these cells have 
also become the focus of attention due to their immuno- 
modulatory properties [65,66]. In this context, hypoxia 
 
Table 1. Expression of genes in human MSCs cultured under 
hypoxic conditions. 

Gene Function 

Upregulated  

HIFa Hypoxia-related transcription factor 

CXCR4bc Migration 

CX3CR1b Migration 

RRM2d Ribonucleotide reductase 

XRCC2d DNA repair 

KIF24d Chromatid assembly 

POLQd DNA polymerase 

E2F8d Cell cycle progression 

FANCD2d DNA repair 

ESCO 2d Sister chromatid cohesion 

AURKBd Chromosome segregation 

CENPNd Centromere binding 

MKI67d Cell proliferation 

Downregulated  

TFC1d Hepatic transcription factor 

LEPd Metabolism, apoptosis, angiogenesis 

ANGPT2d Antagonist on vascular remodeling 

ZP1d Sperm binding in the pellucid zone 

VWFd Platelet binding to endothelium 

GIMAP4d Development of T cells 

CD93d 
Intercellular adhesion, clearance of  

apoptotic cells 

PLVAPd Cell adhesion 

ESAMd Endothelial cell adhesion 

PCDH17d Cell-cell connections within the brain 

References: aHolzwarth et al. [17]; bHung et al. [39]; cLiu F., dBasciano [60]. 
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seems to regulate the levels of soluble factors (such as 
VEGF, fibroblast growth factor-2 [FGF2], hepatocyte 
growth factor, and insulin-like growth factor 1 [IGF-1]), 
as well as the levels of tumor necrosis factor alpha 
(TNF-α), based on nuclear factor kappa β-dependent 
mechanisms [67]. These findings suggest an influence of 
hypoxia on the immunoregulatory properties of MSCs. 

Wu et al. used human MSCs and observed that most 
genes were regulated after 24 hours of hypoxia. However, 
in less than 4 hours of hypoxia, an increased secretion of 
VEGF and membrane type 1-matrix metalloproteinase 
(MT1-MMP) was observed, as well as reduced levels of 
matrix metalloproteinase-2 (MMP2) [68]. Muir et al. also 
confirmed an increased expression of VEGF under hy-
poxic conditions [69]. Potier et al. cultivated human 
MSCs with FBS in hypoxia and observed a decreased 
expression of TGF-β3, as well as increased expression of 
FGF2 and VEGF after 48 hours. In that study, IL-6, IL-8, 
and MPC1 levels were not affected [44]. Conversely, in a 
study by Hung et al., who cultivated MSCs in a FBS-free 
medium, the expression of IL-6, macrophage chemotac- 
tic protein (MCP1) and VEGF was found to be upregu- 
lated under hypoxia [39]. 

In addition to influencing the secretion of soluble 
factors, hypoxia also regulates chemokine receptors 
CX3CR1 and CXCR4 [39-70], and hepatocyte growth 
factor receptor cMet [21]. These receptors increase 
MSCs’ migration and homing potential to cell-damaged 
areas [16]. Rosova et al. found a possible role of hepa- 
tocyte growth factor and its receptor cMet, whose ex- 
pression is upregulated during hypoxia [21]. One study 
conducted by Hung et al. showed that hypoxia increased 
the migration capacity of MSCs [20], whereas Wang et 
al. showed an improved migration potential of MSCs in 
brain lesion. In the latter study, the CXCR4 receptor was 
shown to be involved in ability of these cells to migrate 
to damaged tissue under hypoxic conditions [70]. 

Hypoxia has been shown to influence the secretion of 
trophic factors and membrane markers associated with 
MSC migration and homing and, in animal models, 
MSCs cultured under hypoxia appears to have improved 
immune regulatory performance suggesting a possible 
role of hypoxia in cellular therapy strategies [71,72]. 
Migration may involve several cytokines, chemokines, 
and integrins. Among chemokines, the stromal cell-de- 
rived factor-1 (SDF-1/CXCR4 receptor) is expressed in a 
wide variety of tissues. In this context, SDF-1 is a potent 
progenitor cell mobilization agent present in the bone 
marrow niche, and its receptor CXCR4 is essential in the 
migration and homing of stem cells [73]. Therefore, the 
interaction between this axis and CXCR4 expression on 
the surface of MSCs cultured under hypoxia has an im-
portant role in the migration of transplanted cells [37]. 

11. Final Considerations 

The recent interest in the potential application of MSCs 
in regenerative medicine and the availability of more 
appropriate methods for cell cultures were followed by 
the conduction and publication of several studies assess- 
ing the effects of low O2 levels on the behavior and 
function of MSCs. This condition of cell culture appears 
to enhance MSCs migration and immune regulatory per- 
formance in damaged tissues with relevant consequences 
for cellular therapy. However, optimal conditions for the 
culture of MSCs have not yet been clearly defined and it 
is extremely important to accurately determine whether 
cells cultured under hypoxia are affected in terms of their 
differentiation, proliferation, and morphology, among 
other aspects, including the secretion of trophyc factors 
and membrane markers associated with MSCs migration 
and homing. Although the most of studies suggest a 
beneficial effect of hypoxia on MSCs, some authors have 
also reported opposite and negative effects. In this con- 
text, further research is essential so that a consensus can 
be reached, especially because of the great interest in 
standardizing the culture of MSCs for use in cell therapy, 
a promising tool for the treatment of different malignant 
conditions that are untreatable today. 
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